Interference Management Based on Meta-Heuristic Algorithms in 5G Device-to-Device Communications
Abstract
:1. Introduction
- Focusing on Device-to-Device (D2D) communication as a key component in the advancement of cellular networks, including 5G and beyond.
- Highlighting D2D communication’s potential in improving system throughput, offloading network cores, and increasing spectral efficiency.
- Emphasizing the importance of optimizing resource and power allocation to minimize co-channel interference and maximize the benefits of D2D communication.
- Conducting a comparative analysis of meta-heuristic algorithms, such as Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), and Bee Life Algorithm (BLA).
- Introducing a novel combination of matching techniques with BLA for joint channel and power allocation, enhancing the optimization process.
- Demonstrating that the combined matching algorithm and BLA outperform PSO, BLA, and GA in terms of throughput, convergence speed, and practicality.
- Investigating the use of D2D communication within cellular networks, particularly over uplink channels shared with cellular communications.
- Aiming to reduce interference between Cellular Users (CUs) and D2D users, as well as among D2D users sharing the same channel.
- Seeking to enhance overall network throughput by effectively managing channel and power allocation.
1.1. Related Work
1.2. Main Contribution
2. System Model and Problem Formulation
3. Bio-Inspired Algorithms
3.1. Individual Representation and Fitness
3.2. Genetic Algorithm (GA)
3.2.1. Crossover Operation
3.2.2. Mutation Operation
3.3. Particle Swarm Optimization (PSO)
3.4. Bee Life Algorithm (BLA)
3.4.1. Bees in Nature
3.4.2. The Bee Life Algorithm
3.4.3. Food Foraging
4. The Matching Bees Algorithm (MBA)
5. Simulation and Discussion
5.1. Convergence of the Algorithms
5.2. Network Performance Based on D2D Pairs Number
5.3. Effects of Rate Restrictions on Acceptance Ratio
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
U | The set of users |
CU and D2D pairs number, respectively | |
Resource blocks set | |
K | Resource blocks number |
A | Matrix of allocation |
Throughput | |
CUs minimum SINR | |
Gain between UEi and UEj | |
Path Loss model | |
B | Bandwidth |
CUs maximum power | |
D2D pairs maximum power | |
Crossover threshold | |
Mutation threshold | |
White Gaussian Noise | |
F | Carrier frequency |
X | Population account |
D | Number of drones |
W | Number of workers |
Y | Number of broods |
5GB | Fifth Generation and Beyond |
PPP | Poisson Point Process |
BLA | Bee Life Algorithm |
PSO | Particle Swarm Optimization |
BR | Block of Resource |
QoS | Quality of Service |
BS | Base Station |
SINR | Signal-to-Interference-plus-Noise Ratio |
CU | Cellular User |
UAV | Unmanned Aerial Vehicle |
D2D | Device to Device |
UE | User Equipment |
GA | Genetic Algorithm |
UMi | Urban Micro System |
kbps | Kilobits per second |
MBA | Matching Bees Algorithm |
Appendix A
- Generate X random bees: Initialization
- Calculate Fitness (X bees): Evaluation
- Categorization: One Queen, W workers, D drones // Reproduction: first optimization operator (endin criteria not met)
- do
- Crossover (Queen, Drone) // Queen and Drones mate with probability ThC
- while (there is a drone who did not mate with Queen)
- for (some broods)
- Mutation (brood) // The broods mutate with probability ThM
- end for // Food Foraging: second optimization operator
- for (all workers)
- Random selection (D2Dpair)
- Transmission power optimization (D2Dpair)
- end for
- Calculate Fitness (broods, new workers): Evaluation
- Keep X best bees: Selection
- end while
- Best Solution (Queen) BLA
Appendix B
- for (i 1 to X) do
- for (r RB1 to RBK) do
- if (Best fitness < fitness (i-th, r-th)) then
- Best fitness (i-th, r-th)
- end if
- end for
- end for // end of initialization of X bees with matching theory
- while (not (stopping criteria)) do
- Evaluation: calculate fitness (X bees)
- Categorization: One Queen, W workers, D drones
- Reproduction
- Crossover
- Mutation
- Food Foraging
- Optimize transmission power D2Dpair
- Calculate fitness (broods, new workers): Evaluation
- Keep X best bees: Selection while
- Best Solution (Queen)
- End MBA
Appendix C
GA | PSO | BLA | MBA | |
---|---|---|---|---|
Source | Genetics | Particle Swarms | Bees | Combination of bees and matching theory |
Optimization operators | Crossover and Mutation | Updating power and resource allocated to D2D pairs | Reproduction (Crossover and Mutation) and food foraging (Local search) | Matching theory to optimize first population and BLA (reproduction and food foraging) to enhance the optimized first population |
Number of D2D pairs supported | Multiple |
References
- Jayakumar, S. A review on resource allocation techniques in D2D communication for 5G and B5G technology. Peer-to-Peer Netw. Appl. 2021, 14, 243–269. [Google Scholar] [CrossRef]
- Kheddar, H.; Himeur, Y.; Atalla, S.; Mansoor, W. An Efficient Model for Horizontal Slicing in 5G Network using Practical Simulations. In Proceedings of the 2022 5th International Conference on Signal Processing and Information Security (ICSPIS), Dubai, United Arab Emirates, 7–8 December 2022; pp. 158–163. [Google Scholar]
- Gismalla, M.S.M.; Azmi, A.I.; Salim, M.R.B.; Abdullah, M.F.L.; Iqbal, F.; Mabrouk, W.A.; Othman, M.B.; Ashyap, A.Y.; Supa’at, A.S.M. Survey on device-to-device (D2D) communication for 5GB/6G networks: Concept, applications, challenges, and future directions. IEEE Access 2022, 10, 30792–30821. [Google Scholar] [CrossRef]
- Lekouaghet, B.; Khelifa, M.A.; Himeur, Y.; Boukabou, A. Node localization in WSN using the slime mould algorithm. In Proceedings of the 2023 6th International Conference on Signal Processing and Information Security (ICSPIS), Dubai, United Arab Emirates, 8–9 November 2023; pp. 82–86. [Google Scholar]
- Pradhan, D.; Sahu, P.K.; Dash, A.; Tun, H.M. Sustainability of 5G green network toward D2D communication with RF-energy techniques. In Proceedings of the 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, 25–27 June 2021; pp. 1–10. [Google Scholar]
- Ioannou, I.; Vassiliou, V.; Christophorou, C.; Pitsillides, A. Distributed artificial intelligence solution for D2D communication in 5G networks. IEEE Syst. J. 2020, 14, 4232–4241. [Google Scholar] [CrossRef]
- Salim, M.M.; Elsayed, H.A.; Abdalzaher, M.S. A survey on essential challenges in relay-aided D2D communication for next-generation cellular networks. J. Netw. Comput. Appl. 2023, 216, 103657. [Google Scholar] [CrossRef]
- Hayat, O.; Ngah, R.; Zahedi, Y. In-band device to device (D2D) communication and device discovery: A survey. Wirel. Pers. Commun. 2019, 106, 451–472. [Google Scholar] [CrossRef]
- Malik, P.K.; Wadhwa, D.S.; Khinda, J.S. A survey of device to device and cooperative communication for the future cellular networks. Int. J. Wirel. Inf. Netw. 2020, 27, 411–432. [Google Scholar] [CrossRef]
- Ahmed, A.; Al-Dweik, A.; Iraqi, Y.; Mukhtar, H.; Naeem, M.; Hossain, E. Hybrid automatic repeat request (HARQ) in wireless communications systems and standards: A contemporary survey. IEEE Commun. Surv. Tutor. 2021, 23, 2711–2752. [Google Scholar] [CrossRef]
- Wu, H.; Gao, X.; Xu, S.; Wu, D.O.; Gong, P. Proximate device discovery for D2D communication in LTE advanced: Challenges and approaches. IEEE Wirel. Commun. 2020, 27, 140–147. [Google Scholar] [CrossRef]
- Gandotra, P.; Jha, R.K.; Jain, S. A survey on device-to-device (D2D) communication: Architecture and security issues. J. Netw. Comput. Appl. 2017, 78, 9–29. [Google Scholar] [CrossRef]
- Gómez, A.; Muñoz, A. Deep learning-based attack detection and classification in Android devices. Electronics 2023, 12, 3253. [Google Scholar] [CrossRef]
- Austine, A.; Pramila, R.S. Hybrid Optimization Algorithm for Resource Allocation in LTE-Based D2D Communication. Comput. Syst. Sci. Eng. 2023, 46, 2263–2276. [Google Scholar] [CrossRef]
- Wang, D.; Qin, H.; Song, B.; Xu, K.; Du, X.; Guizani, M. Joint resource allocation and power control for D2D communication with deep reinforcement learning in MCC. Phys. Commun. 2021, 45, 101262. [Google Scholar] [CrossRef]
- Kumar Jadav, N.; Gupta, R.; Tanwar, S. A survey on energy-efficient resource allocation schemes in device-to-device communication. Int. J. Commun. Syst. 2022, 35, e5112. [Google Scholar] [CrossRef]
- Safdar, G.A.; Ur-Rehman, M.; Muhammad, M.; Imran, M.A.; Tafazolli, R. Interference mitigation in D2D communication underlaying LTE-A network. IEEE Access 2016, 4, 7967–7987. [Google Scholar] [CrossRef]
- Modak, K.; Rahman, S. Multi-cell interference management in in-band D2D communication under LTE-A network. In Proceedings of the 2021 International Conference on Computing, Electronics & Communications Engineering (iCCECE), Southend, UK, 16–17 August 2021; pp. 13–18. [Google Scholar]
- Zhang, W.; Wang, C.X.; Ge, X.; Chen, Y. Enhanced 5G cognitive radio networks based on spectrum sharing and spectrum aggregation. IEEE Trans. Commun. 2018, 66, 6304–6316. [Google Scholar] [CrossRef]
- Lai, W.K.; Wang, Y.C.; Lin, H.C.; Li, J.W. Efficient resource allocation and power control for LTE-A D2D communication with pure D2D model. IEEE Trans. Veh. Technol. 2020, 69, 3202–3216. [Google Scholar] [CrossRef]
- Hamdi, M.; Zaied, M. Resource allocation based on hybrid genetic algorithm and particle swarm optimization for D2D multicast communications. Appl. Soft Comput. 2019, 83, 105605. [Google Scholar] [CrossRef]
- Xia, X.; Kang, G. Particle Swarm Optimization based Power Control Algorithms for SWIPT-Assisted D2D Communications Underlaying Cellular Networks. IOP Conf. Ser. Mater. Sci. Eng. 2020, 790, 012006. [Google Scholar] [CrossRef]
- Nethravathi, H.M.; Akhila, S. Optimal Resource Sharing Amongst Device-to-Device Communication Using Particle Swarm Algorithm. In Evolutionary Computing and Mobile Sustainable Networks: Proceedings of ICECMSN 2020; Springer: Singapore, 2021; pp. 1–11. [Google Scholar]
- Shi, L.; Xu, S. UAV path planning with QoS constraint in device-to-device 5G networks using particle swarm optimization. IEEE Access 2020, 8, 137884–137896. [Google Scholar] [CrossRef]
- Telli, K.; Kraa, O.; Himeur, Y.; Ouamane, A.; Boumehraz, M.; Atalla, S.; Mansoor, W. A comprehensive review of recent research trends on unmanned aerial vehicles (uavs). Systems 2023, 11, 400. [Google Scholar] [CrossRef]
- Sayed, A.; Himeur, Y.; Alsalemi, A.; Bensaali, F.; Amira, A. Intelligent edge-based recommender system for internet of energy applications. IEEE Syst. J. 2021, 16, 5001–5010. [Google Scholar] [CrossRef]
- He, C.; Tian, C.; Zhang, C.; Feng, D.; Pan, C.; Zheng, F.C. Energy efficiency optimization for distributed antenna systems with D2D communications under channel uncertainty. IEEE Trans. Green Commun. Netw. 2020, 4, 1037–1047. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Choi, K.W.; Song, L.; Han, Z. ROOMMATEs: An unsupervised indoor peer discovery approach for LTE D2D communications. IEEE Trans. Veh. Technol. 2018, 67, 5069–5083. [Google Scholar] [CrossRef]
- Berkani, M.R.A.; Chouchane, A.; Himeur, Y.; Ouamane, A.; Amira, A. An Intelligent Edge-Deployable Indoor Air Quality Monitoring and Activity Recognition Approach. In Proceedings of the 2023 6th International Conference on Signal Processing and Information Security (ICSPIS), Dubai, United Arab Emirates, 8–9 November 2023; pp. 184–189. [Google Scholar]
- Reddy, N.R.; Kalaivani, K.; Prasanthi, K.N.; Azmal, S.M.; Teja, P.R. Enhancing 5G Networks with D2D Communication: Architectures, Protocols, and Energy-Efficient Strategies for Future Smart Cities. Int. J. Intell. Syst. Appl. Eng. 2024, 12, 168–174. [Google Scholar]
- Zhou, L.; Wu, D.; Chen, J.; Dong, Z. Greening the smart cities: Energy-efficient massive content delivery via D2D communications. IEEE Trans. Ind. Inform. 2017, 14, 1626–1634. [Google Scholar] [CrossRef]
- Kong, P.Y. Cellular-assisted device-to-device communications for healthcare monitoring wireless body area networks. IEEE Sens. J. 2020, 20, 13139–13149. [Google Scholar] [CrossRef]
- Khujamatov, K.; Akhmedov, N.; Reypnazarov, E.; Khasanov, D.; Lazarev, A. Device-to-device and millimeter waves communication for 5G healthcare informatics. In Blockchain Applications for Healthcare Informatics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 181–211. [Google Scholar]
- Sulaiman, B.; Tarapiah, S.; Natsheh, E.; Atalla, S.; Mansoor, W.; Himeur, Y. Radio map generation approaches for an rssi-based indoor positioning system. Syst. Soft Comput. 2023, 5, 200054. [Google Scholar] [CrossRef]
- Fan, H.; Kilari, A.; Vemuri, K.; Daffron, I.; Wang, J.; Ramamurthy, V. Indoor location for emergency responders using LTE D2D communications waveform. In Proceedings of the IPIN (Short Papers/Work-in-Progress Papers), Pisa, Italy, 30 September–3 October 2019; pp. 347–354. [Google Scholar]
- Mahdi, W.H.; Taşpinar, N. Bee System-based Self Configurable Optimized Resource Allocation Technique in Device-to-Device (D2D) Communication Networks. IEEE Access 2023, 12, 3039–3053. [Google Scholar] [CrossRef]
- Benbraika, M.K.; Bitam, S.; Mellouk, A. Joint resource allocation and power control based on Bee Life Algorithm for D2D Communication. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–6. [Google Scholar]
- Benbraika, M.K.; Bitam, S. Spectrum allocation and power control for D2D communication underlay 5G cellular networks. Int. J. Commun. Netw. Distrib. Syst. 2021, 27, 299–322. [Google Scholar] [CrossRef]
- Shamaei, S.; Bayat, S.; Hemmatyar, A.M.A. Interference-Aware Resource Allocation Algorithm for D2D-Enabled Cellular Networks Using Matching Theory. IEEE Trans. Netw. Serv. Manag. 2023. [Google Scholar] [CrossRef]
- Awad, M.K.; Baidas, M.W.; Ahmad, A.; Al-Mubarak, N. A matching-theoretic approach to resource allocation in D2D-enabled downlink NOMA cellular networks. Phys. Commun. 2022, 54, 101837. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. ACM Sigmobile Mob. Comput. Commun. Rev. 2001, 5, 3–55. [Google Scholar] [CrossRef]
- Hassan, Y.; Hussain, F.; Hossen, S.; Choudhury, S.; Alam, M.M. Interference minimization in D2D communication underlaying cellular networks. IEEE Access 2017, 5, 22471–22484. [Google Scholar] [CrossRef]
- Series, M. Guidelines for Evaluation of Radio Interface Technologies for IMT-2020. Available online: https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2412-2017-PDF-E.pdf (accessed on 13 December 2023).
- Makhija, D. Performance of Mission Critical Device To Device Communication in Rayleigh Fading Channel. In Proceedings of the 2023 International Conference on Recent Advances in Electrical, Electronics & Digital, New Delhi, India, 1–3 May 2023. [Google Scholar]
- Gen, M.; Lin, L. Genetic algorithms and their applications. In Springer Handbook of Engineering Statistics; Springer: London, UK, 2023; pp. 635–674. [Google Scholar]
- Yashoda, M.; Shivashetty, V. Bi-crs: Bio-inspired cluster-based routing scheme for d2d communication in iot. In Proceedings of International Conference on Recent Trends in Computing: ICRTC 2021; Springer: Singapore, 2022; pp. 187–199. [Google Scholar]
- Jain, M.; Saihjpal, V.; Singh, N.; Singh, S.B. An overview of variants and advancements of PSO algorithm. Appl. Sci. 2022, 12, 8392. [Google Scholar] [CrossRef]
- Nguyen, K.K.; Vien, N.A.; Nguyen, L.D.; Le, M.T.; Hanzo, L.; Duong, T.Q. Real-time energy harvesting aided scheduling in UAV-assisted D2D networks relying on deep reinforcement learning. IEEE Access 2020, 9, 3638–3648. [Google Scholar] [CrossRef]
- Kamyab, T.; Daealhaq, H.; Ghahfarokhi, A.M.; Beheshtinejad, F.; Salajegheh, E. Combination of Genetic Algorithm and Neural Network to Select Facial Features in Face Recognition Technique. Int. J. Robot. Control Syst. 2023, 3, 50–58. [Google Scholar] [CrossRef]
- An, Q.; Wu, S.; Yu, J.; Gao, C. Multi-modal mutation cooperatively coevolving algorithm for resource allocation of large-scale D2D communication system. Complex Intell. Syst. 2023. [Google Scholar] [CrossRef]
- Hershberg, R. Mutation—the engine of evolution: Studying mutation and its role in the evolution of bacteria. Cold Spring Harb. Perspect. Biol. 2015, 7, a018077. [Google Scholar] [CrossRef] [PubMed]
- Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A comprehensive survey. IEEE Access 2022, 10, 10031–10061. [Google Scholar] [CrossRef]
- Bitam, S.; Batouche, M.; Talbi, E.G. A survey on bee colony algorithms. In Proceedings of the 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), Atlanta, GA, USA, 19–23 April 2010; pp. 1–8. [Google Scholar]
- Bitam, S. Bees life algorithm for job scheduling in cloud computing. In Proceedings of the Third International Conference on Communications and Information Technology, Chengde, China, 14–16 September 2012; Volume 7, pp. 186–191. [Google Scholar]
- Cioabă, S.M.; Murty, M.R. Matching Theory. In A First Course in Graph Theory and Combinatorics, 2nd ed.; Springer: Singapore, 2022; pp. 111–126. [Google Scholar]
- Hussain, Z.; Mehdi, H.; Saleem, S.M.A.; Mahboob, A. Performance Analysis of Relay-Assisted Device-to-Device Communication. Int. J. Electron. Telecommun. 2022, 68, 587–593. [Google Scholar] [CrossRef]
- Fujitsu. High-Capacity Indoor Wireless Solutions: Picocell Femtocell? Available online: https://www.fujitsu.com/downloads/TEL/fnc/whitepapers/High-Capacity-Indoor-Wireless.pdf (accessed on 13 December 2023).
- Xu, J.; Guo, C.; Zhang, H. Joint channel allocation and power control based on PSO for cellular networks with D2D communications. Comput. Netw. 2018, 133, 104–119. [Google Scholar] [CrossRef]
BR# | User Equipment (UE) | Power (P) |
---|---|---|
BR1 | UE4 | P4 |
UE2 | P2 | |
UE5 | P5 | |
BR2 | UE1 | P1 |
UE6 | P6 | |
BR1 | UE7 | P7 |
Parameters | Values |
---|---|
Radius of the cell | 1000 m |
Coverage of D2D users | 50 m |
WGN | −174 |
Max power (CU and D2D) | 23 dBm |
B | 1 MHz |
F | 2.4 GHz |
nbC | 8 |
Y | 42 |
X | 20 |
D | 7 |
W | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benbraika, M.K.; Kraa, O.; Himeur, Y.; Telli, K.; Atalla, S.; Mansoor, W. Interference Management Based on Meta-Heuristic Algorithms in 5G Device-to-Device Communications. Computers 2024, 13, 44. https://doi.org/10.3390/computers13020044
Benbraika MK, Kraa O, Himeur Y, Telli K, Atalla S, Mansoor W. Interference Management Based on Meta-Heuristic Algorithms in 5G Device-to-Device Communications. Computers. 2024; 13(2):44. https://doi.org/10.3390/computers13020044
Chicago/Turabian StyleBenbraika, Mohamed Kamel, Okba Kraa, Yassine Himeur, Khaled Telli, Shadi Atalla, and Wathiq Mansoor. 2024. "Interference Management Based on Meta-Heuristic Algorithms in 5G Device-to-Device Communications" Computers 13, no. 2: 44. https://doi.org/10.3390/computers13020044
APA StyleBenbraika, M. K., Kraa, O., Himeur, Y., Telli, K., Atalla, S., & Mansoor, W. (2024). Interference Management Based on Meta-Heuristic Algorithms in 5G Device-to-Device Communications. Computers, 13(2), 44. https://doi.org/10.3390/computers13020044