
Citation: Hauenstein, J.D.; Newman,

T.S. Achieving Better Energy

Efficiency in Volume Analysis and

Direct Volume Rendering Descriptor

Computation. Computers 2024, 13, 51.

https://doi.org/10.3390/

computers13020051

Academic Editors: David Hunter,

Peter Vangorp and Helen Miles

Received: 13 January 2024

Revised: 6 February 2024

Accepted: 7 February 2024

Published: 13 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Achieving Better Energy Efficiency in Volume Analysis and
Direct Volume Rendering Descriptor Computation
Jacob D. Hauenstein * and Timothy S. Newman *

Department of Computer Science, The University of Alabama in Huntsville, 301 Sparkman Drive,
Huntsville, AL 35899, USA
* Correspondence: hauensj1@uah.edu (J.D.H.); newmant@uah.edu (T.S.N.); Tel.: +1-256-824-6186 (J.D.H.)

Abstract: Approaches aimed at achieving improved energy efficiency for determination of
descriptors—used in volumetric data analysis and one common mode of scientific visualisation—in
one x86-class setting are described and evaluated. These approaches are evaluated against standard
approaches for the computational setting. In all, six approaches for improved efficiency are consid-
ered. Four of them are computation-based. The other two are memory-based. The descriptors are
classic gradient and curvature descriptors. In addition to their use in volume analyses, they are used
in the classic ray-casting-based direct volume rendering (DVR), which is a particular application area
of interest here. An ideal combination of the described approaches applied to gradient descriptor
determination allowed them to to be computed with only 80% of the energy of a standard approach in
the computational setting; energy efficiency was improved by a factor of 1.2. For curvature descriptor
determination, the ideal combination of described approaches achieved a factor-of-two improvement
in energy efficiency.

Keywords: green computing; scientific visualisation; volume visualisation; volume data analysis;
energy efficiency; power estimation and optimization; software performance; curvature; gradient

1. Introduction

Many prior studies in volumetric dataset analysis and rendering have focused on
performance-related issues, especially computation time and analysis/rendering quality
(e.g., [1]). Particular items that have been considered in such studies have included factors
such as data staging, rendering construction strategies, salient feature detection, high-
lighting, etc. (e.g., [2–5]). The work here considers a type of performance issue that has
received somewhat less consideration—the energy consumption for computing certain
volume features (i.e., descriptors) that have been used in the analyses and renderings of
scientific datasets. The descriptors here have particularly been used in the direct volume
rendering (DVR) mode of scientific visualisation, especially in ray-cast DVR. The work here
goes beyond simply measuring energy consumption; however, the investigations of several
strategies for reducing energy consumption for descriptor computation are also reported.

As such, this work can lead to three larger benefits. First, it can aid in finding the
environmental impacts of the analysis and rendering of scientific datasets. Second, it can
aid in making key pieces of scientific dataset analysis and rendering processes more energy
efficient, potentially improving battery life for battery-powered computers performing
such tasks. Third, it can aid analysis and rendering to have less demand on the power grid
(and, thus, possibly help in lowering greenhouse gas emissions in regions where power
generation produces them).

Two descriptors are considered in this paper: gradients and curvatures. These two de-
scriptors are fundamental for a number of volume analysis and rendering approaches, such
as in DVR. In particular, in DVR gradients and curvatures are used in determining shadings
(e.g., [6]). One example of such use is DVR that employs opacity-based composition pro-
cesses utilizing gradient- and/or curvature-based transfer functions coupled with Phong or

Computers 2024, 13, 51. https://doi.org/10.3390/computers13020051 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13020051
https://doi.org/10.3390/computers13020051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-0534-3331
https://orcid.org/0000-0001-8547-9214
https://doi.org/10.3390/computers13020051
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13020051?type=check_update&version=2


Computers 2024, 13, 51 2 of 15

Phong-like illumination schemes to produce end renderings. Curvature-based descriptors
have also been used in point cloud-based studies, for example, in computational fluid
simulations [7]—as well as in range image applications (e.g., [8]).

There are a number of gradient and curvature computation methods that have been
reported in the literature. Some details of such methods are described later, in Section 2 of this
paper. Beyond DVR, there are volume data analysis applications reported for isosurfacing,
registration (e.g., [9]), etc., and classic speed and accuracy studies have been carried out in
such domains (with the importance of accuracy receiving increased recent attention, as in [10]).
However, focus here is on them as components that commonly enable DVR end renderings.

This paper is an extended version of work previously presented in a conference
paper [11]. The extensions include many new, additional experimental results, including
experiments using 67% more datasets than the prior work as well as new imagery, with
these expressed in approximately twice the number of tables.

The remainder of this work is organised as follows. In Section 2, the background for
the direct volume rendering’s employment of the descriptors of interest here, gradients and
curvature, is described. Some background about the research community’s prior interests
in CPU energy consumption, including some discussion of mechanisms for measuring
such consumption, is also discussed there. In Section 3, approaches for potentially reducing
gradient and curvature descriptor computation energy use that were considered for this
effort are described. Section 4 provides details of both the experimental setup employed
for this effort and the experiments conducted to comparatively analyse energy usage. The
paper concludes in Section 5.

2. Background

Ray-cast direct volume rendering is one popular way to visualise volumetric data,
often in conjunction with gradient-based shading. A number of gradient-based shading
ray-cast schemes exist. Some such schemes compute gradients during ray marching
while others march over pre-computed gradients to provide suitable rendering rates [12].
Curvature-based transfer functions are also a popular approach for adding shape-based
cues to DVRs [13]. The use of curvature for shape cues requires the determination of
curvature values at each location within the volume, and, as in the case of gradients, these
curvatures could be either pre-computed or computed during marching. Consequently,
consideration of the energy footprint associated with direct volume rendering requires not
just determination of the energy usage during a given renderer’s marching or compositing
steps but also consideration of the energy usage of any base descriptor computations (even
if not all descriptor computation is performed in real time during marching).

In this study, we focus on gradient and curvature descriptors typically associated with
ray-cast direct volume rendering. Specifically, we focus on the energy usage of (1) the
commonly used central differencing (and associated higher-order methods) for gradient
estimation and (2) two common methods for determining curvature values that have previ-
ously been used in conjunction with curvature-based transfer functions for DVR [13,14].
This section first briefly describes related studies on energy usage. It then provides back-
ground details on the specific gradient estimation and curvature determination methods
considered in our studies (reported later).

2.1. CPU Energy-Usage Measurement and Prior Studies Thereof

Recently, Jay et al. [15] reported that approximately 6% of world power use can be
ascribed to digital activity. Their report also noted that this percentage is growing. While
the Jay et al. report has likely increased the focus on the energy usage of computing,
even prior to their report many works introduced schemes to measure and/or reduce
energy usage (often with a focus on CPU energy usage). However, the energy usage of
specific software components is typically unexplored and thus unknown [16], with a few
exceptions. One exception is the use of complexity plot visualisations to consider the
energy cost of matrix multiplication [17]. However, to our knowledge no prior works have



Computers 2024, 13, 51 3 of 15

specifically studied the energy usage associated with the computation of the descriptors
used by classic volume dataset visualisation (in particular, gradient estimation and surface
curvature determination). Some methods for computing gradients and curvatures have
been studied on the bases of their accuracy and/or run time (e.g., gradients were considered
in [18]). Unfortunately, such studies provide very limited insight into the energy usage
associated with such computation, because prior studies of energy usage have found that
energy usage is not always correlated with execution time [17,19].

In recent years, the measurement of CPU energy usage has been simplified by the
fact that some modern processors (including Sandy Bridge and later Intel CPUs) provide a
means to internally measure energy usage. Intel provides this functionality via the Running
Average Power Limit (RAPL) circuitry [20]. The RAPL circuitry estimates the CPU’s energy
usage via a model that incorporates hardware counters, leakage, and temperature. The
studies of energy usage, presented later in this work, consider the energy usage of a RAPL-
capable processor (in conjunction with the Performance API (PAPI) software [21] (version
6.0.0), which supports RAPL measurements).

Some prior works were able to measure energy usage on Intel processors, even prior to
the inclusion of RAPL. For example, Seng et al. [22] placed 5w resistors inline with the Vcc
trace to the processor core and used this setup to measure code energy use on a Pentium 4
CPU. They observed that, with regards to C++ code, some code exhibits energy efficiency
improvements when compiler-based loop unrolling is used. However, they also observed
that this energy saving does not apply to all C++ code. Later, other work found that using
very large loop unrolling factors (>1024) on x86-64 processors may substantially increase
energy consumption [23].

Some prior works have also considered energy usage on non-Intel processors. For
example, Vasilakis [24] has studied instruction level energy usage on ARM Cortex-A7
and Cortex-A15 CPUs. To measure processor energy usage, those studies polled a set of
current sensing chips present on the development board used. The studies found that, on
such CPUs, identical instructions use less energy when an L1 cache hit occurs compared
to when an L1 cache miss occurs. Additionally, they found that, compared to integer
instructions, floating point instructions typically use more energy on such CPUs, with
division instructions exhibiting especially high energy usage. Further, the studies found that
the presence of data dependencies between instructions may result in significantly higher
energy usage (compared to otherwise identical instructions without such dependencies).

Some prior works have studied the relative energy efficiencies of different program-
ming languages. One such work is that of Pereira et al. [25], which reported that C/C++
code tends to be more energy efficient than other languages. (That finding motivated the
use of C/C++ for the work here.)

A tabular summary of some of the related, prior work that studied energy-efficient
computation is shown in Table 1. Foci have ranged from the system and high-level language
programming to individual machine instructions.

Table 1. Some of the Energy-Efficient Computation Studies in the Literature.

Area Specifics Citation

System-Class High-level Languages [25]
Internet Languages [26]
CPU [27]

Specific Apps/Problems Browsers [28]
Range Images/MM [29–31]
Hypersurfaces [32]

Code Studies/Strategies Instruction Types [24]
Loop Unrolling [23]



Computers 2024, 13, 51 4 of 15

In our own studies concerning the energy efficiency of C/C++ code (which also
motivates the work here), we have found that the energy efficiency of such code can
sometimes be increased via the use of compiler directives to inline, frequently called
functions. We also found that the compiler general optimisation level (e.g., -O1, -O2, or
-O3) and arithmetic optimisation settings (e.g., gcc’s -ffast-math option) can also, for some
code, influence energy consumption (e.g., some code we examined in preliminary studies
exhibited its lowest energy use when compiled with the -O2 or -O3 optimisation levels,
combined with -ffast-math).

2.2. Methods for Gradient Estimation

The studies here consider four methods for gradient estimation within volumetric data.
One method that is considered is the classic central differencing gradient estimator. For a
point (i, j, k) within a volume, V, where V(i, j, k) denotes the value at coordinate location
(i, j, k) within the volume, it is computed in one direction within a volume according to

1
2
{V(i + 1, j, k)− V(i − 1, j, k)}. (1)

The other directional gradients are computed analogously. In this paper, this gradient
computation method is denoted as central.

Another method that is considered estimates the gradient using the differences be-
tween adjacent voxels, computed in one direction at (i, j, k) according to

1
2
{V(i + 1, j, k)− V(i, j, k)}. (2)

The other directional gradients are computed analogously. In this paper, this gradient
computation method is denoted as inter.

Also considered are two variations using third-order polynomials (one centred on either
side of the voxel). The first variant is computed is one direction at (i, j, k) according to

1
6
{−V(i + 2, j, k)− 6V(i + 1, j, k)− 3V(i, j, k)− 2V(i − 1, j, k)}. (3)

The second variant is computed in the same direction and location according to

1
6
{2V(i + 1, j, k) + 3V(i, j, k)− 6V(i − 1, j, k) + V(i − 2, j, k)}. (4)

The other directional gradients are computed analogously. In this paper, the first
variant is denoted as 3order_a and the second as 3order_b.

Finally, a method that uses fourth-order polynomials is considered. It computes the
gradient in one direction at (i, j, k) according to

1
12

{−V(i + 2, j, k) + 8V(i + 1, j, k)− 8V(i − 1, j, k) + V(i − 2, j, k)}. (5)

The other directional gradients are computed analogously. In this paper, this gradient
computation method is denoted as 4order.

2.3. Methods for Surface Curvature Determination

The studies here consider two methods for determining surface curvature in volu-
metric data. Both of these methods determine curvature using a two-step process. In the
first step, all necessary derivatives (i.e., first, second, and mixed partial derivatives) are esti-
mated at each point within the volume. In the second step, these estimated derivatives are
used, in conjunction with a standard surface curvature formulation (i.e., the one presented
in [13]), to compute the two principal component curvature values at each point within
the volume.



Computers 2024, 13, 51 5 of 15

The two methods considered differ in how they estimate the derivatives. OP, which is
the first method, determines surface curvature using derivatives estimated via convolutions
with kernels sampled from specially constructed orthogonal polynomials [14]. This OP has
one parameter: the kernel size, N. In general, smaller N values allow for better localisation,
while larger kernels are more robust to noise. In our studies here, we follow the guidance of
a prior report’s findings that suggest a value of N = 7 suitably balances these factors [14].

TE, which is the second method, determines surface curvature using derivatives es-
timated via convolutions with kernels constructed from the Taylor expansion [13]. This
method has two parameters: the continuity and accuracy properties of the kernels. In our
studies here, we, as with the OP method, follow a prior report’s recommendations on pa-
rameter value selection and use kernels with C3 continuity and fourth-order accuracy [14].

3. Energy Optimisation Approaches

Our energy optimisation approaches are described in this section. We were inspired
to take these approaches by observations made in prior works (i.e., those described in
Section 2.1). Our approaches attempt to reduce energy usage via a variety of strategies,
including loop unrolling, mathematics optimisations, general compiler settings, data or-
ganisation strategies, etc. First, we describe such strategies for gradient estimation. Then,
we describe the strategies applied to determining surface curvature in volumetric data.

3.1. Energy-Saving Approaches for Gradient Estimation

For gradient estimation, one focus was on loop overhead reduction because gradient
estimation is a loop-driven process that passes over the volumetric dataset elements. Re-
duction of loop overhead could limit (1) the exercise of loop prediction logic and (2) certain
other loop-carried operations, in turn lowering energy consumption, which may underlie
prior findings that loop unrolling sometimes yields energy savings. Another focus was
arithmetic computation optimisation, since the higher-order polynomial-based gradients in-
volve somewhat intensive floating-point computations in each step of the process. To realise
these foci, we devised three potentially energy-saving strategies for gradient estimation.

The first strategy, which focuses on loop overhead, is to unroll the loops that perform
the passes over the volume for each gradient estimator. Here, such unrolling was performed
via gcc/g++’s -funroll-all-loops option. We denote this strategy as Unroll.

The second strategy explores reducing some floating-point computation overhead.
It involves avoiding checks for certain floating point computation conditions. It was
performed here via the -ffast-math compiler option. We denote this strategy as Fast.

The third strategy, which focuses to some extent on both loop and computation
overhead, involves using a higher level of compiler optimisation (-O3) compared to a
baseline implementation (e.g., -O2). This level of optimisation includes two features
in particular that may benefit the descriptor computations: it attempts to reuse some
computations, especially memory loads and stores between loop iterations, and it attempts
to find and eliminate arithmetic subexpressions [33]. (Another motivation: some prior
work has found this level of compiler optimisation tends to reduce energy usage.) We
denote this strategy as O3.

3.2. Energy-Saving Approaches for Curvature Determination

For curvature determination in volumetric data, we devised six approaches to poten-
tially save energy. They are described here.

Three of the strategies are the strategies also used for gradient estimation. These are
the Unroll, Fast, and O3 strategies described in Section 3.1.

Our fourth strategy aims to organise and stage memory accesses in an efficient manner.
It was motivated based on prior findings that an increased L1 cache hit rate may result
in energy savings [24]. Both the OP and TE methods utilise convolution to estimate
derivatives. Due to the multidimensionality of volumetric data, convolution, which requires
accessing neighbouring data points in every axial direction in order to perform the necessary



Computers 2024, 13, 51 6 of 15

multiplications/additions, often results in an inefficient use of memory as non-contiguous
regions of memory are traversed. The strategy works to increase memory efficiency during
convolution by carefully computing and storing intermediate convolution terms across the
volume, which later allows avoiding large and/or unpredictable strides that may result in
a less efficient use of memory. We denote this strategy as Bespoke.

Specifically, the Bespoke strategy works as follows. First, as a pre-processing step, a
list of the unique values in the convolution kernels for the respective curvature method is
computed (e.g., for the TE method, a list of all the unique values present in the first and
second derivative C3 continuous, fourth-order accurate convolution kernels is manually
constructed). We use k to denote this list of unique values in the kernels (of which there
are ∥k∥ such values, denoted as k1 through kn). Next, during run time, ∥k∥ variants of the
original input volume (denoted as v) are produced, with each of these variants representing
the multiplication of each value in v by one of the values in k (requiring ∥k∥ × ∥v∥ extra
memory, where ∥v∥ is the number of values contained in v) (i.e., one variant volume
consists of the original volume with each of its entries scaled by k1; another one consists of
entries scaling by k2, etc.). These multiplications proceed sequentially in memory in order
to help ensure cache efficiency. Once the scaled volumes are produced, the convolution is
completed via summing the relevant entries of these variant volumes.

Our fifth strategy seeks to reduce data dependencies. It is motivated by prior findings
that data dependencies within code often result in increased energy usage [24]. (Moreover,
our own studies have found that the increase in energy usage is especially notable when
such code contains few additional instructions to be executed between the dependent
ones.) To increase the number of instructions available to be executed between dependent
instructions, we developed a software pipelined version of the code that computes the final
curvature values from the estimated derivatives. We denote this strategy as Pipeline.

Our sixth strategy seeks to increase data locality by blocking. Increased locality of
reference is known to improve cache efficiency, leading to improved computation speed,
which motivated us to determine if such increased locality could also reduce energy
consumption. It uses a blocked approach to traverse the volume while producing final
results. We denote this strategy as Blocking. (Our experiments, presented later, tried
various block sizes from 8× 8× 8 up to 64× 64× 64. To save space, Blocking in conjunction
with a specific blocksize, n, will be denoted as Blockingn.)

4. Experimental Setup and Results

In this section, we report on the energy usage of gradient and curvature descriptor
computation for a baseline realisation on x86, which is probably the most common CPU
environment for most desktop scientific computation. We focus on CPU-based computation
here as that is one of the oft-used modes for computing descriptors for the DVRs of sensed
volume data (such as CT or MR scans of industrial or patient subjects). We also report
experiments that evaluate the energy-saving strategies that were attempted. Lastly, analyses
of accuracy and memory effects are presented.

First, we detail the testing setup. Experiments were performed on a computer
equipped with an Intel Core i5-8279U processor and 16 GB of RAM (as that matched
the one used in some prior energy-usage reports). The operating system used was a
minimal install of Ubuntu Server 22.04.1 AMD64. The CPU governor mode was set to
“performance” (using the cpufreq-set utility). All experimental code was written in C/C++.
Double precision floats were used in all curvature and gradient computations. The code
was compiled with gcc/g++ 11.3.0. PAPI was used to measure energy usage (via RAPL).
All experiments were run as the root user (to allow access to the energy measurement
hardware) on a single core.

We believe that, while the experiments here were performed on the Intel Core i5-8279U
CPU, many of the findings are likely applicable to all similar Intel processors.



Computers 2024, 13, 51 7 of 15

4.1. Test Conditions and Energy Measurement

To evaluate the energy usage (and savings, if any) associated with each of the ap-
proaches, we ran, on several volume datasets, each of the gradient estimation and curvature
determination methods using different combinations of the strategies previously described.
In total, 8 variants of each gradient estimation method were tested (including a Base-
line variant compiled with -O2 and using no other energy optimisation strategies) and
70 variants of each curvature determination method were tested (including a Baseline
variant compiled with -O2 and using no other energy optimisation approaches). Relative
energy use versus the baselines were then found.

To measure energy, PAPI was used to determine total energy usage (in Joules), ζ,
of the RAPL PP0 plus the RAPL DRAM domains during just the curvature determina-
tion/gradient estimation steps (i.e., excluding I/O associated with loading the data or
writing the results). The RAPL PP0 domain represents the power usage of all the processor
cores and excluding the DRAM or GPU. The RAPL DRAM domain represents the power
usage of the DRAM. This measurement of PP0 + DRAM thus represents the sum of the
CPU and DRAM power usage of each method (n.b., we chose to include the DRAM do-
main because some of the energy-saving strategies, such as Bespoke, utilise more memory
compared to the baseline, and the inclusion of the DRAM domain ensures that the extra
memory usage associated with this is accounted for).

To ensure consistent results, each variant was run five times and the trimmed means
of the PP0 and DRAM domains were computed, with those two values then summed to
give the final energy-usage measurement.

4.2. The Datasets and Visualisation

Our experiments consider three types of volumetric data: Marschner-Lobb (ML),
Foot, and Genus3. These datasets were used in prior curvature and gradient studies
(e.g., [14,18]). ML and Genus3 are synthetic data, while Foot is sensed. Foot is size
256 × 256 × 256. Genus3 is size 128 × 128 × 128. Three different-size ML datasets are con-
sidered: ML128 (128 × 128 × 128), ML256 (256 × 256 × 256), and ML512 (512 × 512 × 512).
All volumes were stored as double precision floating point data. ML256 was consid-
ered with and without Gaussian noise (µ = 0, σ = 0.0084). This noise-added version is
denoted as ML256n.

A slice image of Foot is shown in Figure 1a and a DVR using a curvature-based transfer
function is shown in Figure 1b; Figure 1b demonstrates one visualisation usage involving
the descriptors considered here.

(a) (b)
Figure 1. Slice and DVR Foot Dataset Renderings. (a) A sagittal slice image of the Foot dataset. (b) A
DVR of the toe area of the Foot dataset using Gaussian curvature-based transfer functions for colour
and a cool-to-warm colourmap.



Computers 2024, 13, 51 8 of 15

4.3. Gradient Estimation

Tables 2 and 3 show gradient energy-usage results on Foot and Genus3, respectively.
Tables 4–6 show gradient energy-usage results on ML128, ML256, and ML512, respectively
(n.b., Tables 4–6 all represent additional experimentation over our prior work). The first
rows in each table present energy-usage outcomes for the baseline computations while
other rows show energy-usage change (as a percentage of Baseline) from the use of one of
the strategies or combinations of strategies. Bold values show the variant with the lowest
energy usage. Cell colouring on a red–green scale indicates the degree of improvement.

Table 2. A selection of Foot gradient (energy usage) results. Bold values show the variant with the
lowest energy usage. Cell colouring indicates the degree of improvement (on a red–green scale).

Central Inter 3order_a 3order_b 4order

Baseline 2.74 J 2.52 J 3.11 J 3.18 J 3.60 J
Fast 3.88% −2.55% 9.87% 8.66% −10.78%
Unroll −4.52% −3.38% 10.77% 12.43% −16.64%
Fast, Unroll −6.75% −7.20% −1.87% −2.05% −15.29%
O3 9.25% 9.23% −0.70% −2.71% −10.28%
O3, Fast 0.08% −2.65% 9.81% 11.74% −7.44%
O3, Unroll −7.18% 4.11% −3.00% −2.90% −16.01%
O3, Unroll, Fast −6.89% −5.63% 9.83% −2.99% −16.58%

Table 3. Selected Genus3 gradient (energy usage) results. Bold values show the variant with the
lowest energy usage. Cell colouring indicates the degree of improvement (on a red–green scale).

Central Inter 3order_a 3order_b 4order

Baseline 0.37 J 0.33 J 0.40 J 0.41 J 0.45 J
Fast 3.08% −2.43% 9.68% 9.47% −11.19%
Unroll −5.60% −0.51% 10.42% 13.18% −17.10%
Fast, Unroll −8.62% −6.38% −2.42% −0.94% −15.63%
O3 7.66% 8.56% −0.31% −2.38% −10.56%
O3, Fast −0.67% −2.42% 11.45% 11.33% −7.28%
O3, Unroll −7.82% 2.73% −2.84% −2.68% −17.58%
O3, Unroll, Fast −9.00% −5.43% 9.08% −2.60% −17.01%

Table 4. Selected ML128 gradient (energy usage) results. Bold values show the variant with the
lowest energy usage. Cell colouring indicates the degree of improvement (on a red–green scale).

Central Inter 3order_a 3order_b 4order

Baseline 0.36 J 0.34 J 0.40 J 0.41 J 0.45 J
Fast 4.89% −2.73% 10.76% 7.58% −11.87%
Unroll −3.48% −3.87% 11.16% 11.78% −17.32%
Fast, Unroll −6.28% −8.37% −1.78% −4.04% −15.75%
O3 8.70% 6.66% −0.36% −4.18% -10.31%
O3, Fast 1.16% −3.26% 11.18% 10.37% −8.49%
O3, Unroll −6.06% 2.20% −2.94% −3.65% −16.35%
O3, Unroll, Fast −6.05% −6.36% 10.45% −3.93% −16.95%

With the Baseline variant, inter exhibits the lowest energy usage for all analysed
datasets. On average, central uses approximately 1.1 times more energy than inter, 3or-
der_a uses approximately 1.26 times more energy than inter, 3order_b uses approximately
1.29 times more energy than inter, and 4order uses approximately 1.54 times more energy
than inter.

Here, all of the lowest energy-usage variants make use of the Unroll strategy. The
lowest energy variants often make use of multiple strategies (e.g., O3 and Unroll). Alone,
Fast typically had a negligible effect.



Computers 2024, 13, 51 9 of 15

For all of the gradient methods, the combination of the Fast and Unroll strategies
typically exhibits the lowest (or among the lowest) energy usage. Thus, it appears the Fast
and Unroll strategies in combination may be a suitable choice for practitioners aiming to
reduce energy consumption associated with common gradient estimation strategies.

Table 5. Selected ML256 gradient (energy usage) results. Bold values show the variant with the
lowest energy usage. Cell colouring indicates the degree of improvement (on a red–green scale).

Central Inter 3order_a 3order_b 4order

Baseline 2.77 J 2.54 J 3.16 J 3.22 J 3.65 J
Fast 4.33% −2.87% 10.13% 8.85% −10.28%
Unroll −4.26% −3.49% 10.61% 12.22% −16.52%
Fast, Unroll −6.58% −7.18% −1.56% −2.08% −14.84%
O3 9.48% 8.71% −0.39% −2.42% −9.83%
O3, Fast 0.71% −3.14% 10.08% 11.93% −6.74%
O3, Unroll −6.72% 3.64% −3.12% −2.95% −16.21%
O3, Unroll, Fast −6.51% −6.09% 9.43% −3.22% −16.01%

Table 6. Selected ML512 gradient (energy usage) results. Bold values show the variant with the
lowest energy usage. Cell colouring indicates the degree of improvement (on a red–green scale).

Central Inter 3order_a 3order_b 4order

Baseline 22.73 J 20.65 J 26.26 J 26.74 J 32.48 J
Fast 3.54% −2.99% 9.08% 8.40% −8.79%
Unroll −4.56% −4.09% 9.41% 11.32% −15.51%
Fast, Unroll −7.60% −7.62% −2.30% −2.03% −14.61%
O3 8.44% 8.48% −0.66% −2.74% −8.45%
O3, Fast −0.28% −3.35% 9.11% 10.75% −5.83%
O3, Unroll −8.63% 3.35% −3.30% −3.19% −15.07%
O3, Unroll, Fast −7.06% −6.14% 8.63% −3.55% −15.84%

4.4. Curvature Determination Results

Table 7 shows a selection of curvature determination energy-usage results on the
ML512 dataset for isolated approaches vs. the baseline. Its first row presents the energy-
usage outcomes for the baseline computations for the curvature methods. The table
again uses the energy differences and colour coding used earlier. These isolated approach
results are visualised in Figure 2. The energy usage (in J) of each isolated approach is
shown, overlaid on each bar in the figure. Tables 8 and 9 show energy-usage results for
other combinations of approaches (n.b., Tables 7–9 and Figure 2 all represent additional
experimentation over our prior work). Since the Bespoke approach is the best approach in
isolation, the remainder of the reported results will analyse Bespoke in conjunction with
the other approaches. (We actually tested other combinations as well, but we do not report
them here, as they are inferior to the combinations including Bespoke.) Table 8 shows a
selection of such energy results on the ML512 dataset for blocking-based approaches in
conjunction with the single best isolated approach, Bespoke. Table 9 shows a variety of
other combinations of approaches. The best results were the combinations Bespoke, O3,
Unroll, Fast in the case of OP and Bespoke, O3, Fast in the case of TE. These same variants
also exhibited the lowest energy usage on the 256 × 256 × 256 volumes (not shown here).



Computers 2024, 13, 51 10 of 15

Table 7. Single- factor ML512 curvature (energy usage) results. Bold values show the variant with
the lowest energy usage. Cell colouring indicates the degree of improvement (on a red–green scale).

OP TE

Baseline 1162.32 J 472.39 J
Fast 0.19% 0.57%
Unroll −3.67% −3.95%
O3 −23.51% −13.24%
Bespoke −33.33% −40.01%

1162 1165
1120

889

775

472 475 454
410

283

0

200

400

600

800

1000

1200

1400

Baseline Fast Unroll O3 Bespoke

E
n

e
rg

y
 (

J)

OP TE

Figure 2. Single-factor ML512 curvature (energy usage) results chart.

Table 8. Blocking approaches in conjunction with Bespoke curvature (energy usage) results on
ML512. Bold values show the variant with the lowest energy usage. Cell colouring indicates the
degree of improvement (on a red–green scale).

OP TE

Baseline 1162.32 J 472.39 J
Bespoke −33.33% −40.01%
Bespoke, Blocking8 −33.35% −38.08%
Bespoke, Blocking16 −34.05% −40.61%
Bespoke, Blocking32 −33.51% −39.23%
Bespoke, Blocking64 −33.64% −39.35%

It is not always the case that the most energy-efficient realisation is the fastest realisa-
tion. For the TE results in Tables 7–9, for example, the least energy-consuming combination
is Bespoke, O3, Fast. However, the fastest execution was achieved by the combination of
Bespoke, O3, Unroll, Fast. Table 10 shows a selection of execution times on the ML256
dataset. ML256n (not shown here) exhibits nearly identical execution times.



Computers 2024, 13, 51 11 of 15

Table 9. Approaches in conjunction with Bespoke curvature (energy usage) results on ML512.
Bold values show the variant with the lowest energy usage. Cell colouring indicates the degree of
improvement (on a red–green scale).

OP TE

Baseline 1162.32 J 472.39 J
Bespoke, Fast −33.87% −42.49%
Bespoke, Unroll −33.30% −40.23%
Bespoke, Unroll, Fast −33.60% −40.97%
Bespoke, O3 −44.63% −40.79%
Bespoke, O3, Fast −44.55% −43.16%
Bespoke, O3, Unroll −43.97% −40.96%
Bespoke, O3, Unroll, Fast −44.99% −42.41%
Bespoke, Piped −33.09% −35.54%
Bespoke, Piped, Unroll −33.50% −37.51%
Bespoke, Piped, Unroll, Fast −33.23% −39.50%
Bespoke, Piped, O3 −43.66% −39.88%
Bespoke, Piped, O3, Unroll −43.52% −40.07%
Bespoke, Piped, O3, Unroll, Fast −44.44% −41.50%

Table 10. A selection of ML256 execution times.

OP TE

Baseline 10.80 s 4.02 s

O3 8.89 s 3.64 s

Bespoke, Unroll 6.66 s 2.44 s

Bespoke, O3, Unroll, Fast 5.34 s 2.37 s

Bespoke, Pipeline, Blocking8, O3, Unroll, Fast 5.37 s 2.41 s

Table 11 shows a selection of energy-usage results on the Genus3 dataset. Here, the
best combination of approaches is Bespoke, O3, Fast for TE and Bespoke, Blocking32, O3,
Unroll, Fast for OP.

For all datasets, the use of the Bespoke strategy alone produces large energy savings.
Using the O3 strategy alone also produces notable energy savings. Combining Bespoke
with O3 typically results in further energy savings, although sometimes only if also com-
bined with at least one other strategy. For example, the combination of one or, especially,
both with Fast typically results in additional energy savings. Unroll in isolation offers a
modest improvement, but it was less effective in combination with other strategies. The
Bespoke strategy commonly uses a little more energy in its memory-related processing
but substantially less energy for other parts of processing, according to reports gathered
from RAPL. Table 12 shows selected energy uses (broken out by PP0 and DRAM) on the
ML256 dataset. These results reveal that the Bespoke strategy very effectively trades off
higher memory usage for overall power reduction. For example, in the case of Bespoke,
O3 for OP on the ML256 dataset, 2.42 J more DRAM energy is used, but an energy saving
of 42.92 J is achieved in PP0 (compared to O3 alone).

Use of Blocking and Pipeline often did not produce substantial energy savings.
Changes in block size had little impact in the performance of the Blocking approach.



Computers 2024, 13, 51 12 of 15

Table 11. Selected Genus3 curvature (energy usage) results. Bold values show the variant with the
lowest energy usage. Cell colouring indicates the degree of improvement (on a red–green scale).

OP TE

Baseline 17.21 J 6.99 J
O3 −24.78% −12.79%
Bespoke −49.47% −48.62%
Bespoke, O3 −55.35% −48.38%
Bespoke, O3, Fast −53.63% −50.34%
Bespoke, Blocking8, Unroll −46.15% −46.47%
Bespoke, Blocking8, Unroll, Fast −46.07% −47.28%
Bespoke, Blocking8, O3 −63.60% −45.35%
Bespoke, Blocking8, O3, Unroll −62.64% −45.57%
Bespoke, Blocking32, O3, Unroll, Fast −64.11% −48.77%
Bespoke, Blocking64, O3, Unroll, Fast −63.38% −49.38%
Bespoke, Pipeline −50.50% −43.32%
Bespoke, Pipeline, Blocking8 −45.54% −43.98%
Bespoke, Pipeline, Unroll −45.76% −45.46%
Bespoke, Pipeline, Blocking8, Unroll −45.50% −45.70%
Bespoke, Pipeline, Unroll, Fast −45.87% −47.21%
Bespoke, Pipeline, Blocking8, Unroll, Fast −46.02% −47.89%
Bespoke, Pipeline, O3 −54.01% −48.12%
Bespoke, Pipeline, Blocking8, O3 −53.92% −46.54%
Bespoke, Pipeline, O3, Unroll −56.34% −47.06%
Bespoke, Pipeline, Blocking8, O3, Unroll −57.27% −47.63%
Bespoke, Pipeline, O3, Unroll, Fast −58.03% −49.36%
Bespoke, Pipeline, Blocking8, O3, Unroll, Fast −63.41% −49.13%

Table 12. A selection of ML256 energy uses of OP.

PP0 DRAM

Baseline 136.25 J 3.70 J

O3 102.72 J 3.26 J

Bespoke, O3 59.80 J 5.64 J

Bespoke, Unroll 75.57 J 6.06 J

Bespoke, O3, Unroll, Fast 59.15 J 5.62 J

Bespoke, Pipeline, Blocking8, O3, Unroll, Fast 59.38 J 5.64 J

4.5. Accuracy Considerations

For some codes, the use of certain instruction optimisation settings, in particular
mathematics-based optimisation settings, can affect the accuracy of results. To test if our
strategies incurred such effects, we compared the outputs of the different methods on the
ML256 dataset. In summary, our finding is that the optimisations used in our strategies
appear to not meaningfully degrade accuracy for gradients or curvatures, as discussed next.

For the gradient determination on the ML256 dataset, for all but one of the gradient
methods the most energy-efficient realisation had no difference in gradient values versus
the baseline realisation. For the one that did differ, the difference was approximately
1 × 10−16.

For OP-based curvature determination on the ML256 dataset, the most energy-efficient
realisation had a maximal difference in curvature values of 1 × 10−12 versus the baseline
realisation. (That is, no single curvature value from energy-optimal OP differed by more
than 1 × 10−12 from the corresponding value in the baseline result.) For TE’s curvatures
for ML256, the most energy-efficient realisation’s values never had a difference (versus the
baseline) of more than 4 × 10−12.



Computers 2024, 13, 51 13 of 15

Based on these results on the ML256 dataset, we expect similar results in the general
case; the use of the energy optimisation approaches here can enable achievement of more
power-optimal volume data analysis and visualisation apparently without a meaningful
impact on accuracy.

4.6. Analyses

The Bespoke strategy produced, relative to the other strategies, the most significant
energy savings. To determine some of the underlying causes of this occurrence, we explored
aspects of its behaviour via Intel’s VTune tool. The report and analysis using VTune here is
based on a run of the OP curvature determination on the ML256 dataset.

In particular, we found that the Bespoke strategy was able to utilise the memory access
capability of the system more effectively. On this CPU, the maximum memory bandwidth
is 20 GB/s. OP using Bespoke and O3 together utilised a maximal bandwidth of 14 GB/s,
whereas OP using O3 alone utilised a maximal bandwidth of just 6.7 GB/s. Additionally,
for these scenarios the average bandwidths utilised, respectively, were 7.96 GB/s and
1.69 GB/s.

Additionally, OP using Bespoke and O3 together incurred approximately a factor-
of-four improvement in the number of loads and stores incurred by OP using O3 alone.
Specifically, OP using Bespoke and O3 incurred 4.7 × 109 loads and 1.6 × 109 stores. OP
with O3 incurred 17.7 × 109 loads and 6.2 × 109 stores.

Thus, the Bespoke strategy has a major benefit of effectively organising and staging
the data to allow much more optimal use of the memory channel, decreasing both time and
energy consumption.

5. Conclusions and Future Work

This study has considered the energy usage for computing two descriptors, gradients
and curvatures, that have been widely utilised in volume data analysis and rendering (e.g.,
in DVR). Several approaches for potentially reducing energy usage in those computations
were also described and explored. Some approaches, including the Bespoke approach,
which aims to decrease energy usage by organising memory accesses associated with
convolution in a cache-efficient manner, along with the Pipeline and Blocking approaches,
are applicable only to the curvature determination process. Of these, the Bespoke approach
was among the most successful and was employed by all of the most energy-efficient
curvature determination variants. The O3, Unroll, and Fast approaches are applicable
to both curvature determination and gradient estimation. Of these, the O3 and Fast
approaches were among the most successful when applied to curvature determination,
with all of the most energy-efficient curvature determination variants employing both O3
and Fast. In the case of gradient estimation, the Fast and Unroll strategies in combination
may be a suitable general purpose choice.

In gradient descriptor computation, an approximately 20% energy saving was achieved
by the approaches investigated here. In curvature descriptor computation, approximately a
factor-of-two energy saving was achieved by the approaches. Given that the work was car-
ried out in C/C++, already an energy-efficient environment [25], these results are especially
significant. In summary, the findings here could be employed in the form of energy-
efficient routines called by volume analysis or rendering tasks, providing widespread
general benefit.

As the current work has focused on computation on CPUs, one unexplored area that
could be considered in future work is the energy consumption of gradient and curvature de-
scriptor computation on GPUs. For example, computation on Nvidia GPUs is one suitable
focus, as recent work has reported [15] that the NVidia Management Library (NVML) API
allows quite accurate power consumption determination (i.e., within 5% of actual usage),
at least on Fermi-class and newer GPUs (n.b., power consumption determination using
the built-in power sensor on earlier Nvidia GPUs, such as Tesla-class GPUs, may be less
accurate, according to a report by Burtscher et al. [34]).



Computers 2024, 13, 51 14 of 15

Author Contributions: Methodology, J.D.H. and T.S.N.; Software, J.D.H. and T.S.N.; Investigation,
J.D.H. and T.S.N.; Writing—original draft, J.D.H. and T.S.N.; Writing—review & editing, J.D.H. and
T.S.N.; Visualization, J.D.H. and T.S.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tarner, H.; Bruder, V.; Frey, S.; Ertl, T.; Beck, F. Visually Comparing Rendering Performance from Multiple Perspectives.

In Proceedings of the Symposium on Vision, Modeling, and Visualization’22, Konstanz, Germany, 27–30 September 2022;
pp. 115–125.

2. Alharbi, N.; Chavent, M.; Laramee, R.S. Real-Time Rendering of Molecular Dynamics Simulation Data: A Tutorial. In Proceedings
of the Computer Graphics and Visual Computing (CGVC) ’17, Manchester, UK, 14–15 September 2017; Wan, T.R., Vidal, F., Eds.;
The Eurographics Association: Munich, Germany, 2017. [CrossRef]

3. Mitra, S.; Banerjee, S.; Hayashi, Y. Volumetric Brain Tumour Detection from MRI Using Visual Saliency. PLoS ONE 2017, 12,
e0187209. [CrossRef] [PubMed]

4. Ray, H.; Pfister, H.; Silver, D.; Cook, T. Ray Casting Architectures for Volume Visualization. IEEE Trans. Vis. Comput. Graph. 1999,
5, 210–223. [CrossRef]

5. Xu, J.; Thevenon, G.; Chabat, T.; McCormick, M.; Li, F.; Birdsong, T.; Martin, K.; Lee, Y.; Aylwar, S. Interactive, in-browser
Cinematic Volume Rendering of Medical Images. Comput. Methods Biomech. Biomed. Engg. Imaging Vis. 2022, 11, 1019–1026.
[CrossRef] [PubMed]

6. Brownlee, C.; DeMarle, D. Chapter 45. Fast Volumetric Gradient Shading Approximations for Scientific Ray Tracing. In Ray
Tracing Gems II; Marrs, A., Shirley, P., Wald, I., Eds.; Apress: Berkeley, CA, USA, 2021.

7. Zorrilla, F.; Sappl, J.; Rauch, W.; Harders, M. Accelerating Surface Tension Calculation in SPH via Particle Classification and
Monte Carlo Integration. In Proceedings of the Computer Graphics and Visual Computing (CGVC)’19, Bangor, UK, 12–13
September 2019; Vidal, F.P., Tam, G.K.L., Roberts, J.C., Eds.; The Eurographics Association: Munich, Germany, 2019. [CrossRef]

8. Colombo, A.; Cusano, C.; Schettini, R. 3D Face Detection using Curvature. Pattern Recognit. 2006 39, 444–455. [CrossRef]
9. Wein, W.; Roeper, B.; Navab, N. 2D/3D Registration based on Volume Gradients. In Proceedings of the SPIE 5747 Medical

Imaging’05: Image Processing, San Diego, CA, USA, 29 April 2005; pp. 144–150.
10. Sun, J.; Lenz, D.; Yu, H.; Peterka, T. MFA-DVR: Direct Volume Rendering of MFA Models. arXiv 2022, arXiv:2204.11762.
11. Hauenstein, J.D.; Newman, T.S. Strategies for More Energy Efficient Volume Analysis and Direct Volume Rendering Descriptor

Computation. In Proceedings of the Computer Graphics & Visual Computing (CGVC)’23, Wales, UK, 14–15 September 2023.
12. Faludi, B.; Zentai, N.; Zelechowski, M.; Zam, A.; Rauter, G.; Griessen, M.; Cattin, P.C. Transfer-Function-Independent Acceleration

Structure for Volume Rendering in Virtual Reality. In Proceedings of the High-Performance Graphics, Virtual, 6–9 July 2021.
13. Kindlmann, G.; Whitaker, R.; Tasdizen, T.; Moller, T. Curvature-based transfer functions for direct volume rendering: Methods

and applications. In Proceedings of the IEEE Visualization, Seattle, WA, USA, 19–24 October 2003; pp. 513–520. [CrossRef]
14. Hauenstein, J.D.; Newman, T.S. Descriptions and evaluations of methods for determining surface curvature in volumetric data.

Comput. Graph. 2020, 86, 52–70. [CrossRef]
15. Jay, M.; Ostapenco, V.; Lefèvre, L.; Trystram, D.; Orgerie, A.C.; Fichel, B. An experimental comparison of software-based power

meters: Focus on CPU and GPU. In Proceedings of the CCGrid 2023-23rd IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing, Bangalore, India, 1–4 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–13.

16. Laplante, P.; Voas, J. “Frameworking” Carbon-Aware Computing Research. Computer 2023, 56, 105–108. [CrossRef]
17. Thiyagalingam, J.; Walton, S.; Duffy, B.; Trefethen, A.; Chen, M. Complexity Plots. Comput. Graph. Forum 2013, 32, 111–120.

[CrossRef]
18. Wood, B.A.; Lee, J.K.; Maskey, M.; Newman, T.S. Higher Order Approximating Normals and their Impact on Isosurface Shading

Accuracy. Mach. Graph. Vis. 2010, 19, 201–221.
19. Henderson, P.; Hu, J.; Romoff, J.; Brunskill, E.; Jurafsky, D.; Pineau, J. Towards the Systematic Reporting of the Energy and Carbon

Footprints of Machine Learning. J. Mach. Learn. Res. 2020, 21, 1–43.
20. Weaver, V.M.; Johnson, M.; Kasichayanula, K.; Ralph, J.; Luszczek, P.; Terpstra, D.; Moore, S. Measuring Energy and Power

with PAPI. In Proceedings of the 41st International Conference on Parallel Processing Workshops, Pittsburgh, PA, USA, 10–13
September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 262–268.

21. Browne, S.; Dongarra, J.; Garner, N.; Ho, G.; Mucci, P. A Portable Programming Interface for Performance Evaluation on Modern
Processors. Int. J. High Perform. Comput. Appl. 2000, 14, 189–204. [CrossRef]

22. Seng, J.S.; Tullsen, D.M. The Effect of Compiler Optimizations on Pentium 4 Power Consumption. In Proceedings of the
Seventh Workshop on Interaction between Compilers and Computer Architectures, Anaheim, CA, USA, 8 February 2003; IEEE:
Piscataway, NJ, USA, 2003; pp. 51–56.

http://doi.org/10.2312/cgvc.20171277
http://dx.doi.org/10.1371/journal.pone.0187209
http://www.ncbi.nlm.nih.gov/pubmed/29095877
http://dx.doi.org/10.1109/2945.795213
http://dx.doi.org/10.1080/21681163.2022.2145239
http://www.ncbi.nlm.nih.gov/pubmed/37377626
http://dx.doi.org/10.2312/cgvc.20191260
http://dx.doi.org/10.1016/j.patcog.2005.09.009
http://dx.doi.org/10.1109/VISUAL.2003.1250414
http://dx.doi.org/10.1016/j.cag.2019.11.003
http://dx.doi.org/10.1109/MC.2023.3240482
http://dx.doi.org/10.1111/cgf.12098
http://dx.doi.org/10.1177/109434200001400303


Computers 2024, 13, 51 15 of 15

23. Hirki, M.; Ou, Z.; Khan, K.N.; Nurminen, J.K.; Niemi, T. Empirical Study of Power Consumption of x86-64 Instruction Decoder.
In Proceedings of the USENIX Cool Topics in Sustainable Data Centers, USENIX, Santa Clara, CA, USA, 19 March 2016; pp. 1–6.

24. Vasilakis, E. An Instruction Level Energy Characterization of Arm Processors; Technical Report FORTH-ICS/TR-450; Foundation of
Research and Technology Hellas: Heraklion, Greece, 2015.

25. Pereira, R.; Couto, M.; Ribeiro, F.; Rua, R.; Cunha, J.; Fernandes, J.; Saraiva, J. Energy Efficiency across Programming Languages.
In Proceedings of the 10th ACM SIGPLAN International Conference on Software Language Engineering, Vancouver, BC, Canada,
23–24 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 256–267.

26. Macedo, J.; Abreu, R.; Pereira, R.; Saraiva, J. WebAssembly vesus JavaScript: Energy and Runtime Performance. In Proceedings
of the 2022 International Conference on ICT for Sustainability (ICT4S), Plovdiv, Bulgaria, 13–17 June 2022; IEEE: Piscataway, NJ,
USA, 2022; pp. 24–34.

27. Schöne, R.; Ilsche, T.; Bielert, M.; Velten, M.; Schmidl, M.; Hackenberg, D. Energy Efficiency Aspects of the AMD Zen 2
Architecture. In Proceedings of the 2021 IEEE International Conference on Cluster Computing (CLUSTER), Portland, OR, USA,
7–10 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 562–571.

28. Macedo, J.; Aloisio, J.; Gonçalves, N.; Pereira, R.; Saraiva, J. Energy Wars—Chrome vs. Firebox: Which Browser is More Energy
Efficient? In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, Melbourne,
Australia, 21–25 September 2020; ACM: New York, NY, USA, 2020; pp. 159–165.

29. Hauenstein, J.D.; Newman, T.S. Toward Energy Efficient Curvature in Range Images. In Proceedings of the 2022 IEEE International
Symposium on Multimedia (ISM), Naples, Italy, 5–7 December 2022; pp. 263–264.

30. Nardi, L.; Bodin, B.; Zia, M.; Mawer, J.; Nisbet, A.; Kelly, P.; Davison, A.; Luján, M.; O’Boyle, M.; Riley, G.; et al. Introducing
SLAMBench, a Performance and Accuracy Benchmarking Methodology for SLAM. In Proceedings of the 2015 IEEE International
Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 5783–5790.

31. Pal, T.; Bit, S.D. An Energy-Saving Video Compression Targeting Face Recognition of Disaster Victim. Multimed. Syst. 2021,
27, 1037–1057. [CrossRef]

32. Hauenstein, J.D.; Newman, T.S. First Considerations in Computing and Using Hypersurface Curvature for Energy Efficiency. In
Computer Science Research Notes 3301: Proceedings of WSCG 2023; UNION Agency: Plzen, Czech Republic, 2023; pp. 186–193.

33. Free Software Foundation. GCC 11.3 Manual, Section 3.11 Options that Control Optimization. 2022. Available online: http:
//gcc.gnu.org/onlinedocs/11.3.0/ (accessed on 5 February 2024).

34. Burtscher, M.; Zecena, I.; Zong, Z. Measuring GPU Power with the K20 Built-in Sensor. In Proceedings of the Workshop on
General Purpose Processing Using GPUs (GPGPU-7), Salt Lake City, UT, USA, 1 March 2014; pp. 28–36. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00530-021-00761-1
http://gcc.gnu.org/onlinedocs/11.3.0/
http://gcc.gnu.org/onlinedocs/11.3.0/
http://dx.doi.org/10.1145/2588768.2576783

	Introduction
	Background
	CPU Energy-Usage Measurement and Prior Studies Thereof
	Methods for Gradient Estimation
	Methods for Surface Curvature Determination

	Energy Optimisation Approaches
	Energy-Saving Approaches for Gradient Estimation
	Energy-Saving Approaches for Curvature Determination

	Experimental Setup and Results
	Test Conditions and Energy Measurement
	The Datasets and Visualisation
	Gradient Estimation
	Curvature Determination Results
	Accuracy Considerations
	Analyses

	Conclusions and Future Work
	References

