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Abstract: Identifying accidents in road black spots is crucial for improving road safety. Traditional
methodologies, although insightful, often struggle with the complexities of imbalanced datasets, while
machine learning (ML) techniques have shown promise, our previous work revealed that supervised
learning (SL) methods face challenges in effectively distinguishing accidents that occur in black spots
from those that do not. This paper introduces a novel approach that leverages positive-unlabeled
(PU) learning, a technique we previously applied successfully in the domain of defect detection. The
results of this work demonstrate a statistically significant improvement in key performance metrics,
including accuracy, precision, recall, F1-score, and AUC, compared to SL methods. This study thus
establishes PU learning as a more effective and robust approach for accident classification in black
spots, particularly in scenarios with highly imbalanced datasets.

Keywords: black spot identification; imbalanced datasets; positive-unlabeled learning

1. Introduction

Identifying accidents at black spots on road networks remains a critical task for enhanc-
ing road safety measures. These high-risk areas, characterized by a higher concentration
of accidents, have traditionally been identified through various methodologies [1]. These
range from statistical and Geographic Information Systems (GIS)-based analyses to accident
reconstruction and road safety audits [2]. However, while these methods have provided
valuable insights, they often come with limitations, such as strict assumptions or challenges
in handling complex, imbalanced datasets.

In parallel, ML techniques have emerged as a promising avenue for tackling the
problem of accident classification at black spots. Supervised learning (SL) methods have
been explored, but their performance has often been found lacking, primarily due to the
imbalanced nature of the dataset and the complexity of the problem space [3]. In a previous
work [4], we introduced a novel dataset concerning accidents at black spots, called Black
Spots in North Greece (BSNG), and provided a baseline using SL methods. The dataset
highlighted the limitations of existing SL approaches in this context.

Weakly supervised learning (WSL) techniques have shown significant promise in
various fields requiring defect or anomaly detection, particularly when labeled data are
scarce or imbalanced [5]. These methods, including positive-unlabeled (PU) learning, have
been successful in building robust classifiers that can predict the probability of a sample
being positive, given the partially assigned labels, while requiring significantly fewer
labeled data, as we have shown in a previous work [6].

Motivated by these observations, this paper aims to apply the concept of PU learning
to the domain of accident classification at black spots. Given the nature of the BSNG
dataset, where accidents at black spots are scarce and it is difficult to divine their pattern,
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PU learning offers a promising avenue for improving model performance. This paper
provides a comprehensive review of both traditional and ML methodologies, with a focus
on the advantages of employing PU learning for accident classification at black spots.

Contributions

This work makes several key contributions to the field of road safety analytics and
ML. First, it introduces the application of positive-unlabeled (PU) learning [7] to the prob-
lem of accident classification at black spots, addressing the limitations of traditional SL
methods in handling imbalanced datasets. Second, it provides a comprehensive compar-
ative analysis between PU learning and existing SL methods, demonstrating statistically
significant improvements (p < 0.01) in performance metrics such as accuracy, precision,
recall, F1-score, and AUC. Last but not least, the methodology presented herein serves as a
blueprint for researchers and practitioners looking to apply weakly supervised learning
techniques to similar problems in other domains, thereby broadening the scope and impact
of this research.

2. Literature Review
2.1. Traditional Methods for Black Spot Identification

The primary goal of identifying black spots is to identify specific locations or road
segments within a road network where accidents occur at a higher rate, with the ultimate
objective of lowering both the frequency and severity of accidents in these areas. It is im-
portant to note that different countries may have distinct definitions of what constitutes a
“black spot” in their road networks, as discussed in studies like [8–11]. However, a general
definition for a “black spot” is a particular area or length of road that experiences a signifi-
cant number of accidents or incidents, often resulting in serious injuries or worst, death.
Typically, these places are recognized through the analysis of data from various sources,
including police reports, records of traffic accidents, and other governmental databases.

Historically, conventional approaches to pinpointing black spots have heavily leaned
on statistical analyses and GIS [12–15]. These techniques typically incorporate criteria that
can vary based on factors such as the country in question, the type of road network, and the
data available. To illustrate, certain countries may define a black spot by considering the
total number of accidents within a designated timeframe, while others may emphasize the
severity of these accidents as a defining factor. Table 1 provides a comparative overview of
how different countries classify a “black spot”.

A breadth of literature underscores the diverse methodologies employed in the iden-
tification of black spots and the continuous advancements in this critical domain of road
safety. These studies collectively underscore the multidimensional nature of black spot
identification, illustrating the instrumental role of traditional methodologies like statistical
analysis and GIS in advancing road safety and accident prevention.

Table 1. Different nations provide different definitions on what constitutes a black spot.

Country/Area Methodology Sliding Window (m) Threshold Severity Included Time Frame (Years)

Denmark Poisson variable length 4 No 5
Croatia Segment ranking 300 12 Implicitly 3

Flanders Weighted method 100 3 Yes 3
Hungary Accident indexing 100 (spot)/1000 (segment) 4 No 3

Switzerland Accident indexing 100 (spot)/500 (segment) Statistical, critical values Implicitly 2
Germany Weighted indexing Likelihood 4 No 5
Portugal Weighted method 200 5 Yes 5
Norway Poisson, statistical testing 100 (spot)/1000 (segment) 4 Accident cost 5
Greece Absolute count 1000 2 No N/A

Methods of statistical analysis, like regression and time-series analysis, are frequently
employed to discern trends and connections between road accidents and variables such as
the layout of roads, the amount of traffic, the behavior of drivers, and weather patterns.
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These methods have a solid track record in the realm of road safety modeling, playing a
crucial role in pinpointing hazardous locations and formulating preventive strategies [16].
Various statistical models have been applied, including Poisson regression [17,18], bino-
mial regression [19], negative binomial regression [20], Poisson–lognormal regression [21],
zero-inflated regression [22], generalized estimation equations [23], negative multinomial
models [24], random effects models [20], and random parameter models [25]. Furthermore,
numerous models have been developed to assess the severity of crashes, including binary
logit, binary probit, Bayesian ordered probit, Bayesian hierarchical binomial logit, general-
ized ordered logit, log–linear model, multinomial logit, multivariate probit, ordered logit,
and ordered probit models [26]. However, their application can be complex and requires
specialized expertise, potentially introducing subjectivity into the analysis. These methods
often demand extensive manual work and are constrained by data quality and availability.
Finally, they lack adaptability to changing conditions, limiting real-world applicability.

GIS technologies are instrumental in plotting road accidents and pinpointing critical ar-
eas within the road network [27]. They reveal connections between spatial phenomena that
may remain hidden when using non-spatial databases [28,29]. In recent decades, a plethora
of studies has explored the application of GIS in traffic safety and accident analysis, with
numerous organizations and researchers documenting its efficacy [30,31]. Such analyses
encompass various techniques, including intersection analysis [32], segment analysis [33],
cluster analysis [34], and density analysis modeling [34]. Notably, Lasisi et al. [35] homed
in on the prediction of accidents at highway–rail grade crossings through a hybrid method-
ology integrating machine learning with GIS. The models they developed showcased
impressive results, achieving a high accuracy rate of 98.9% alongside a Receiver Operat-
ing Characteristic (ROC) score of 0.9838, underlining the significant promise of merging
machine learning and GIS for the purpose of accident forecasting.

However, GIS technology does come with its drawbacks. It is costly and demands
specialized expertise and knowledge [36], potentially restricting its adoption by certain or-
ganizations. The data’s quality is pivotal for the precision of the GIS analysis outcomes [37].
For instance, unreliable or incomplete data can lead to questionable analysis results. In
addition, while GIS is proficient in processing spatial details, it may not offer extensive
insight into temporal aspects that influence accidents, like driver behavior [38]. In essence,
GIS technology furnishes a graphical depiction of black spot locations in road networks
and supports the amalgamation of diverse datasets.

Identifying black spots presents challenges, primarily due to the variability in accident
numbers compared to regular road segments, influenced by location, road design, and
traffic volume [39]. Thus, a multidisciplinary approach, considering various data sources
and analytical techniques, is essential.

Recognizing these challenges and limitations, there is growing interest in employing
ML techniques, particularly deep learning, to enhance black spot identification [40]. How-
ever, the application of ML in this field remains relatively unexplored, primarily due to
limited large datasets, necessitating further research to bridge this gap.

2.2. Machine Learning in Black Spot Identification

ML techniques, particularly deep learning, are increasingly being used in transporta-
tion research for black spot identification [41,42]. These data-driven methods offer adapt-
ability to new data and changing conditions, overcoming limitations of traditional methods,
which often involve strict assumptions and manual labor and struggle with complex
datasets [43]. Studies like Theofilatos et al.’s [44] and Fan et al.’s [45] demonstrate the use
of advanced ML and deep neural networks to predict road accidents with considerable
accuracy. These studies highlight the potential of deep learning in analyzing traffic accident
data, considering various factors including road conditions and weather.

Mbarek et al. [46] developed a model using the extreme learning machine algorithm,
ordinal regression, and XGBoost, which accurately identified black spots on rural roads
in Morocco with an accuracy of 98.6%. According to the study, the significant factors
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contributing to accidents included pavement width, road curve type, and position. A
different venue was explored in [47], which retrieved data from social networks, particularly
Twitter, to create supervised classification models. These models classify tweets about
the occurrence of road accidents at black spots and include the construction of mobile
applications to notify drivers about accidents in real-time. A data-driven machine learning
solution for screening accident black spots on road networks was proposed in [48]. The
solution utilizes features of the road network and nearby locations associated with accidents
to predict black spots accurately. Similarly, another data-driven study utilized machine
learning and supervised learning methods to investigate the causes and severity of road
accidents at black spots on road networks. This approach aids in understanding the
contributing factors and potentially mitigating their impact [49]. The spatial distribution
of road traffic accidents and the identification of factors associated with these accidents
using a decision tree classification approach was performed in [50]. This machine learning
method was instrumental in identifying accident hot spots during peak and off-peak hours.
SVM, random forest, and a multi-layer perceptron neural network were used in [51] to
classify road accident hot spots on the Brazilian federal road network. The neural network
model was notably effective, achieving the highest accuracy of 83% in predicting severe or
non-severe accident risks.

Other recent studies have underscored the potential of advanced machine learning
approaches for enhancing the identification and analysis of black spots on road networks.
A hybrid machine learning approach to analyze road accidents in black spots, utilizing
various algorithms to classify accidents based on their consequences and identifying the
best suitable model for each zone was proposed in [52]. The effectiveness of the random
forest model as the most suitable algorithm for predicting crash severity levels, marking a
significant step in accident severity analysis, was highlighted in [53]. The ability of decision
tree, LightGBM, and XGBoost to provide deeper insights into accident classification was
investigated in [54]. The study mainly focused on the causes and severity of road accidents.
The impact of traffic management factors on the causes and severity of road accidents
at black spots, employing machine learning methods for a comprehensive analysis, was
analyzed in [55]. An algorithm named META-DES-RF was proposed to predict injury
severity, showcasing the potential of machine learning in classifying and understanding
the severity of road accidents [56]. A fuzzy algorithm was employed to classify road
traffic accident data, identifying key factors related to accident severity with an accuracy of
85.94%, marking a significant advancement in accident analysis [57]. Finally, a combination
of random forest and convolutional neural network models was proposed in [58] to identify
significant factors strongly correlated with accident severity.

However, the effectiveness of these ML methods can be hampered by challenges such
as imbalanced datasets, noise, and missing data [59,60]. Traditional statistical models,
limited by rigid assumptions, face difficulties in handling these issues. To overcome these
challenges, ensemble methods like random forest and AdaBoost have been employed, but
they too have limitations in managing the dynamic nature of black spot identification [3].

Deep learning advancements, like deep neural networks, have been applied to predict
accidents in real-time using comprehensive datasets. However, while these methods have
shown higher accuracies compared to traditional models, they still depend heavily on the
nature of the dataset. The variability in data type, size, and the specific context of the road
network are critical factors influencing model accuracy.

Acknowledging these limitations, there is a clear need for more robust and reliable
ML approaches in this field. This paper proposes a shift from traditional SL to an outlier
detection framework. It introduces the application of positive-unlabeled learning to ad-
dress these challenges, offering a novel and promising direction for enhancing black spot
identification methods.
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2.3. Weakly Supervised Learning in Defect Detection

In numerous sectors, ranging from production to healthcare, the task of detecting
defects is paramount [61]. Promptly spotting flaws helps avert issues related to quality,
leading to cost reductions by circumventing the need for costly revisions or product recalls.
As Industry 4.0 progresses, there is a growing reliance on automated systems for inspection
to ensure defects are identified instantly, guaranteeing that only the finest quality products
reach the consumers [62]. Nevertheless, the acquisition of extensive labeled datasets to
train defect detection models that are precise poses a substantial hurdle [63]. The process
of manually labeling is not only tedious and costly [64–66] but inaccuracies in labeling can
also severely impact the performance of the resulting model [67,68].

Within this framework, weakly supervised learning (WSL) has surfaced as an appeal-
ing substitute. In contrast to conventional SL that necessitates extensive annotated data,
weakly SL allows models to extract knowledge from merely a portion of the labeled data or
even from data that is not labeled at all [69]. This methodology has garnered considerable
interest for its ability to diminish dependence on manual labeling and enhance the learning
process’s efficacy.

Several approaches are categorized under weakly supervised learning (WSL), such as
multi-instance learning [70], co-training [71], and positive-unlabeled learning [72]. These
techniques are designed to construct models with a minimal set of labeled data or even in
the absence of any labeled data. For instance, multi-instance learning involves a collection of
instances where each is identified as positive, negative, or unlabeled. Co-training involves
the parallel training of multiple classifiers, each utilizing distinct perspectives of the data,
to enhance the collective accuracy of the models. Positive-unlabeled learning is centered
around developing a binary classification model by utilizing datasets in which only the
positive instances are labeled.

Recent research has underscored the efficacy of weakly supervised learning (WSL) in
the domain of defect detection [73]. For example, techniques centered around surface seg-
mentation via CycleGAN, trained with image-level labels, have surpassed the performance
of fully supervised methods in industrial datasets [74]. Additionally, a different study amal-
gamated a modest quantity of labeled data with a vast pool of unlabeled data, resulting in
a model whose accuracy rivaled that of its fully supervised counterpart [6]. These findings
accentuate the promise held by weakly supervised learning in defect detection endeavors
and spotlight the overall effectiveness of various methodologies.

Specifically, the integration of weakly supervised learning in defect detection, particu-
larly in road safety and accident classification, has seen notable advancements.
Chatterjee et al. [75] proposed a machine learning approach utilizing front-view images for
crack and defect detection on road surfaces. This method efficiently managed various road
surface conditions and types of cracks, pinpointing the defective regions in the images. A
variety of machine learning techniques including support vector machines (SVM), k-nearest
neighbors (kNN), and multi-layer perceptron (MLP) models and their performance in de-
tecting cracks and potholes in road images was explored in [76]. The use of a convolutional
neural network (CNN) for automatically detecting and classifying road surface images
was discussed in [77]; the proposed model achieved high accuracy for crack detection and
categorization into 10 distinct classes. Machine learning techniques for the categorization
of road surface conditions through smartphone sensors to effectively classify smooth road,
potholes, and deep transverse cracks was proposed in [78]. Lastly, a novel self-supervised
learning method based on masked image modeling was proposed by Zhang et al. [79] for
driver distraction behavior detection, achieving an impressive accuracy of 99.60%, nearly
matching the performance of advanced supervised learning methods. These studies illus-
trate the diverse approaches and significant potential of weakly supervised and machine
learning techniques in defect detection and road safety enhancement, offering innovative
solutions to longstanding challenges in the field.

In conclusion, weakly supervised learning (WSL) emerges as a potent strategy in
situations where labeled data is limited. This method employs a modest set of positively
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labeled data, a feature encoder, an anomaly detection technique, and a binary classifier
to yield notable outcomes. As such, it stands as a significant substitute for conventional
SL approaches, particularly in practical settings where acquiring extensive labeled data
is problematic.

2.4. Bridging the Gap

The identification of black spots on road networks and defect detection in various
industries represent two distinct but related challenges that both aim to enhance safety
and quality through the early identification of high-risk areas or defects. However, while
both domains have seen significant advancements through traditional methods and ML
techniques, there exists a gap in the literature that explores the intersection of these two
fields. This gap is particularly evident when considering the common challenges they
face, such as the handling of imbalanced datasets, the need for robust classifiers, and the
limitations of fully SL methods.

Given these observations, there is a compelling need for research that bridges the
gap between these two domains. The common challenges they face, such as imbalanced
datasets and the need for robust classifiers, make a strong case for the exploration of
weakly SL methods like PU learning in the context of black spot identification. Such an
interdisciplinary approach could offer innovative solutions that leverage the strengths of
both domains, thereby enhancing the effectiveness of black spot identification methods and
potentially saving lives.

This paper aims to fill the research gap by integrating advanced analytical techniques
from both fields. Thus, the application of PU learning to the domain of black spot identifi-
cation is proposed, offering a novel approach that promises to address the limitations of
existing methods in both domains.

3. Methodology

To tackle this issue, this work employs positive-unlabeled (PU) learning, a specialized
framework for handling imbalanced or partially labeled datasets [80,81]. In PU learning, the
approach starts with a set of positively labeled examples (high-risk areas) and a larger set
of unlabeled examples. The initial step involves creating an “anti-class” from the unlabeled
data. This counter-class serves as a negative proxy class, distinct from the known positive
class. The rationale behind this is to provide a contrasting set that helps the model focus on
the characteristics that differentiate the positive class.

3.1. Transforming Supervised Learning into Outlier Detection

In SL, the objective is to learn a function f that maps an input x to an output y, based
on training examples {(x1, y1), (x2, y2), . . . , (xn, yn)}. Here, x represents data features, and
y is the target label. The goal is to learn a function f that maps inputs to their correct labels,
denoted as:

f : X → Y

The function f is learned during training, where the algorithm minimizes the error
between predicted values f (x) and actual values y over the training examples.

In contrast, outlier detection identifies data points significantly different from the
majority of the data. It is often considered an unsupervised task, as it does not rely on
labeled data. Given a dataset D = {x1, x2, . . . , xn}, an outlier detection algorithm aims to
identify a subset O ⊆ D such that each x ∈ O is an outlier. The determination of whether a
data point is an outlier depends on a measure of distance or deviation from the dataset’s
central tendency or distribution.

The mathematical formulation of outlier detection varies depending on the method
used. For instance, in a distance-based approach, a data point xi is considered an outlier if:

|{xj : d(xi, xj) > θ, j ̸= i}| > ϕ
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where d(xi, xj) is the distance measure between points xi and xj, θ is a threshold distance,
and ϕ is a threshold number of points.

In PU learning, instead of having both positive and negative labeled examples, only posi-
tive examples are available and all the rest are unlabeled data, which could have as members
only the samples of one class or the other. The dataset appears as {(x+1 , y+1 ), . . . , (x+p , y+p )} for
positive samples and {xu

p+1, . . . , xu
n} for unlabeled samples, where y+ indicates a positive

label and u denotes unlabeled. In this context, positive examples are considered ‘normal’
data, and the goal is to identify outliers (negative examples) in the unlabeled dataset.

A commonly adopted positive-unlabeled learning approach involves a process with
two main steps. First, the method identifies reliable negatives from the unlabeled set. This
identification can be achieved using various techniques, including clustering, applying
distance metrics, or employing a classifier initially trained only on the positive examples
and then applied to the unlabeled set. The second step involves training a classifier using
both the original positive examples and these newly identified negative examples.

Subsequently, this classifier can be applied to a new set of unlabeled data and instances
classified as negative can be considered as outliers relative to the positive class.

3.2. Proposed Pipeline

In this work, the process of black spot identification commences with one-hot encoding
to effectively represent the categorical data. An autoencoder is utilized to extract the latent
space from the dataset. Following this, the data are partitioned into two distinct subsets:
“known black spots” and unlabeled data (a mix of accidents situated either at a black spot or
at a regular location). The isolation forest method is trained on the positively known class,
namely the black spots, enabling the detection of anomalies (non-black spot accident areas)
within the unlabeled data [82]. Subsequently, the predictions are ranked in ascending order,
with a focus on identifying the least to the most anomalous samples. From this ranked list,
a portion equivalent to the population of the known data is retrieved from the topmost
anomalous samples. Finally, a classification algorithm is trained on these two “balanced”
classes, culminating in the comprehensive methodology employed in this study for black
spot identification. The proposed pipeline is shown graphically in Figure 1.

Figure 1. A step-by-step graphical presentation of the proposed pipeline.

Categorical Encoding

Categorical variables are transformed using one-hot encoding. This involves convert-
ing each category into a new categorical variable and assigning a binary value of 1 or 0.
For example, a variable RoadType with categories Urban, Rural, and Highway would be
transformed into three new variables: IsUrban, IsRural, and IsHighway (see Table 2).

This transformation allows ML algorithms to process the categorical data effectively,
thereby improving the model’s performance.



Computers 2024, 13, 49 8 of 19

Table 2. Description of road types

RoadType IsUrban IsRural IsHighway

Urban 1 0 0
Rural 0 1 0

Highway 0 0 1

3.3. Self-Supervised Deep Learning Model

The second pivotal step in the proposed feature extraction pipeline is the application
of a self-supervised deep learning model. This model aims to reduce the dimensionality of
the feature space while capturing the most salient characteristics of the data. Usually this is
achieved with the employment of a bottleneck architecture that consists of an encoder and
a decoder, forming an autoencoder structure.

The encoder is a neural network that takes the high-dimensional input features
x and maps them to a lower-dimensional latent vector z. The mapping function

fencoder is defined as:
z = fencoder(x; θencoder)

where θencoder are the parameters of the encoder.
The decoder is a separate neural network that aims to reconstruct the original input

features from the latent vector z. The mapping function fdecoder is defined as:

x̂ = fdecoder(z; θdecoder)

where x̂ is the reconstructed input and θdecoder are the parameters of the decoder.
The objective of the self-supervised deep learning architecture is to minimize the

reconstruction error between the original features x and the reconstructed features x̂. The
loss function L is defined as:

L(x, x̂) = ||x − x̂||2

The minimization of this loss leads the architecture to learn to capture the most
important characteristics of the data in the latent vector z, which is then used for subsequent
classification tasks.

3.4. Utilization of Latent Vectors

The final step of the proposed feature extraction pipeline involves the utilization of the
latent vectors generated by the self-supervised deep learning architecture. These vectors
serve as the input for the subsequent classification model and encapsulate the most salient
features of the data.

The latent vectors z are used as the input features for a binary classification model.
The model aims to distinguish between black spots and non-black spots based on these
high-dimensional vectors. Formally, the classification function fclassifier is defined as:

ypred = fclassifier(z; θclassifier)

where ypred is the predicted label, and θclassifier are the parameters of the classifier.
The objective function for the classifier is to minimize the binary cross-entropy loss

between the predicted labels ypred and the true labels ytrue. The loss function Lclassifier is
defined as:

Lclassifier = −
(

ytrue log(ypred) + (1 − ytrue) log(1 − ypred)
)

The primary benefit of employing latent vectors is their capacity to provide a con-
densed representation of data. This attribute is especially advantageous for diminishing
the computational complexity associated with the classification task. In traditional ML
models, high-dimensional data often require significant computational resources, both
in terms of memory and processing power. Reducing the dimensionality of the feature
space without losing essential information possibly enables the latent vectors to run more
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complex algorithms faster and more efficiently [83], thereby expediting the research and
development process.

The second benefit lies in the latent vectors’ proficiency in encapsulating the most
prominent attributes of the data. This is crucial for improving the model’s performance met-
rics such as accuracy, precision, and recall. In the context of black spot identification, where
the dataset may contain a wide range of variables from different domains, capturing the
most important characteristics is essential for building a robust model. The latent vectors,
generated through a self-supervised deep learning architecture, encapsulate these critical
features, thereby enhancing the model’s ability to generalize well to new, unseen data.

Lastly, the utilization of latent vectors provides a unified feature space that is amenable
to various ML algorithms. This offers a level of flexibility that is often lacking when using
raw or pre-processed data. Researchers and practitioners can experiment with different
types of classification models, from decision trees and random forests to neural networks,
without the need to re-engineer the feature extraction process. This adaptability not only
speeds up the iterative process of model selection but also opens the door to leveraging
more advanced ML techniques as they become available.

3.5. Anomaly Ranking with Isolation Forest

Anomaly ranking is a crucial step in the proposed pipeline for black spot identifica-
tion, and it is achieved through the use of the isolation forest algorithm. This method is
particularly adept at identifying outliers or anomalies within a dataset.

The isolation forest algorithm is based on the principle of isolating anomalies, rather
than profiling normal data points. The fundamental concept posits that anomalies are
‘sparse and distinct’, rendering them more prone to isolation.

In mathematical terms, the isolation forest algorithm creates multiple decision trees,
or ‘isolation trees’, to isolate each data point. For each tree, a random subset of features is
selected, and a random split value between the minimum and maximum values of these
features is chosen. This process is repeated recursively until each data point is isolated, i.e.,
it falls into its own path in the tree.

The key parameter in this algorithm is the path length, which is the number of splits
required to isolate a sample. Anomalies, being few and different, tend to have shorter path
lengths in these trees, as they are easier to isolate.

The anomaly score is computed as follows:

s(x, n) = 2−
E(h(x))

c(n) (1)

where s(x, n) is the anomaly score of the sample x, E(h(x)) is the average path length
of x over all the trees in the forest, n is the number of external nodes, and c(n) is a
normalization factor.

The rationale behind using isolation forest in anomaly ranking is due to method’s
boundary creation, which effectively separate normal from anomalous unlabeled samples.
Unlike distance-based or density-based methods, the isolation forest performs well in high-
dimensional spaces, making it suitable for complex datasets like those involved in black
spot identification. The random partitioning followed by this method and the multiple
training instances provide a form of ensemble learning, making the method adaptable
to various data distributions and less prone to overfitting to a specific feature or pattern.
Finally, isolation forest is highly scalable with respect to the number of samples, making it
suitable for large datasets.

3.6. Class Balancing through Counter Example Generation

The class balancing step in the proposed methodology involves creating a new class
of counter examples, which are equal in population to the positively known class. These
counter examples are derived from the initially unlabeled samples that are identified as
most anomalous by the isolation forest algorithm.
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The generation of counter examples is an important step in preparing the dataset for
training a binary classifier. In this process, the samples from the unlabeled dataset that are
ranked as most anomalous by the isolation forest are selected. This selection is based on
the anomaly scores, with a higher score indicating a greater likelihood of the sample being
a counter example. The number of samples selected as counter examples is made equal to
the number of samples in the positively known class.

3.7. Training of the Binary Classifier

With the generation of counter examples, the dataset now comprises two balanced
classes: the positively known and the counter examples. These classes are then used to
train a binary classifier. The balanced nature of the dataset is crucial in this context, as it
prevents the classifier from being biased towards the majority class, which is a common
issue in imbalanced datasets. This approach ensures that the classifier is trained on a
representative and unbiased dataset, enhancing its ability to generalize and accurately
classify new, unseen data.

4. Experiments
4.1. Dataset and Preprocessing

The dataset employed in this study is the Black Spot Dataset of North Greece (BSNG),
which was meticulously compiled from a variety of sources [4]. These sources include
police reports, construction agencies, and academic experts. The dataset provides a com-
prehensive view of road accidents and safety conditions in North Greece.

The data were organized into a structured format using spreadsheets, where each row
represents a record and each column represents an attribute or feature. The dataset has
1810 samples of traffic accident audits from which 310 are black spots and 1500 are regular
accidents. All samples were described initially by 35 features. During pre-processing highly
correlated variables were either merged into a single one or the redundancy was discarded,
finally, using the following:

• Accident location;
• Incident and road environment details (month, week of year, number of deaths, serious

injuries, minor injuries, total number of injuries, number of vehicles involved, road
surface type, atmospheric conditions, road surface conditions, road marking, lane
marking, road width, road narrowness, turn sequence, road gradient, straightness,
right turn, left turn, boundary line marking left and right, accident severity, type of
first collision);

• Driver information (gender and age);
• Vehicle information (type, age, and mechanical inspection status).

Duplicate values were identified and promptly removed. A small percentage of the
data records exhibited missing values. To maintain the integrity of the dataset, interpolation
was applied between these records and their closest neighbors. In cases where too many
features were missing, the records were discarded.

Special attention was given to anonymizing the data records. Personally identifiable
information (PII) was excised, and data points at the individual level were grouped to-
gether to obscure details specific to individuals. This approach significantly reduces the
possibility of associating a data record in the BSNG with any particular individual involved
in an accident.

During the data preprocessing phase, numerical values were scaled, and features
that were not numerical were encoded. Qualitative attributes were categorized with
specific labels, whereas quantitative attributes underwent normalization. Each step of the
transformation process was meticulously documented to ensure that the procedures could
be replicated. The variables underwent a transformation to labeled and one-hot encodings,
rendering the data compatible with various machine learning (ML) algorithms.
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4.2. Experimental Setup

To assess the effectiveness of the proposed feature extraction pipeline and classification
model, a series of experiments were carried out (All experiments were executed on a
machine equipped with an Intel Core i9 processor, 64 GB RAM, and an NVIDIA GeForce
RTX 3080 GPU). To establish a common ground for all experiments, each experimental
iteration used the same randomly shuffled training and test splits, with an 80–20 ratio,
respectively. In all experiments, hyperparameters were optimized using 5-fold cross-
validation, with the aim of maximizing the F1 score, as in [4]. Initially, the dataset was used
in its original state, without any transformations or augmentations applied (dataset A).
This served as the baseline for the BSNG dataset, highlighting the inherent challenges.

The next set of experiments involved applying encoding procedures to categorize
the data and ensure uniform representation (dataset B). This step aimed to present the
classifiers with data that had a consistent appearance.

Subsequently, a third round of experiments was conducted using a neural network to
encode the BSNG samples and employing MixUp augmentation, as suggested in [4]. For
Mixup, 11 additional samples were generated for each of 6000 randomly selected pairs
(with replacement) using a beta distribution β(0.2, 0.2), comprising 67,448 training samples.
This procedure aimed to increase the dataset’s population while maintaining its statistical
profile, making it suitable for models that need larger datasets to converge (dataset C).

Finally, the dataset was utilized within the framework of PU learning, without any
augmentation techniques applied, using the initial sample count (dataset PU); 263 black
spot samples were used for establishing the positively known class. This allowed for a
direct comparison of the effectiveness of the PU learning approach in extreme cases, such
as black spot detection, with traditional SL models.

The proposed self-supervised method used for the latent vector extraction was an
autoencoder. The autoencoder’s architecture had a bottleneck layout with the encoder
consisting of three layers with ReLU activations and nodes of size (256, 64, 32). The decoder
has the reverse layer order. The optimizer used was Adam with a learning rate of 10−4.
The isolation forest was trained on 80% of the known black spots. The ensemble consisted
of 250 trees and contamination set to 0.05.

In terms of the classifiers, a thresholded Poisson regressor was trained with α = 0.7 and

tolerance 10−4; a Gaussian Process with the squared exponential kernel k(xn, xm) = e
−||xn−xm ||2

2L2

was trained and the rest of the parameters were optimized during fitting; the value k = 3
was set for the k-nearest neighbors algorithm; the decision tree used the Gini impurity
as the splitting criterion and its depth left to be optimized during fitting; an ensemble of
500 trees were trained for the random forest algorithm and the Gini impurity was used here
as well; the extra randomized trees had an ensemble size of 1000 trees, due to the method’s
low memory requirements and fast training; and the MLP was an architecture of three fully
connected layers with (32, 24, 6) nodes, ReLU activation, a learning rate of 10−4, the Adam
solver, and 100 training epochs. The classifier parameters were determined using a grid
search, a method that we also employed in our previous study [4].

5. Results

This study presents a detailed comparison of machine learning performances across
different datasets and learning frameworks, specifically standard supervised learning (SL)
and positive-unlabeled (PU) learning. In SL, three datasets (A, B, and C) were examined.

Dataset A comprised unaltered BSNG samples. The accuracy varied between 68% and
80.7%, with precision and recall of black spots ranging lower. Random forest achieved the
highest accuracy (80.71%), outperforming other methods, but all methods struggled with
precision and recall. Dataset B, with an encoding procedure, showed improved accuracy
(28% to 83%) and better precision and recall of black spots. SVM led in performance
with an accuracy of 82.92% and precision of 50.01%. Dataset C, incorporating encoding
and augmentation, presented enhanced results. Extra randomized trees excelled with an
accuracy of 82.36% and precision of 45.5%.
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In the PU learning context, accuracy ranged from 69.8% to 87.84%, with random forest
having an accuracy of 87.84% and precision of 49.45%.

Moreover, a rigorous comparative analysis of the performance of two machine learning
frameworks, namely SL and PU learning was carried out. To make a statistical compar-
ison between the frameworks, the best results from the two frameworks were used in
the context of the 5-fold cross-validation experiment. F1-score score, a critical metric for
classification tasks, was chosen as the primary performance measure. Our findings reveal
a noteworthy distinction in F1-score performance between the two methods. Using the
proposed framework, in particular, the random forest algorithm, produced an F1-score of
49.03 with a narrow standard deviation of 0.67, while the best method of the traditional
SL, namely MLP, lagged significantly behind, achieving an F1-score of 37.79 with a larger
standard deviation of 2.77. To assess the statistical significance of this performance gap, a
paired t-test was conducted, revealing a substantial t-statistic of 8.8 (p < 0.01). This p-value
of 0.00046 indicates that the observed difference in F1 scores is highly significant, reaffirm-
ing the suitability of the proposed PU learning framework over the SL in a statistically
robust manner.

In summary, our experiments demonstrated the importance of selecting the appro-
priate machine learning method and dataset based on the specific characteristics of the
problem at hand. For instance, when dealing with a large dataset, a deep neural network
might be the most appropriate choice. However, for PU learning, random forest appears to
be a robust option, especially given the small dataset size and its class-imbalanced nature.

Table 3 provides a comprehensive overview of the performance metrics for each
dataset and method. These results offer valuable insights for researchers and practitioners
in the field of PU learning.

Table 3. Comparison of performances between the proposed positive-unlabeled-learning-based
framework and the SL framework with various data augmentation approaches found in the literature.
(SL Datasets: A = original, B = one-hot encoded, C = encoded and augmented as proposed in [4];
positive-unlabeled learning dataset: PU).

Dataset Method Acc (std) Prec (std) Rec (std) F1 (std) AUC (std)

A

Poisson 74.93 (3.20) 19.14 (1.67) 14.51 (2.08) 16.51 (2.54) 50.94 (4.12)
Gaussian Process 69.14 (2.81) 15.27 (3.02) 17.74 (3.22) 16.41 (3.14) 48.73 (2.67)

kNN 68.31 (2.85) 14.66 (2.33) 27.74 (3.18) 16.05 (2.63) 48.23 (2.98)
SVM 68.04 (3.12) 14.28 (1.98) 16.10 (0.89) 28.00 (1.06) 49.80 (2.77)

Decision Tree 76.03 (2.72) 30.15 (2.09) 30.64 (2.78) 30.41 (2.63) 58.01 (3.12)
Random Forest 80.71 (1.94) 40.01 (2.48) 25.81 (2.09) 31.37 (2.63) 58.91 (1.98)

Xtra Trees 77.96 (2.47) 33.33 (2.73) 29.03 (2.28) 31.03 (2.67) 58.53 (2.42)
MLP 79.61 (2.47) 25.00 (1.83) 10.67 (0.75) 13.96 (1.01) 51.84 (2.11)

B

Poisson 70.24 (0.83) 14.62 (1.27) 14.51 (0.92) 14.28 (1.04) 48.12 (1.11)
Gaussian Process 79.33 (1.01) 21.73 (0.84) 18.10 (0.06) 19.54 (1.02) 51.04 (0.92)

kNN 71.62 (1.14) 16.39 (0.79) 16.12 (0.98) 16.26 (1.01) 49.59 (0.89)
SVM 82.92 (0.98) 50.01 (1.33) 30.64 (0.96) 28.02 (0.91) 61.16 (1.22)

Decision Tree 73.55 (1.02) 20.68 (0.91) 19.35 (0.83) 19.99 (0.95) 52.03 (0.99)
Random Forest 80.16 (0.94) 38.63 (1.12) 27.41 (0.79) 32.07 (0.87) 59.22 (1.09)

Xtra Trees 81.26 (1.05) 43.24 (0.98) 25.81 (0.86) 32.32 (1.01) 59.41 (1.11)
MLP 28.65 (0.78) 18.32 (0.89) 91.93 (1.34) 30.56 (0.93) 53.77 (1.01)

C

Poisson 36.63 (2.50) 13.79 (1.08) 51.61 (3.20) 21.76 (2.11) 44.49 (2.58)
Gaussian Process 66.94 (2.30) 20.40 (1.59) 32.25 (2.98) 25.00 (2.29) 53.27 (3.13)

kNN 63.25 (2.02) 14.85 (1.56) 24.19 (2.26) 18.42 (1.90) 47.81 (2.60)
SVM 81.81 (3.10) 43.75 (2.63) 22.25 (1.89) 29.78 (2.29) 58.31 (3.70)

Decision Tree 69.42 (2.21) 21.83 (1.82) 30.64 (2.92) 25.52 (2.08) 54.02 (2.73)
Random Forest 79.33 (2.74) 37.73 (2.31) 32.25 (2.25) 34.78 (2.42) 60.64 (3.14)

Xtra Trees 82.36 (2.83) 45.45 (2.57) 16.12 (1.71) 24.44 (2.03) 56.07 (2.79)
MLP 78.23 (2.62) 36.92 (2.63) 38.79 (2.54) 37.77 (2.49) 62.54 (3.21)
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Table 3. Cont.

Dataset Method Acc (std) Prec (std) Rec (std) F1 (std) AUC (std)

PU

Poisson 75.14 (0.22) 40.03 (0.53) 41.67 (0.36) 40.82 (0.79) 64.45 (0.68)
Gaussian Process 74.07 (0.31) 30.06 (0.78) 32.50 (0.52) 31.20 (0.19) 56.03 (0.88)

kNN 79.66 (0.66) 22.60 (0.35) 27.79 (0.17) 24.93 (0.51) 54.72 (0.69)
SVM 81.82 (0.82) 43.75 (0.33) 22.23 (0.62) 29.80 (0.30) 64.31 (0.98)

Decision Tree 69.80 (0.31) 42.90 (0.46) 39.31 (0.61) 41.02 (0.14) 62.68 (0.12)
Random Forest 87.84 (0.24) 49.45 (0.43) 48.61 (0.28) 49.03 (0.67) 69.20 (0.39)

Xtra Trees 83.58 (0.52) 49.03 (0.56) 47.44 (0.71) 48.22 (0.54) 68.81 (0.51)
MLP 79.50 (0.76) 46.39 (0.83) 47.44 (0.23) 46.63 (0.13) 63.19 (0.71)

5.1. Comparative Analysis

For the purpose of comparative analysis of black spot identification methods, several
approaches have been investigated in order to put the results of this study into perspective.
Xu et al. [84] utilized vehicle kinetic parameters obtained from road experiments to address
the three-class problem of identifying safe, low-risk, and black spot segments. Their model
achieved an impressive accuracy rate of 76.34%. Conversely, Tanprasert et al. [85] employed
street-view image data as input for a deep neural architecture and attained a 69.91%
accuracy in distinguishing safe from black spot segments, with a notable 75.86% accuracy
when specifically querying the black spot class. Fan et al. [45] took a different approach,
gathering data from crash accident reports and applying SVM to achieve remarkable
precision and recall rates of 88%, along with an F1-score of 88%. However, when focusing
solely on the black spot class, their model yielded a slightly lower accuracy of 62%. It is
worth noting that the studies by Xu et al. and Fan et al. [45,84] provided comprehensive
evaluations of accuracy, precision, and recall, while Tanprasert et al. [85] concentrated
solely on accuracy. Additionally, all the aforementioned works faced challenges related to
imbalanced datasets, with Xu et al. and Fan et al. [45,84] favoring the non-black spot class,
and Tanprasert et al. [85] favoring the black spot class. These findings offer valuable insights
into the diverse methods employed for black spot identification in road safety research.

5.2. Discussion

The BSNG dataset presents a considerable obstacle for classification algorithms, as
demonstrated by the results depicted in Table 3. Given the dataset’s imbalanced composi-
tion, evaluating performance solely on the basis of correct prediction rates is unsuitable.
This section delves into the outcomes derived from diverse ML algorithms in the framework
of binary classification endeavors. The metrics assessed encompass accuracy, precision,
recall, F1-score, and the area under the receiver operating characteristic curve (AUC).

In Dataset A (original data), decision tree and random forest seem to perform well
across most metrics, with high accuracy and F1-score. This indicates that these methods
handle the original data effectively. When using one-hot encoded data (Dataset B), support
vector machines (SVM) and random forest show strong performance. SVM particularly
excels in precision and AUC, indicating its effectiveness in binary classification with one-
hot encoded features. Dataset C, which includes encoded and augmented data, presents
different performance trends. Random forest and Xtra trees maintain their strong per-
formance, while support vector machines (RBF SVM) stands out in terms of precision
and AUC. Finally, The PU dataset differs from the others in that it involves positive and
unlabeled samples. In this context, random forest consistently achieves high performance
across multiple metrics, including precision, recall, and AUC.

The situation wherein a binary classifier exhibits high accuracy but a low F1-score
within an imbalanced dataset implies a noteworthy performance characteristic. However,
this apparent success is nuanced when the dataset exhibits a substantial class imbalance.
The low F1-score, which harmonizes precision and recall, reflects the model’s inability to
effectively manage the imbalanced nature of the data. Specifically, it signifies the model’s
challenge in accurately classifying instances from the minority class. This performance



Computers 2024, 13, 49 14 of 19

discrepancy between accuracy and F1-score underscores the model’s inclination to favor
the majority class in its predictions.

Moreover, it is frequently observed that a binary classifier attains elevated accuracy
while exhibiting a diminished F1-score. This phenomenon typically arises from the classi-
fier’s strong bias toward the majority class, resulting in a substantial count of true negatives
(TN) and true positives (TP), which collectively bolster the accuracy metric. Nevertheless,
this pronounced emphasis on the majority class often leads to sub-optimal recall for the
minority class, thereby causing a notable reduction in the F1-score.

Poisson and Gaussian process models generally yielded moderate results, with PU
learning showing promise for addressing imbalanced datasets. The k-nearest neighbor
(kNN) displayed mixed performance, with PU learning consistently excelling in preci-
sion and recall, making it a valuable choice for handling imbalanced data. Decision tree
demonstrated balanced performance, while extra randomized trees exhibited competitive
accuracy. Conversely, random forest showcased a balanced trade-off between precision and
recall, with PU learning emerging as a robust option. Multilayered perceptron displayed
variable results, emphasizing the importance of selecting the appropriate method based on
dataset characteristics and specific task requirements.

From the perspective of the ML approaches, traditional SL often exhibits moderate
to good accuracy but struggles with imbalanced datasets, resulting in lower recall rates.
One-hot encoded SL, while improving precision, can suffer from lower recall, particularly
when positive instances are sparse. In contrast, encoded and augmented methods are
designed to address imbalanced datasets, consistently achieving improved recall while
maintaining competitive precision. PU learning emerges as a robust approach, consistently
delivering high precision, recall, and F1-score, making it a compelling choice, especially for
tasks involving imbalanced or partially labeled data.

Based on the evidence presented in the performance metrics of the ML methods,
there is a compelling argument to suggest that positive-unlabeled (PU) learning might be
more suitable than traditional SL for the specific classification tasks evaluated in the study.
The results of Table 3 clearly demonstrate that PU learning outperformed traditional SL
methods in several key metrics. Across multiple ML algorithms, PU learning consistently
showcased higher precision, recall, and F1-score. The aforementioned are reflected also
in are presented also in Figure 2, which each sub-figure is a ML method (from top-left to
bottom-right: Poisson, Gaussian Process, K-NN, SVM, Decision Tree, Extra Randomised
Trees, Random Forest and MLP) and the columns within a sub-figure are classification
performance metrics as described before. This superiority in performance can be attributed
to PU learning’s ability to handle imbalanced datasets effectively, a common challenge in
real-world applications.

Traditional SL methods struggled with imbalanced data, often showing a trade-off
between precision and recall. In contrast, PU learning demonstrated a more balanced
performance, excelling in precision and recall simultaneously. This characteristic is of
paramount importance in scenarios where correctly identifying positive instances while
minimizing false positives is critical.

Furthermore, the PU approach stands in stark contrast to traditional supervised
learning (SL), which adheres to the dogma that ‘the more data, the better the model’.
Notably, our experiments reveal that PU learning’s performance is on par with that of SL,
despite utilizing only a fraction of the available data, as we have previously demonstrated
in our research [6].

In summary, the choice of the learning framework and method greatly impacts the
performance of the model. In PU learning, ensemble methods like random forest and Xtra
trees show promise. However, the choice should be made considering the specific dataset
characteristics and problem requirements.
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Figure 2. Performance comparison of eight classification methods used in different learning frameworks.

6. Conclusions

The shift from SL to PU learning represents a paradigm change in model training.
Treating a portion of the data as unlabeled, PU learning accounts for the uncertainty
inherent in real-world data, which is often partially labeled. This change in approach
framework allowed the models to focus on identifying true positive instances without
being constrained by the limitations of traditional SL methods.

In conclusion, the evidence presented in this study strongly supports the argument
that PU learning is more suitable than SL for the given classification tasks. The observed
improvements in precision, recall, and F1-score demonstrate the potential benefits of
adopting a PU learning approach, particularly when dealing with imbalanced datasets.
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Changing the approach framework from SL to PU not only yielded better results but
also highlights the adaptability of ML techniques to real-world data challenges, making
PU learning a valuable tool for various applications where accurate positive instance
identification is paramount.

Future research could build upon the findings of this study to further enhance the
performance of the weakly supervised framework presented. A promising avenue involves
developing tailored augmentation techniques, facilitating the use of deep neural networks
(DNNs). Given the current size of the BSNG dataset, which limits the applicability of
DNNs, such augmentation strategies could prove pivotal in overcoming these constraints
and unlocking new potentials in the domain of black spot identification.
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