computers

Article

A U-Net Architecture for Inpainting Lightstage Normal Maps *

Hancheng Zuo !

check for
updates

Citation: Zuo, H.; Tiddeman, B. A
U-Net Architecture for Inpainting
Lightstage Normal Maps. Computers
2024, 13,56. https://doi.org/
10.3390/ computers13020056

Academic Editor: Mariofanna

Milanova

Received: 15 January 2024
Revised: 6 February 2024
Accepted: 12 February 2024
Published: 19 February 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Bernard Tiddeman

2,%

Department of Computer Science, University College London, London WCI1E 6BT, UK;
hancheng.zuo.23@ucl.ac.uk

2 Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, UK

* Correspondence: bpt@aber.ac.uk

This paper is an extended version of our paper published in Computer Graphics & Visual Computing 2023,
Wales, UK, 14-15 September 2023.

Abstract: In this paper, we investigate the inpainting of normal maps that were captured from a
lightstage. Occlusion of parts of the face during performance capture can be caused by the movement
of, e.g., arms, hair, or props. Inpainting is the process of interpolating missing areas of an image
with plausible data. We build on previous works about general image inpainting that use generative
adversarial networks (GANSs). We extend our previous work on normal map inpainting to use a
U-Net structured generator network. Our method takes into account the nature of the normal map
data and so requires modification of the loss function. We use a cosine loss rather than the more
common mean squared error loss when training the generator. Due to the small amount of training
data available, even when using synthetic datasets, we require significant augmentation, which
also needs to take account of the particular nature of the input data. Image flipping and inplane
rotations need to properly flip and rotate the normal vectors. During training, we monitor key
performance metrics including the average loss, structural similarity index measure (SSIM), and
peak signal-to-noise ratio (PSNR) of the generator, alongside the average loss and accuracy of the
discriminator. Our analysis reveals that the proposed model generates high-quality, realistic inpainted
normal maps, demonstrating the potential for application to performance capture. The results of this
investigation provide a baseline on which future researchers can build with more advanced networks
and comparison with inpainting of the source images used to generate the normal maps.

Keywords: lightstage; inpainting; U-Net

1. Introduction

Inpainting is a widely used image processing technique that involves filling in missing
or damaged regions of an image. It has a wide range of applications, such as restoring
damaged photographs [1], removing unwanted objects from images [2], and improving
image compression techniques [3]. In the field of medical imaging, inpainting has been used
to reconstruct images from partial scans [4], while in the film industry, it has been applied
for special effects and postproduction work [5]. In this study, we focus on inpainting
normal map facial data, a type of data generated from lightstage technology, which present
unique challenges due to their intricate surface detail representation.

Traditional inpainting techniques involve manually painting over missing areas with
color or texture information from surrounding regions [1]. However, this process can be
time-consuming and requires significant expertise [6].

In recent years, deep learning-based inpainting methods have emerged as a promising
alternative, showing remarkable performance in generating high-quality inpainted im-
ages [7]. These methods use convolutional neural networks (CNNs) to learn the mapping
between the input image and its missing regions, allowing them to fill in missing regions
with visually appealing results. The application of these methods to lightstage data, par-
ticularly normal maps, is less explored and forms the crux of our research. Normal maps

Computers 2024, 13, 56. https:/ /doi.org/10.3390/computers13020056

https:/ /www.mdpi.com/journal /computers

https://doi.org/10.3390/computers13020056
https://doi.org/10.3390/computers13020056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0009-0004-8029-974X
https://orcid.org/0000-0001-7570-1192
https://doi.org/10.3390/computers13020056
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13020056?type=check_update&version=1

Computers 2024, 13, 56

20f19

encode detailed surface normals of objects, offering rich information crucial for realistic
rendering in 3D modeling and digital restoration.

This study focuses on developing an image inpainting system for normal map facial
data acquired from a lightstage [8,9]. A lightstage uses a spherical arrangement of LED
lights to provide a variety of illumination patterns. Polarizing filters on some of the LEDs
and one of the cameras allow specular reflections to be eliminated from some images.
By capturing the specular and diffuse reflections under suitable lighting patterns, normal
maps for surface and subsurface scattering can be estimated, along with the diffuse ‘albedo’
(i.e., shading-free surface colors). This allows realistic rendering of facial models under
different lighting. Lightstage data have found various applications, including performance
capture [10], face analysis by synthesis [11], and facial image relighting [12]. Our study
leverages lightstage data, which provide comprehensive facial surface information through
normal maps, to enhance the inpainting process. These normal maps represent surface
normals as RGB values, offering a detailed depiction of facial topography critical for
accurate and realistic inpainting.

The inpainting algorithm is inspired by the context encoder model proposed by
Pathak et al. [13], which utilizes deep CNNs and generative adversarial networks (GANSs) [14]
to learn the reconstruction of missing image regions in an unsupervised manner. However,
unlike the original context encoder model, our approach employs a U-Net architecture for
the generator network, drawing upon the design proposed by Ronneberger et al. [15]. This
U-Net structure is instrumental in effectively capturing and reconstructing the contextual
information present in the surrounding regions of the image. Additionally, our model
incorporates elements of the deep convolutional generative adversarial network (DCGAN)
architecture proposed by Radford et al. [16], particularly in the design of the entire GAN
model, including both the generator and discriminator. A significant aspect of our method
is the simultaneous alternate training of the generator and discriminator, optimizing their
performance in the image inpainting task. The inpainting model uses contextual infor-
mation present in the surrounding regions to generate a plausible reconstruction of the
missing regions and is trained using a joint loss function that combines a reconstruction
loss and an adversarial loss.

In this study, the goal is to adapt the existing inpainting system to work with lightstage
data, in particular normal maps, directly. This poses a number of challenges, including the
lack of large-sized datasets needed for training deep learning (hence requiring extensive
augmentation); the need to account for the particular form of the data when applying data
augmentations such as flipping and rotation; and the adaptation of the loss functions to
properly account for the nature of the data.

This paper presents our model design, experimental results, and the conclusions
drawn from these results, offering valuable insights for subsequent work in the field of
deep learning-based image inpainting of normal maps. It is an extension of our conference
paper [17], in which we presented inpainting for lightstage-derived normal maps using a
GAN incorporating a ‘bow-tie” encoder-decoder network as the generator. Here we replace
the ‘bow-tie” network with a U-Net generator and present additional results comparing the
previous and new architecture, with significant improvements. In addition, we present addi-
tional results and evaluation of the network, and we have improved the accompanying code
base, which is available from https:/ /github.com/HanchengZuo/Inpainting-NormalMaps
(accessed on 10 January 2024).

2. Data Preparation

Our work uses the SFSNet dataset [18] of only 300 training and 105 testing normal
map images. This is a synthetic dataset generated from rendered 3D facial models. Such a
small training set is insufficient for effectively training a deep CNN, so data augmentation
is required. Flipping, rotating, and zooming images are commonly used approaches to data
augmentation, but care needs to be taken when dealing with normal map data.

https://github.com/HanchengZuo/Inpainting-NormalMaps

Computers 2024, 13, 56

30f19

When flipping or rotating a standard RGB image, the colors sampled from the input
image location are written to the output location unchanged. With normal maps, the
sampled normal vector additionally needs to be flipped or rotated to match the global
image transformation. To achieve this, we apply an additional matrix transform to the
sampled normals.

For the particular dataset used, we also apply some additional operations so that the
resulting images more closely resemble the unaugmented images. The background values
in the training set are allocated the RGB values (0,0,0), which become (-1, -1, 1)/ ﬂB)
when converted to a normal vector. When the normal map is flipped or rotated, this
vector is converted to a different direction. We move these background vectors back
to (=1, -1, —1)/+/(3) by identifying them using the (flipped /rotated /zoomed) mask to
identify the background locations. Points around the edge of the face model often show
artifacts where the uncorrected background is still showing, so we additionally erode the
mask slightly to remove such artifacts. Examples of original and augmented images are
shown in Figure 1.

Original

Original

-
e

Original

Flipped

Rotated Rotated Flipped

Rotated Rotated Flipped

3

Rotated

Rotated Flipped

Figure 1. Examples of augmentations, rows from left to right: original; flipped; random zoom and
rotation; flipped with (different) random zoom and rotation. The colours show the red, green and
blue (RGB) values stored, which are mapped on to (x,y,z) directions.

Considering the need for a fair evaluation across all comparative experiments, we
meticulously prepared the dataset in advance. For the specific dataset used, we merged
the original training and testing images, resulting in a total of 405 images. These images
were then augmented by (a) flipping all images, and (b) randomly rotating by £20° and
zooming randomly by +£10%, which increased the total number of training normal map
images to 1620. Given that the original dataset had distinct distribution characteristics,
capturing various individuals from different angles, we opted for stratified sampling over
random sampling. This approach was employed to select images for the training, validation,
and testing datasets, thereby ensuring a diverse representation in each dataset category.
Subsequently, we divided these images into training, validation, and testing datasets in an

Computers 2024, 13, 56

40f19

8:1:1 ratio, resulting in our training dataset having 1296 images and both the validation
and testing datasets having 162 images each.

In order to train the system, areas were masked using randomly generated irregular
mask channels. The functions for generating mask channels were devised to accept pa-
rameters for the number of masks and mask dimensions. We trained three systems using
different masking styles: (a) random lines of varying thickness and directions, (b) randomly
scattered small circles, and (c) a randomly located single large circular area. For the line
masks, a ‘size’ variable was randomly generated that dictated the maximum line thickness
in the mask and used the cv2.line method from the OpenCV library to draw random
lines, with intensity values representing occluded regions. A similar approach was used
for generating the scattered-circle and single-circle masks. The generated mask channels
were normalized to maintain consistency with the preprocessed training data, aiding in
simulating real-world occlusions.

A function performed element-wise multiplication of raw images and mask channels
to create masked images with pixel values close to 0 in the masked areas and original
pixel values in the unmasked areas. The generated masks were applied to the original
images using this function to remove the masked areas, and then the masked images were
concatenated with the corresponding mask channels. This provided the necessary input
data for training the generator to discern missing image areas that required filling. These
masked image data served as a learning base for the inpainting GAN model, enabling its
ability to handle complex inpainting scenarios.

3. Model Design
3.1. Model Architecture Selection

In the context of image inpainting tasks, the generative adversarial network (GAN)
model, especially the deep convolutional generative adversarial network (DCGAN) variant,
offers a powerful and flexible architecture [16]. Alternative architectures like CycleGAN
were considered, but they were designed for the unpaired image translation problem,
whereas we are able to provide paired synthetic training data for our problem. They
were also found to pose unique challenges in the context of inpainting tasks, such as the
difficulty in maintaining spatial consistency and color coherence due to the absence of
paired training data [19]. Additionally, CycleGAN often requires more computational
resources and training time, which may not be feasible in many real-world applications [19].
Therefore, due to these complexities and in view of its superior performance in handling
image inpainting, the DCGAN architecture was selected.

3.2. Model Architecture Overview

The GAN architecture, as shown in Figure 2, consists of a generator, which is intended
to take as input corrupted images and produce uncorrupted images as output, and a
discriminator, which is trained to differentiate between real and fake images [14]. For
inpainting tasks, the generator takes masked images and mask channels as inputs and
produces inpainted images. These generated images are then evaluated by the discriminator.
The adversarial dynamics between the generator and discriminator facilitates the learning
of complex, high-dimensional distributions for generating realistic images.

Computers 2024, 13, 56

50f19

Encoder Decoder

Generator Loss = lambda_recon * Reconstruction Loss (CosSim) + lambda_adv * Adversarial Loss (BinCE)
Generator

Discriminator Loss = Real Loss + Fake Loss = — Y log(Real Output) — Y log(1-Fake Output)

Adversarial Discriminator

Figure 2. A schematic of a U-Net-based generative adversarial network (GAN) with skip connections,
showing the input and output image dimensions as 256 x 256 pixels and detailing the loss functions
for the generator and discriminator.

3.3. Implementation of Skip Connections in U-Net Architecture

The U-Net architecture, chosen for the generator model in our GAN, is particularly
suited for our image inpainting tasks, primarily due to its exceptional capability in cap-
turing and reconstructing complex contextual information. Drawing inspiration from the
method used in ‘Inpainting of Irregular Holes in a Manuscript using UNet and Partial
Convolution’ [20], the U-Net structure with skip connections enables effective handling
of the intricate details in normal maps, which is a key aspect of our project. These skip
connections are vital for the U-Net framework, allowing direct transfer of information
from early layers to deeper layers in the network. During encoding, various feature maps
are retained and later integrated during the decoding process, enabling the model to pre-
serve and utilize fine details lost during downsampling. This mechanism is particularly
beneficial for our task, as the accurate restoration of facial features from lightstage data
relies heavily on the preservation of minute details and textures. The U-Net’s proficiency
in detail preservation and contextual information reconstruction, as demonstrated in the
referenced study [20], makes it an ideal choice for our deep learning-based inpainting
approach, ensuring high-quality reconstructions of complex normal map data.

3.4. Activation Functions and Normalization Techniques

For the generator model optimized for normal map inpainting, the Leaky ReLU (rectified
linear unit) activation function is utilized within its convolutional layers. Leaky ReLU, which
allows a small gradient even for negative input values, aids in effective backpropagation,
mitigating the ‘dying ReLU’ problem and improving model learning efficiency [21].

Computers 2024, 13, 56

6 of 19

After the first convolutional layer, batch normalization is applied to stabilize the
training process, accelerate learning, and enhance the model generalization ability. By nor-
malizing the activations of the layer, batch normalization minimizes internal covariate shift,
an issue where the distribution of layer inputs changes during training, potentially slowing
down learning and leading to unstable training dynamics [22].

To ensure that the generated output represents a normal map, we use a custom layer,
the UnitNormalize layer. This layer normalizes the output vectors of the generator to have
unit length with respect to the L2 norm. Notably, the normalization operates across the
channels of the tensor, preserving the relative contribution of each channel within each
pixel. While the TensorFlow library does include its own Keras UnitNormalization layer,
we prefer to use a custom layer to give greater control over aspects such as the treatment of
very short/zero-length vectors by including a small constant for numerical stability and to
prevent division by zero.

3.5. Optimization Techniques

The model utilizes the Adam (adaptive moment estimation) optimization algorithm,
offering benefits like bias correction and adaptive learning rates [23]. Implemented via the
Keras API of TensorFlow with a learning rate of 1 x 107, it mitigates issues like oscillations
and overshooting during the optimization process.

3.6. Loss Function

The loss function for the generator consists of two main components: the reconstruc-
tion loss and the adversarial loss [24]. The reconstruction loss measures the difference
between the target images and the generated images, and the adversarial loss quantifies the
ability of the generator to deceive the discriminator. For reconstruction loss, we employ the
cosine similarity measure, which is more appropriate than the mean squared error (MSE)
in the context of normal vectors. While RGB values in traditional images lie in a Euclidean
space, making MSE a suitable error measure, normal vectors reside on the unit sphere.
Therefore, an error metric related to the angle between the vectors is more apt. The cosine
similarity provides this metric, effectively measuring the angular difference between the
generated and ground-truth normal vectors.

The reconstruction loss is calculated using the cosine similarity between the target
images and the generated images. Instead of minimizing the mean squared error, this
loss function aims to maximize the sum of scalar products between the generated and
ground-truth normal vectors across pixels. In the context of image inpainting, the cosine
similarity evaluates the cosine of the angle between the pixel values of the target and
generated images, and it can be formulated as

Yis1Yi- Ui 1)
\/E?:l vi \/E?:l 97

where y; is the pixel value of the target image, ; is the pixel value of the generated image,
and 7 is the total number of pixels in the image. Minimizing the above expression will
maximize the scalar products.

On the other hand, the adversarial loss is determined using cross-entropy, a widely
used loss function for classification tasks [24]. In the adversarial context, this cross-entropy
measures the ability of the generator to produce images that the discriminator classifies as
real, and it can be formulated as

Reconstruction Loss =1 —

n
Adversarial Loss = —

yilog(9i) + (1 — y;)log(1 — ;) (2)
i=1
where y; is the true label of the image, and 7; is the label predicted by the discriminator.
The total generator loss combines the reconstruction loss and the adversarial loss, with
Areconstruction aNd Agdversarial S€rving as control weights for each component:

Computers 2024, 13, 56

7 of 19

Generator Loss = Ayeconstruction X reconstruction Loss

)

~+ Aadversarial X Adversarial Loss

The choice of the lambda parameters Areconstruction and Aadversarial, Which determine
the balance between the importance of each loss component, was based on a brief experi-
mentation with some combinations of integer and noninteger values that were multiples
of 10. We found that combinations of integer weights yielded smoother performance
and led to integer values when combined. The final settings emphasize the importance
of reconstruction loss, with Areconstruction Set to 100.0 and Aagyersarial to 1.0. This specific
configuration assists in monitoring changes in loss size during training, facilitating easier
analysis without affecting the desired balance between the reconstruction and adversar-
ial loss components; while these values proved effective in our study, a more detailed
evaluation might optimize them further.

The generator seeks to minimize this total loss, leading to the generation of images that
are visually similar to the target images and able to deceive the discriminator. By optimizing
this composite loss function, the generator can produce high-quality inpainted images that
are convincing to both the human eye and the discriminator, making it an effective solution
for various inpainting tasks and input sizes.

3.7. Training and Evaluation

The training process of the generative adversarial network (GAN) model involves
updating the generator and the discriminator in tandem to refine the performance of both
components. Unique to our approach is the method of passing a list of batches for each
training iteration rather than training with a single, larger batch size. This technique differs
from simply increasing the batch size as it allows for the accumulation of gradients across
multiple smaller batches within a list before updating both the generator and discriminator
simultaneously. This method, by iterating over the entire list of batches before each update,
provides the benefits of larger batch training, such as more stable gradient estimates and
smoother training updates, without the high memory requirements of a single large batch.

During each training iteration, the generator receives a batch of masked images and
corresponding mask channels with the goal to generate realistic image content in the
masked regions. Subsequently, the discriminator is presented with both the real training
images and the images generated by the generator for differentiation. This alternating
training procedure ensures continuous improvement in the ability of the generator to create
plausible images and the proficiency of the discriminator in differentiating real images
from those generated.

The training process is iterated for a number of epochs, during which the performance
of the model is continuously monitored on the validation dataset. The model is saved
only when there is a decrease in the validation dataset loss, ensuring that the saved model
represents the best performance on the validation dataset. This strategy incorporates early
stopping based on the loss observed on the validation dataset. During each epoch, the
performance of the model is evaluated using key metrics such as the losses of the generator
and discriminator, structural similarity index measure (SSIM), peak signal-to-noise ratio
(PSNR), and the accuracy of the discriminator. If the loss on the validation dataset does
not improve for a specified number of epochs, the training is halted to prevent overfitting.
To safeguard against infinite training loops, a maximum epoch limit is set. Additionally,
regular visual assessments are conducted to provide qualitative insights into the learning
progress and the overall performance of the model. After the training is complete, the saved
model is evaluated on the test dataset, which has been completely untouched and reserved
exclusively for this final assessment, to comprehensively evaluate its performance. This
ensures that the effectiveness of the model is measured against entirely new and unseen
data, providing a true test of its generalization capabilities.

In summary, the design of the model, including the chosen architecture, activation
functions, normalization techniques, and optimization algorithm, contributes collectively to

Computers 2024, 13, 56

8 of 19

its performance. The iterative and alternating training strategy, enhanced with continuous
monitoring of validation dataset loss and model saving based on performance improve-
ment, ensures continual refinement of the performance of the model. The final evaluation
on the test dataset allows for a comprehensive assessment of the model’s suitability for
image inpainting tasks.

4. Evaluation and Results

Comparative evaluations are crucial for understanding the performance of generative
models in a variety of scenarios. These evaluations are instrumental in highlighting the
strengths and weaknesses of the models, as well as identifying potential avenues for
improvement. This study conducts a comprehensive comparative analysis of generative
models under five distinct types of masks: irregular lines mask, single large blob mask,
scattered smaller blobs mask, rotating large stripe mask, and edge crescent mask. The
addition of the rotating large stripe and edge crescent masks is particularly relevant to
actual real-life cases of missing or damaged regions of a face image. This analysis contrasts
traditional bow-tie-like architectures with U-Net architectures featuring skip connections
and scrutinizes these models under the specific mask conditions. This research further
explores different training methodologies for generative adversarial networks (GANSs),
including standalone generator training, synchronous updates of both generator and
discriminator, and a cyclic approach of training the generator to convergence followed by
the discriminator. Moreover, the impact of varying weight ratios between reconstruction
loss and adversarial loss in the generator’s loss function on the training process is examined.
The analysis concludes with a focus on the influence of mask presence in the model input,
particularly emphasizing the irregular lines mask.

Principal metrics for assessing performance include the cosine similarity loss [25], the
structural similarity index (SSIM) [26], the peak signal-to-noise ratio (PSNR) [27], and the
accuracy of the discriminator, along with the evaluations of training time and testing time.
All comparative analyses maintain consistency in other parameters. The cosine similarity
loss, configured with ‘axis = 3, facilitates the capability of the model to compare the
direction of normal vectors at the pixel level. This metric yields values between —1 and 1,
where values closer to —1 denote greater similarity and those approaching 1 indicate greater
dissimilarity. Such a comprehensive evaluation significantly advances the understanding
of generative models, providing valuable insights for researchers aiming to enhance these
models for various applications. This study delves into the broader impacts of architectural
choices, training methodologies, and loss function configurations in the generative process,
while also exploring how the inclusion of masks influences the inpainting process. This
holistic approach allows for a deeper understanding of how generative models can be fine-
tuned not just for specific mask types but also in response to a range of design and training
considerations, highlighting the multifaceted nature of model optimization and application.

4.1. Comparative Evaluation of U-Net and Bow-Tie-like Architectures

In this experiment, we compare the performance of two generator architectures: the
bow-tie generator, as shown in Figure 3, and the U-Net structured generator, depicted in
Figure 2, which incorporates additional skip connections between matching input and
output layers. The comparative results for the five mask types, including metrics such
as loss, SSIM, PSNR, and discriminator accuracy, are presented in Table 1, while Table 2
showcases the evaluation of training and testing times. The training performance of these
two architectures across different masks is demonstrated in Figures 4 and 5, highlighting
the superior performance of the U-Net architecture, while Figure 6 provides an example of
the generator training and SSIM variations over the training process for an irregular lines
mask on both the U-Net and bow-tie-like models, evaluated on a validation dataset.

Computers 2024, 13, 56

90f19

Encoder Decoder

@
m o,
26 ‘7 2
e . Y
7

(com)
(cony)

Generator Loss = lambda_recon * Reconstruction Loss (CosSim) + lambda_adv * Adversarial Loss (BinCE)

Generator

| real
fake

Discriminator Loss = Real Loss + Fake Loss =~ Ylog(Real Output) — Ylog(1-Fake Output)

Adversarial Discriminator

Figure 3. A schematic of a bow-tie-like-based generative adversarial network (GAN), showing the
input and output image dimensions as 256 x 256 pixels and detailing the loss functions for the
generator and discriminator.

Table 1. Comprehensive comparison of U-Net and bow-tie-like architectures across irregular lines mask,
scattered smaller blobs mask, single large blob mask, rotating large stripe mask, and edge crescent mask.

Mask Type Model Loss SSIM PSNR Disc Acc (%)
Irreular lines U-Net —0.9936 0.1250 11.5695 37.50
8 Bow-tie-like —0.9665 0.1161 11.5195 50.00
U-Net —0.9983 0.1301 11.5513 7.10
Scattered smallerblobs 0 o like —0.9674 0.1540 11.6088 4858
Sinele laree blob U-Net ~0.9986 0.1205 11.5305 1.99
gle larg Bow-tie-like —0.9639 0.1509 11.6056 50.00
Rotatine laree stri U-Net ~0.9947 0.1276 11.5494 49.72
otating farge stripe g w-tie-like —0.9657 0.1441 11.5916 4347
Ed . U-Net ~0.9913 0.1252 11.5450 48,58
&€ crescen Bow-tie-like —0.9604 0.1566 11.5807 48.58

Table 2. Comparison of training and testing times for U-Net and bow-tie-like architectures across
irregular lines mask, scattered smaller blobs mask, single large blob mask, rotating large stripe mask,
and edge crescent mask. The models were trained on a dataset of 1296 images and tested on a dataset
of 162 images, with a batch size of 16.

Mask Type Model Training Time (s) Testing Time (s)
Irresular lines U-Net 4895.33 3.48
& Bow-tie-like 3488.38 146
U-Net 9729.63 3.51
Scattered smaller blobs Bow-tie-like 4530.37 1.50
. U-Net 7752.97 3.48
Single large blob Bow-tie-like 3755.90 145
Rotating large stripe U-Net 11,045.99 4.00
& large strp Bow-tie-like 11,202.25 1.89
Ed . U-Net 5517.66 3.61
g€ crescen Bow-tie-like 2874.90 1.49

Computers 2024, 13, 56

10 of 19

Raw Test Img Masked Test Img Pred Test Img Pred Only Masked Reg.

U-Net

Bowtie-like

U-Net

Bowtie-like

U-Net

Bowtie-like

Figure 4. Performance comparison of U-Net and bow-tie-like model structures across three mask
types. Each set of two rows represents a different mask type, with U-Net results in the top row and
bow-tie-like results in the bottom row of each set. From top to bottom, the first set is for the irregular
lines mask, the second set is for the scattered smaller blobs mask, and the third set is for the single
large blob mask. Within each row, from left to right, the images compare the raw image, masked
image, predicted image, and predicted image in the masked region only.

Computers 2024, 13, 56 11 of 19

Raw Test Img Masked Test Img Pred Test Img Pred Only Masked Reg.

U-Net

Bowtie-like

U-Net

Bowtie-like

Figure 5. Performance comparison of U-Net and bow-tie-like model structures across two types of
masks, particularly relevant to real-life cases of missing or damaged regions in face images. Each set of
two rows represents a different mask type, with U-Net results in the top row and bow-tie-like results in
the bottom row of each set. From top to bottom, the first set is for the rotating large stripe mask, and the
second set is for the edge crescent mask. Within each row, from left to right, the images compare the raw
image, masked image, predicted image, and predicted image in the masked region only.

U-Net (Test - Generator Loss and SSIM) Bowtie-Like (Test - Generator Loss and SSIM)
7004 F F0.14
0.16 1000 4
600 4 F0.12
F0.14 800 4
500 4 f0.10
r0.08
400 s , =
g o128 600 z
S A3 A
3004 f0.06
4001 0.04
200 020
f0.02
100 2004
f0.08
f 0.00
0 25 50 75 100 125 150 175 0 50 100 150 200 250 300
Epochs Epochs

Figure 6. During the initial epochs of testing on the irregular lines mask, the U-Net model (left) and the
bow-tie-like model (right) exhibit distinct performance characteristics. The generator loss, indicated in
green, and the SSIM, represented in purple, evolve differently across the epochs for each model.

Computers 2024, 13, 56

12 of 19

Qualitatively, Figures 4 and 5 support these findings. The U-Net’s reconstructions
show a higher fidelity in preserving facial features and contours, even in areas that were
obscured by various mask types. The bow-tie-like model, while capable of generating
coherent images, exhibits less precision in restoring intricate details, particularly under the
challenging conditions imposed by masks such as scattered smaller blobs, a single large
blob, and those simulating real-life cases.

The performance plots in Figure 6 illustrate a significant difference in the convergence
rate between the two architectures. The U-Net model demonstrates a much faster con-
vergence compared to the bow-tie-like model, with the loss decreasing more rapidly and
substantially. This suggests that the U-Net’s architecture is more efficient at learning the
inpainting task, potentially due to the beneficial effects of skip connections that facilitate
the flow of gradient and information throughout the network during training.

Conversely, while the bow-tie-like model consistently achieves a discriminator ac-
curacy of 50% for all mask types as presented in Table 1, this uniformity in performance
may not necessarily indicate a robust generative capability. Such consistent accuracy could
suggest overfitting or a lack of complex challenges from the discriminator, which might not
be adequately testing the generative capabilities of the model. In comparison, the U-Net
model demonstrates much lower discriminator accuracies (37.50% for irregular lines, 7.10%
for scattered smaller blobs, and 1.99% for a single large blob), suggesting a more balanced
and potentially healthier adversarial training environment. This stark contrast between
the two models’ discriminator accuracies underscores the importance of considering mul-
tiple performance metrics, rather than relying solely on discriminator accuracy, to assess
generative model effectiveness.

Table 2 presents a comparison of the U-Net and bow-tie-like models’ efficiency, mea-
sured in training and testing times across different mask types. The U-Net model generally
requires more training time, indicative of its intricate architecture that can handle complex
inpainting tasks. Despite this, the testing times remain within a practical range, suggesting
its suitability for real-time applications. In particular, the rotating large stripe and edge
crescent masks show that while the U-Net’s training is longer, the bow-tie-like model’s
training time is not significantly lower, and its quick testing phase could be advantageous
for rapid deployment.

In summary, the U-Net’s structured generator demonstrates superior performance in
handling complex mask patterns, delivering better image quality and more stable learning
dynamics. The bow-tie-like generator, while effective, may benefit from further tuning
to prevent overfitting and to improve the diversity of its outputs. The consistency of the
U-Net’s performance across various mask types and metrics underscores its versatility and
effectiveness in the domain of image inpainting.

4.2. Comparative Analysis of Different Training Configurations

In this experiment, we evaluate the effectiveness of three different training methodolo-
gies for U-Net structured networks in the context of image inpainting tasks using irregular
lines masks. The three methods are ‘Generator-Only’, where only the generator is trained
without the adversarial loss from a discriminator; ‘Simultaneous Generator and Discrim-
inator’, which involves training both components together with a reconstruction to an
adversarial loss ratio of 100:1; and ‘Cyclic Generator-Discriminator Training’, maintaining
the same loss ratio as the simultaneous approach. For a fair comparison, each model is
assessed using the same dataset and mask inputs, ensuring consistent conditions for all
performance metrics. The results, detailing the averaged outcomes across key indicators
for these approaches, are presented in Table 3, with additional insights into the compu-
tational demands of each method outlined in Table 4. Furthermore, Figure 7 visually
demonstrates the example results from each training configuration, providing insights into
the effectiveness of each method.

The ‘Generator-Only” method presents an interesting case where the absence of ad-
versarial loss does not significantly hinder the model’s performance based on the LOSS

Computers 2024, 13, 56

13 of 19

and SSIM metrics. These metrics do not necessarily capture the full complexity of the
image textures and nuances, as demonstrated by Parthak et al. [13] for the RGB image case,
which adversarial training can improve. This suggests that for certain inpainting tasks, the
adversarial component may not be critical for achieving acceptable results.

Table 3. Comparative analysis of different GAN training configurations.

Training Configuration LOSS SSIM PSNR Disc Acc (%)
Only generator —0.9946 0.1618 11.6132 -
Simultaneous generator and discriminator —0.9944 0.1328 11.5730 20.45
Generator to convergence, then discriminator ~ —0.9903 0.1435 11.6100 40.34

Table 4. Evaluation of training and testing times across different GAN training configurations. The
models were trained on a dataset of 1296 images and tested on a dataset of 162 images, with a batch

size of 16.
Training Configuration Training Time (s) Testing Time (s)
Only generator 3784.86 3.78
Simultaneous generator and discriminator 5564.94 3.85
Generator to convergence, then discriminator 1857.34 3.82
Raw Test Img Masked Test Img Pred Test Img Pred Only Masked Reg.

Generator-Only

Simultaneous Gen&Disc

Q
Q2
(&)
e}

c

[}
(U]
L
©

>
o)

Figure 7. Comparative performance of three training configurations of a GAN. The top row depicts
results when only the generator is trained. The middle row shows outcomes for simultaneous training
of both the generator and discriminator. The bottom row presents results from cyclic training, where
the generator is trained to convergence first, followed by the discriminator.

However, the incorporation of adversarial training in the ‘Simultaneous Generator
and Discriminator” method appears to influence the stability of the training, as shown by
the variation in PSNR and a modest discriminator accuracy of 20.45%. This configuration’s
plots in Figure 8 (top) reveal a rapid initial decrease in generator loss, followed by a plateau,
which is concurrent with the stabilization of SSIM and PSNR values over epochs, indicating
a quick convergence to a suboptimal solution that does not improve significantly with
further training.

Computers 2024, 13, 56 14 of 19

The ‘Cyclic Generator-Discriminator Training” approach exhibits a marked improve-
ment in discriminator accuracy to 40.34%, as seen in Table 3. Notably, as Table 4 illustrates,
this method also presents a more efficient training regime, requiring less time than the
simultaneous method, which suggests that pretraining the generator creates a more effective
adversarial feedback loop, potentially allowing for continued refinement over epochs. In-
deed, the corresponding plots (bottom in Figure 8) illustrate a resistance to declines in SSIM
and PSNR during training, with a more gradual reduction in generator loss and consistent
enhancement in both SSIM and PSNR metrics. Despite these quantitative gains, the quali-
tative evaluation indicates that the improved numbers do not necessarily translate into a
substantial visual enhancement, suggesting that while discriminator accuracy is important,
it may not be the sole determinant of perceived image quality in inpainting tasks.

U-Net (Test - Generator Loss and SSIM) U-Net (Test - Generator Loss and PSNR)

F11.6

o4 [1s

o©
S

o o °
& PS 3
S
2
&
o ° °
& S 3

PSNR

F11.3

Generator-Only
Loss
o

o©
N

<)
b

0.08

0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500
Epochs Epochs
U-Net (Valid - Generator Loss and SSIM) U-Net (Valid - Generator Loss and PSNR)

r0.16

[11.6

PSNR

30 4

204

Simultaneous Gen& Disc
Loss

w o ~
S 3 S
)
IS
w o ~
) 3 S

0.08 F11.1

0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Epochs Epochs
U-Net (Valid - Generator Loss and SSIM) U-Net (Valid - Generator Loss and PSNR)
0.16
11.6
80 Fo.14 80
g 0.12 11.4
fa) 60 60
] 0.10
[= «
(@] 40 A 40 A
© I 0.06
5 11.0
F0.04
20 20
F0.02
10.8
01— v r T r - 0.00 0 r r T r :
0 50 100 150 200 250 0 50 100 150 200 250
Epochs Epochs

Figure 8. The figure presents three sets of training configurations for GANSs: the top row for
‘Generator-only’ training, the middle for ‘Simultaneous Generator and Discriminator’, and the
bottom for ‘Generator to Convergence, then Discriminator’, each displaying generator loss (in green)
and image quality metrics SSIM/PSNR (in purple).

Computers 2024, 13, 56

15 of 19

4.3. Impact of Lambda Reconstruction and Lambda Adversarial Ratios on Generator Performance
in GANs

In examining the impact of varied Aypconstruction anNd Aggyersariar Tatios on the perfor-
mance of generative adversarial networks (GANSs), our experimental results, as depicted
in Table 5 and Figure 9, present insightful observations. When A,econstruction Was set ex-
ceedingly high at 999 with A jpers0ria1 = 1, the generator’s LOSS was marginally the lowest
at —0.9968, and SSIM was at its peak of 0.1594, suggesting a more accurate structural
similarity to the original images. However, this configuration only yielded a moderate
discriminator accuracy of 49.72%, hinting at a potential overfitting towards reconstruction
fidelity at the expense of adversarial robustness.

Table 5. Comparative analysis of generator performance with varied A,.construction ad Aggyersarial ratios.

Configuration LOSS SSIM PSNR Disc Acc (%)
Avecon = 999, Apgy =1 —0.9968 0.1594 11.5970 49.72
Arecon =100, Agq, =1 —0.9958 0.1238 11.5672 37.50
Avecon = 10, A5, =1 —0.9972 0.1234 11.5488 48.86

Raw Test Img Masked Test Img Pred Test Img

Pred Only Masked Reg.

Arecon = 100, Aadv = 1 Arecon = 999, Aadv = 1

Arecon = 10, Aadv = 1

Figure 9. Visual results of generator loss experiments with varying Aecon and Ay, ratios. The top
row corresponds to Arecon = 999, A4, = 1, the middle row to Ayecon = 100, A4y, = 1, and the bottom

oW to Arecon = 10, A, = 1.

Conversely, a lower Aypconstruction Of 100 resulted in a decrease in SSIM to 0.1238 and a
noticeable drop in discriminator accuracy to 37.50%, indicating a less convincing generation
of images in fooling the discriminator. The lowest A econstruction Of 10, while maintaining the
adversarial ratio constant, further decreased the LOSS to —0.9972 and SSIM to 0.1234, with
a slightly higher discriminator accuracy of 48.86% compared to the highest A, cconstruction
setting. PSNR values across all configurations remained relatively stable with negligi-
ble variance, suggesting minimal impact on the peak signal-to-noise ratio with changes

in Aseconstruction-

Computers 2024, 13, 56

16 of 19

Visual inspection of the generator output reveals that the quality of the reconstructed
images is surprisingly consistent, as shown in Figure 9. Despite the substantial variation
in the Ayeconstruction Values from 999 to 10, the structural integrity and visual fidelity of the
generated images remained consistently high, as evidenced by the indistinguishable results
in the ‘Pred Test Img’ and ‘Pred Only Masked Reg.” columns.

The top row, representing a A econstruction Of 999, demonstrates a generator that is highly
focused on accurate reconstruction, as one would expect given the high emphasis on the
reconstruction loss. However, the middle and bottom rows, corresponding to Aeconstruction
values of 100 and 10, respectively, do not display the anticipated degradation in visual
quality. This suggests that the generator has achieved a level of robustness where it can
produce high-quality reconstructions even when the adversarial loss has a more significant
influence on the training process.

The lack of a discernible difference in the SSIM and PSNR metrics across the configura-
tions further corroborates the visual results. This unexpected outcome might be indicative
of a plateau in the generator’s learning capability with respect to the dataset used or could
reflect a limitation in the sensitivity of SSIM and PSNR metrics to capture subtle nuances in
the GAN-generated images.

The addition of training and testing times in Table 6 complements our understand-
ing of the computational efficiency of each configuration. Although the quality of the
reconstructed images does not vary significantly across different parameter ratios, the
increase in training time with a higher proportion of reconstruction loss suggests that a
greater emphasis on reconstruction loss may impose a more substantial burden on the
training process.

Table 6. Evaluation of training and testing times for different A,oconstruction aNd Aggpersariar ratios. The
models were trained on a dataset of 1296 images and tested on a dataset of 162 images, with a batch

size of 16.
Configuration Training Time (s) Testing Time (s)
Arecon =999, Aggy =1 4895.12 3.77
Arecon = 100, Agqp =1 4895.33 3.49
Avecon = 10, Apg =1 6792.58 3.52

4.4. Impact of Mask Presence on Model Input

The input to the network can include just the image that requires inpainting or the
image combined with the known mask. Conventional wisdom suggests that adding the
mask should enhance the results, as it clearly indicates the areas needing inpainting instead
of being undifferentiated ‘black’ zones. Nevertheless, Table 7 reveals that integrating the
mask into the network input has a negligible effect on the metrics’ outcomes. Table 8
extends this analysis to include the impact on training and testing times, indicating a
modest reduction in time for models trained without the mask input.

Table 7. Model performance with and without mask input training.

Mask LOSS SSIM PSNR Disc Acc (%)
With —0.9955 0.1231 11.5659 37.50
Without —0.9965 0.1406 11.5721 42.33

Table 8. Comparison of training and testing times for models trained with and without mask input.
The models were trained on a dataset of 1296 images and tested on a dataset of 162 images, with a
batch size of 16.

Mask Training Time (s) Testing Time (s)

With 4895.33 3.60
Without 4672.35 3.56

Computers 2024, 13, 56

17 of 19

Unexpectedly, and contrary to what one might assume, the qualitative results shown
in Figure 10 indicate that the visual results are marginally better without the mask than
with it. Despite the quantitative metrics (such as LOSS, SSIM, and PSNR) showing similar
performances for both scenarios, the qualitative results depicted in Figure 10 do not align
with the assumption that the mask’s inclusion significantly enhances visual outcomes.
It appears that while the mask provides explicit boundaries for inpainting, it does not
necessarily translate to a visually superior reconstruction in this instance.

Raw Test Img Masked Test Img Pred Test Img Pred Only Masked Reg.

With

Without

Figure 10. From top to bottom, the performance is shown with and without an irregular lines mask
used as input for training the generator; from left to right, images compare the raw image, masked
image, predicted image, and predicted image in the masked region only.

This finding may imply that the effectiveness of the mask in inpainting tasks is not as
pivotal as previously thought or that the current network architecture is not fully utilizing
the additional information provided by the mask. The training and testing times further
suggest that the presence of a mask does not significantly affect the efficiency of the model
during testing, although there is a slight difference in training duration. Future studies
should delve further into the utilization of masks, examining how different mask types and
complexities affect model performance. Moreover, it might be advantageous to consider
adaptive strategies for mask usage during the training phase to refine the model’s learning
process and improve generalization.

5. Conclusions

This study’s comprehensive evaluation of a GAN-based inpainting model across
varied masks—irregular lines, single large blob, and scattered smaller blobs—reveals its
strengths and areas for improvement. The visual assessments show that minor modifica-
tions, like the integration of a mask channel and expanded layer structure, significantly
enhance the quality of inpainted images. Comparative evaluations highlight the U-Net
generator’s superior performance over the bow-tie-like model, especially in complex mask
scenarios, evident in both qualitative and quantitative measures. Explorations into different
training configurations underscore the importance of a balanced approach for optimal
results. Surprisingly, the inclusion of the mask in the model input did not markedly en-
hance outcomes, pointing to future research directions. Overall, this study demonstrates
the effectiveness of the GAN-based inpainting model in various scenarios and opens new
possibilities for advancements in image inpainting.

6. Future Work

This research explored promising directions in image inpainting, but there is still room
for further improvement and expansion.

Computers 2024, 13, 56 18 of 19

A further research direction could involve a deeper investigation into the integrability
of the predicted normal maps. Evaluating whether there could be a surface whose normals
are consistent with the given normal map could serve as an additional validation of the
generated maps. The method outlined in “Normal Integration via Inverse Plane Fitting
With Minimum Point-to-Plane Distance” CVPR 2021 [28] offers one potential approach to
this investigation.

Moreover, evaluating the human-like appearance of the predicted normal maps could
provide another meaningful evaluation metric. This could include assessing elements such
as the reconstruction of nostrils and the continuity of lips. The use of the normal map for
relighting scenarios and the subsequent evaluation of its performance in these settings
would provide a practical measure of the quality of the map.

Finally, the inclusion of more diverse and potentially more perceptually oriented
metrics could improve the evaluation of the quality of the results, expanding beyond the
current evaluation metrics utilized in this study.

By pursuing these lines of inquiry, we can continue to refine and advance the capabili-
ties of image inpainting technology.

Author Contributions: Conceptualization, B.T.; methodology, H.Z. and B.T.; software, H.Z. and B.T;;
validation, H.Z. and B.T.; formal analysis, H.Z.; investigation, H.Z.; resources, H.Z. and B.T.; data
curation, H.Z. and B.T.; writing—original draft preparation, H.Z.; writing—review and editing, H.Z.
and B.T.; visualization, H.Z.; supervision, B.T.; project administration, B.T.; funding acquisition, N/A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The work reported here was given Aberystwyth University
Ethics Approval, Ethics ID #28326.

Data Availability Statement: The datasets generated and/or analyzed during the current study, as
well as the code base, are available in the GitHub repository at https://github.com /HanchengZuo/
Inpainting-NormalMaps.

Acknowledgments: Chat GPT-4 was used to translate as well as logically polish portions of the
English writing. All such content was checked for accuracy, to ensure that it correctly reflects the
experimental work that was completed.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Bertalmio, M,; Sapiro, G.; Caselles, V,; Ballester, C. Image Inpainting. In Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH '00), New Orleans, LA, USA, 23-28 July 2000; pp. 417-424. [CrossRef]

2. Criminisi, A.; Perez, P.; Toyama, K. Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image
Process. 2004, 13, 1200-1212. [CrossRef] [PubMed]

3. Mainberger, M.; Bruhn, A.; Weickert,].; Forchhammer, S. Edge-based compression of cartoon-like images with homogeneous
diffusion. Pattern Recognit. 2011, 44, 1859-1873. [CrossRef]

4. Liu, X,; Xing, F; Yang, C.; Kuo, C.C.J.; ElFakhri, G.; Woo, J. Symmetric-Constrained Irregular Structure Inpainting for Brain MRI
Registration with Tumor Pathology. In Proceedings of the 6th International Workshop on Glioma, Multiple Sclerosis, Stroke and
Traumatic Brain Injuries (Brainlesion), Lima, Peru, 4-5 October 2021; Volume 12658, pp. 80-91.

5. Wexler, Y.; Shechtman, E.; Irani, M. Space-Time Completion of Video. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 463-476.
[CrossRef] [PubMed]

6. Telea, A. AnImage Inpainting Technique Based on the Fast Marching Method.]. Graph. Tools 2004, 9, 23-34. [CrossRef]

7. Liu, G,; Reda, EA.; Shih, KJ.; Wang, T.C.; Tao, A.; Catanzaro, B. Image Inpainting for Irregular Holes Using Partial Convolutions.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8-14 September 2018; pp. 85-100.

8. Ma, W.C,; Hawkins, T.; Peers, P; Chabert, C.E,; Weiss, M.; Debevec, P.E. Rapid Acquisition of Specular and Diffuse Normal Maps
from Polarized Spherical Gradient Illumination. Render. Tech. 2007, 2007, 10.

9. Ghosh, A,; Fyffe, G.; Tunwattanapong, B.; Busch, J.; Yu, X.; Debevec, P. Multiview face capture using polarized spherical gradient
illumination. ACM Trans. Graph. (TOG) 2011, 30, 1-10. [CrossRef]

10. Wilson, C.A.; Ghosh, A.; Peers, P.; Chiang, J.Y.; Busch, J.; Debevec, P. Temporal upsampling of performance geometry using

photometric alignment. ACM Trans. Graph. (TOG) 2010, 29, 1-11. [CrossRef]

https://github.com/HanchengZuo/Inpainting-NormalMaps
https://github.com/HanchengZuo/Inpainting-NormalMaps
http://doi.org/10.1145/344779.344972
http://dx.doi.org/10.1109/TIP.2004.833105
http://www.ncbi.nlm.nih.gov/pubmed/15449582
http://dx.doi.org/10.1016/j.patcog.2010.08.004
http://dx.doi.org/10.1109/TPAMI.2007.60
http://www.ncbi.nlm.nih.gov/pubmed/17224616
http://dx.doi.org/10.1080/10867651.2004.10487596
http://dx.doi.org/10.1145/2070781.2024163
http://dx.doi.org/10.1145/1731047.1731055

Computers 2024, 13, 56 19 of 19

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Smith, W.A; Seck, A.; Dee, H.; Tiddeman, B.; Tenenbaum, J.B.; Egger, B. A morphable face albedo model. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14-19 June 2020; pp. 5011-5020.
LeGendre, C.; Ma, W.C.; Pandey, R.; Fanello, S.; Rhemann, C.; Dourgarian, J.; Busch, J.; Debevec, P. Learning Illumination from
Diverse Portraits. In Proceedings of the SIGGRAPH Asia 2020 Technical Communications (SA "20), New York, NY, USA, 4-13
December 2020. [CrossRef]

Pathak, D.; Krdhenbiihl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context Encoders: Feature Learning by Inpainting. arXiv 2016,
arXiv:1604.07379.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8-13 December 2014;
Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., Eds.; Curran Associates Inc.: New York, NY, USA, 2014;
Volume 27, pp. 2672-2680.

Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015,
arXiv:1505.04597.

Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial
Networks. In Proceedings of the 4th International Conference on Learning Representations (ICLR 2016), San Juan, Puerto Rico,
2-4 May 2016.

Zuo, H.; Tiddeman, B. Inpainting Normal Maps for Lightstage data. In Proceedings of the Computer Graphics and Visual
Computing (CGVC), Aberystwyth, UK, 14-15 September 2023; Vangorp, P., Hunter, D., Eds.; The Eurographics Association:
Eindhoven, The Netherlands, 2023. [CrossRef]

Sengupta, S.; Kanazawa, A.; Castillo, C.D.; Jacobs, D.W. Sfsnet: Learning shape, reflectance and illuminance of facesin the wild".
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-22 June 2018;
pp. 6296-6305.

Zhu, J.; Park, T.; Isola, P; Efros, A.A. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. arXiv
2017, arXiv:1703.10593.

Kaur, A.; Raj, A.; Jayanthi, N.; Indu, S. Inpainting of Irregular Holes in a Manuscript using UNet and Partial Convolution.
In Proceedings of the 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA),
Coimbatore, India, 15-17 July 2020; pp. 778-784. [CrossRef]

Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 30th
International Conference on Machine Learning, Atlanta, GA, USA, 16-21 June 2013; Volume 30.

Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,
arXiv:1502.03167.

Kingma, D.P; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations (ICLR 2015), San Diego, CA, USA, 7-9 May 2015.

Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http:
/ /www.deeplearningbook.org (accessed on 10 January 2024).

tf.keras.losses.CosineSimilarity. 2024. Awvailable online: https://www.tensorflow.org/api_docs/python/tf/keras/losses/
CosineSimilarity (accessed on 10 January 2024).

Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans.
Image Process. 2004, 13, 600-612. [CrossRef]

Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800-801.
[CrossRef]

Cao, X,; Shi, B.; Okura, F.; Matsushita, Y. Normal Integration via Inverse Plane Fitting with Minimum Point-to-Plane Distance.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19-25
June 2021; pp. 2382-2391.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3410700.3425432
http://dx.doi.org/10.2312/cgvc.20231190
http://dx.doi.org/10.1109/ICIRCA48905.2020.9182917
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.tensorflow.org/api_docs/python/tf/keras/losses/CosineSimilarity
https://www.tensorflow.org/api_docs/python/tf/keras/losses/CosineSimilarity
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1049/el:20080522

	Introduction
	Data Preparation
	Model Design
	Model Architecture Selection
	Model Architecture Overview
	Implementation of Skip Connections in U-Net Architecture
	Activation Functions and Normalization Techniques
	Optimization Techniques
	Loss Function
	Training and Evaluation

	Evaluation and Results
	Comparative Evaluation of U-Net and Bow-Tie-like Architectures
	Comparative Analysis of Different Training Configurations
	Impact of Lambda Reconstruction and Lambda Adversarial Ratios on Generator Performance in GANs
	Impact of Mask Presence on Model Input

	Conclusions
	Future Work
	References

