User Experience in Neurofeedback Applications Using AR as Feedback Modality
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Neurofeedback Training: 2D vs. AR Feedback
2.3. AR-Technology
2.4. EEG Data Recording and Analysis
2.5. Questionnaires
2.5.1. PANAS
2.5.2. SSQ
2.5.3. FSK
2.5.4. TUI
2.5.5. VAS
2.5.6. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions and Implications
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruzelier, J.H. EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. Rev. 2014, 44, 124–141. [Google Scholar] [CrossRef] [PubMed]
- Sterman, M.B. Physiological origins and functional correlates of EEG rhythmic activities: Implications for self-regulation. Appl. Psychophysiol. Biofeedback 1996, 21, 3–33. [Google Scholar] [CrossRef]
- Kober, S.E.; Witte, M.; Ninaus, M.; Neuper, C.; Wood, G. Learning to modulate one’s own brain activity: The effect of spontaneous mental strategies. Front. Hum. Neurosci. 2013, 7, 695. [Google Scholar] [CrossRef] [PubMed]
- Hammer, E.M.; Halder, S.; Blankertz, B.; Sannelli, C.; Dickhaus, T.; Kleih, S.; Müller, K.-R.; Kübler, A. Psychological predictors of SMR-BCI performance. Biol. Psychol. 2012, 89, 80–86. [Google Scholar] [CrossRef]
- Kleih, S.C.; Nijboer, F.; Halder, S.; Kübler, A. Motivation modulates the P300 amplitude during brain-computer interface use. Clin. Neurophysiol. 2010, 121, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Kadosh, K.C.; Staunton, G. A systematic review of the psychological factors that influence neurofeedback learning outcomes. Neuroimage 2019, 185, 545–555. [Google Scholar] [CrossRef]
- Ninaus, M.; Kober, S.E.; Friedrich, E.V.; Dunwell, I.; De Freitas, S.; Arnab, S.; Ott, M.; Kravcik, M.; Lim, T.; Louchart, S.; et al. Neurophysiological methods for monitoring brain activity in serious games and virtual environments: A review. IJTEL 2014, 6, 78. [Google Scholar] [CrossRef]
- Berger, L.M.; Wood, G.; Kober, S.E. Effects of virtual reality-based feedback on neurofeedback training performance-A sham-controlled study. Front. Hum. Neurosci. 2022, 16, 952261. [Google Scholar] [CrossRef] [PubMed]
- Abdessalem, H.B.; Frasson, C. Real-time Brain Assessment for Adaptive Virtual Reality Game: A Neurofeedback Approach. In Brain Function Assessment in Learning; Frasson, C., Kostopoulos, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 133–143. [Google Scholar] [CrossRef]
- Vourvopoulos, A.; Pardo, O.M.; Lefebvre, S.; Neureither, M.; Saldana, D.; Jahng, E.; Liew, S.-L. Effects of a Brain-Computer Interface with Virtual Reality (VR) Neurofeedback: A Pilot Study in Chronic Stroke Patients. Front. Hum. Neurosci. 2019, 13, 210. [Google Scholar] [CrossRef]
- Kober, S.E.; Reichert, J.L.; Schweiger, D.; Neuper, C.; Wood, G. Effects of a 3D Virtual Reality Neurofeedback Scenario on User Experience and Performance in Stroke Patients. In Games and Learning Alliance; Bottino, R., Jeuring, J., Veltkamp, R.C., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 83–94. [Google Scholar] [CrossRef]
- Arpaia, P.; Coyle, D.; Esposito, A.; Natalizio, A.; Parvis, M.; Pesola, M.; Vallefuoco, E. Paving the Way for Motor Imagery-Based Tele-Rehabilitation through a Fully Wearable BCI System. Sensors 2023, 23, 5836. [Google Scholar] [CrossRef]
- Rey, G.D. A review of research and a meta-analysis of the seductive detail effect. Educ. Res. Rev. 2012, 7, 216–237. [Google Scholar] [CrossRef]
- Gruzelier, J.; Inoue, A.; Smart, R.; Steed, A.; Steffert, T. Acting performance and flow state enhanced with sensory-motor rhythm neurofeedback comparing ecologically valid immersive VR and training screen scenarios. Neurosci. Lett. 2010, 480, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Ron-Angevin, R.; Díaz-Estrella, A. Brain–computer interface: Changes in performance using virtual reality techniques. Neurosci. Lett. 2009, 449, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Lécuyer, A. BCIs and Video Games: State of the Art with the OpenViBE2 Project. In Brain–Computer Interfaces 2; Clerc, M., Bougrain, L., Lotte, F., Eds.; Wiley: Hoboken, NJ, USA, 2016; pp. 85–99. [Google Scholar] [CrossRef]
- Marshall, D.; Coyle, D.; Wilson, S.; Callaghan, M. Games, Gameplay, and BCI: The State of the Art. IEEE Trans. Comput. Intell. AI Games 2013, 5, 82–99. [Google Scholar] [CrossRef]
- Carmigniani, J.; Furht, B.; Anisetti, M.; Ceravolo, P.; Damiani, E.; Ivkovic, M. Augmented reality technologies, systems and applications. Multimed. Tools Appl. 2011, 51, 341–377. [Google Scholar] [CrossRef]
- Milgram, P.; Kishino, F. A Taxonomy of Mixed Reality Visual Displays. IEICE Trans. Inf. Syst. 1994, 12, 1–15. [Google Scholar]
- Skarbez, R.; Smith, M.; Whitton, M.C. Revisiting Milgram and Kishino ‘s Reality-Virtuality Continuum. Front. Virtual Real. 2021, 2, 647997. [Google Scholar] [CrossRef]
- Lyu, Y.; An, P.; Xiao, Y.; Zhang, Z.; Zhang, H.; Katsuragawa, K.; Zhao, J. Eggly: Designing Mobile Augmented Reality Neurofeedback Training Games for Children with Autism Spectrum Disorder. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2023, 7, 1–29. [Google Scholar] [CrossRef]
- Viczko, J.; Tarrant, J.; Jackson, R. Effects on Mood and EEG States After Meditation in Augmented Reality with and without Adjunctive Neurofeedback. Front. Virtual Real. 2021, 2, 618381. [Google Scholar] [CrossRef]
- Mercier-Ganady, J.; Lotte, F.; Loup-Escande, E.; Marchal, M.; Lecuyer, A. The Mind-Mirror: See your brain in action in your head using EEG and augmented reality. In Proceedings of the 2014 IEEE Virtual Reality (VR), Minneapolis, MN, USA, 29 March–2 April 2014; IEEE: Minneapolis, MN, USA, 2014; pp. 33–38. [Google Scholar] [CrossRef]
- Huang, X.; Mak, J.; Wears, A.; Price, R.B.; Akcakaya, M.; Ostadabbas, S.; Woody, M.L. Using Neurofeedback from Steady-State Visual Evoked Potentials to Target Affect-Biased Attention in Augmented Reality. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2022, 2022, 2314–2318. [Google Scholar] [CrossRef]
- Gorman, C.; Gustafsson, L. The use of augmented reality for rehabilitation after stroke: A narrative review. Disabil. Rehabil. Assist. Technol. 2022, 17, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.L.; Fidopiastis, C.; Stanney, K.M.; Bailey, P.S.; Ruiz, E. The Psychometrics of Cybersickness in Augmented Reality. Front. Virtual Real. 2020, 1, 602954. [Google Scholar] [CrossRef]
- Berger, L.M.; Wood, G.; Neuper, C.; Kober, S.E. Sex Differences in User Experience in a VR EEG Neurofeedback Paradigm. In Games and Learning Alliance; Rosa, F.d., Marfisi Schottman, I., Baalsrud Hauge, J., Bellotti, F., Dondio, P., Romero, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 111–120. [Google Scholar] [CrossRef]
- Tatum, W.O.; Dworetzky, B.A.; Schomer, D.L. Artifact and recording concepts in EEG. J. Clin. Neurophysiol. 2011, 28, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Breyer, B.; Bluemke, M. Deutsche Version der Positive and Negative Affect Schedule (PANAS (GESIS Panel); ZIS-GESIS Leibniz Institute for the Social Sciences: Mannheim, Germany, 2016. [Google Scholar] [CrossRef]
- Tarrant, J.; Cope, H. Combining frontal gamma asymmetry neurofeedback with virtual reality: A proof of concept case study. NeuroRegulation 2018, 5, 57–66. [Google Scholar] [CrossRef]
- Libriandy, E.; Arlini Puspasari, M. Immersive Virtual Reality and Gamification Evaluation on Treadmill Exercise by Using Electrophysiological Monitoring Device. In Proceedings of the ICIBE 2020: 2020 The 6th International Conference on Industrial and Business Engineering, Macau, China, 27–29 September 2020; ACM: New York, NY, USA, 2020; pp. 191–195. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [Google Scholar] [CrossRef]
- Rebenitsch, L.; Owen, C. Review on cybersickness in applications and visual displays. Virtual Real. 2016, 20, 101–125. [Google Scholar] [CrossRef]
- Nakamura, J.; Csikszentmihalyi, M. The concept of flow. In Handbook of Positive Psychology; Snyder, C.R., Lopez, S.J., Eds.; Oxford University Press: Oxford, UK, 2002; pp. 89–105. [Google Scholar]
- Rheinberg, F.; Vollmeyer, R.; Engeser, S. FKS-Flow-Kurzskala: ZPID (Leibniz Institute for Psychology)–Open Test Archive; ZPID: Trier, Germany, 2019. [Google Scholar]
- Kothgassner, O.D.; Felnhofer, A.; Hauk, N.; Kastenhofer, E.; Gomm, J.; Kryspin-Exner, I. Technology Usage Inventory (TUI): Manual; FFG: Wien, Austria, 2012. [Google Scholar]
- Magosso, E.; De Crescenzio, F.; Piastra, S.; Ursino, M. EEG Alpha Power Is Modulated by Attentional Changes during Cognitive Tasks and Virtual Reality Immersion. Comput. Intell. Neurosci. 2019, 2019, 7051079. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, M.; Kim, J. A Study on Immersion and VR Sickness in Walking Interaction for Immersive Virtual Reality Applications. Symmetry 2017, 9, 78. [Google Scholar] [CrossRef]
- Sharples, S.; Cobb, S.; Moody, A.; Wilson, J.R. Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays 2008, 29, 58–69. [Google Scholar] [CrossRef]
- Fang, W.; Zheng, L.; Deng, H.; Zhang, H. Real-Time Motion Tracking for Mobile Augmented/Virtual Reality Using Adaptive Visual-Inertial Fusion. Sensors 2017, 17, 1037. [Google Scholar] [CrossRef]
- McCaul, K.D.; Malott, J.M. Distraction and coping with pain. Psychol. Bull. 1984, 95, 516–533. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, K.; van Damme, S.; Eccleston, C.; van Ryckeghem, D.M.L.; Legrain, V.; Crombez, G. Distraction from pain and executive functioning: An experimental investigation of the role of inhibition, task switching and working memory. Eur. J. Pain 2011, 15, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Witte, M.; Kober, S.E.; Ninaus, M.; Neuper, C.; Wood, G. Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Front. Hum. Neurosci. 2013, 7, 478. [Google Scholar] [CrossRef] [PubMed]
- Weech, S.; Kenny, S.; Lenizky, M.; Barnett-Cowan, M. Narrative and Gaming Experience Interact to Affect Presence and Cybersickness in Virtual Reality. Int. J. Hum.-Comput. Stud. 2019, 138, 102398. [Google Scholar] [CrossRef]
2D | AR | |||
---|---|---|---|---|
Sham | Real | Sham | Real | |
N | 24 (17 female) | 20 (9 female) | 20 (13 female) | 25 (14 female) |
Mean age (SD) | 21.79 (1.74) | 24.65 (4.06) | 25.20 (3.39) | 23.68 (3.42) |
2D | AR | |||||||
---|---|---|---|---|---|---|---|---|
Sham | Real | Sham | Real | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Positive affect | −0.03 | 0.65 | 0.07 | 0.59 | −0.02 | 0.57 | −0.10 | 0.60 |
Negative affect | −0.10 | 0.28 | 0.02 | 0.20 | −0.17 | 0.16 | −0.07 | 0.13 |
Nausea | −0.25 | 1.41 | −0.30 | 1.47 | −0.99 | 1.85 | 0.16 | 1.03 |
Oculomotor disturbance | 1.31 | 2.26 | 1.20 | 2.65 | 0.80 | 2.93 | 1.58 | 2.63 |
Disorientation | 1.21 | 1.77 | 1.57 | 3.15 | 0.77 | 1.82 | 1.36 | 1.88 |
Total Score | 0.33 | 0.50 | 0.30 | 0.68 | 0.38 | 0.35 | 0.28 | 0.45 |
Fluency | 3.65 | 1.18 | 3.93 | 1.06 | 4.66 | 1.21 | 3.92 | 1.35 |
Absorption | 4.25 | 0.95 | 4.13 | 1.37 | 4.61 | 1.06 | 4.48 | 0.98 |
Concern | 2.82 | 1.41 | 2.35 | 1.35 | 2.22 | 1.20 | 1.94 | 0.87 |
General factor | 3.89 | 0.92 | 4.01 | 1.02 | 4.64 | 1.01 | 4.15 | 1.12 |
Curiosity | 4.48 | 1.38 | 4.24 | 1.20 | 4.78 | 1.22 | 4.72 | 1.37 |
Technology fear | 1.80 | 0.63 | 2.03 | 0.74 | 1.73 | 0.80 | 1.53 | 0.59 |
Interest | 3.32 | 1.42 | 3.49 | 1.20 | 3.88 | 1.68 | 3.69 | 1.49 |
Usability | 4.10 | 0.54 | 4.38 | 0.64 | 4.55 | 0.49 | 4.62 | 0.49 |
Immersion | 3.80 | 1.50 | 4.06 | 1.56 | 4.19 | 1.38 | 3.91 | 1.43 |
Usefulness | 2.57 | 1.54 | 3.08 | 1.25 | 3.04 | 1.06 | 2.93 | 1.33 |
Skepticism | 2.81 | 1.13 | 3.05 | 1.10 | 2.90 | 1.34 | 2.51 | 1.13 |
Accessibility | 2.57 | 0.96 | 3.18 | 1.47 | 2.37 | 1.22 | 2.18 | 1.15 |
Control | 3.38 | 1.79 | 3.85 | 2.28 | 5.05 | 2.52 | 5.28 | 2.70 |
Concentration | 5.96 | 2.27 | 5.50 | 2.65 | 6.85 | 1.66 | 6.28 | 2.75 |
Perceived success | 4.42 | 2.41 | 4.75 | 2.75 | 6.55 | 2.01 | 5.88 | 3.15 |
Fun | 7.30 | 2.53 | 7.61 | 2.06 | 7.85 | 2.36 | 7.48 | 3.15 |
Pain | 3.14 | 3.40 | 2.22 | 3.00 | 1.21 | 1.96 | 2.29 | 2.94 |
Pressure on head | 20.88 | 13.19 | 20.50 | 17.54 | 14.61 | 15.30 | 16.48 | 15.40 |
Headache | 3.45 | 4.65 | 3.79 | 3.72 | 2.37 | 4.59 | 0.89 | 1.97 |
Eye burning | 8.61 | 11.34 | 5.88 | 8.20 | 3.69 | 6.44 | 4.61 | 7.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berger, L.M.; Wood, G.; Kober, S.E. User Experience in Neurofeedback Applications Using AR as Feedback Modality. Computers 2024, 13, 110. https://doi.org/10.3390/computers13050110
Berger LM, Wood G, Kober SE. User Experience in Neurofeedback Applications Using AR as Feedback Modality. Computers. 2024; 13(5):110. https://doi.org/10.3390/computers13050110
Chicago/Turabian StyleBerger, Lisa Maria, Guilherme Wood, and Silvia Erika Kober. 2024. "User Experience in Neurofeedback Applications Using AR as Feedback Modality" Computers 13, no. 5: 110. https://doi.org/10.3390/computers13050110
APA StyleBerger, L. M., Wood, G., & Kober, S. E. (2024). User Experience in Neurofeedback Applications Using AR as Feedback Modality. Computers, 13(5), 110. https://doi.org/10.3390/computers13050110