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Abstract: Object tracking is one of the most important problems in computer vision applications
such as robotics, autonomous driving, and pedestrian movement. There has been a significant
development in camera hardware where researchers are experimenting with the fusion of different
sensors and developing image processing algorithms to track objects. Image processing and deep
learning methods have significantly progressed in the last few decades. Different data association
methods accompanied by image processing and deep learning are becoming crucial in object tracking
tasks. The data requirement for deep learning methods has led to different public datasets that allow
researchers to benchmark their methods. While there has been an improvement in object tracking
methods, technology, and the availability of annotated object tracking datasets, there is still scope
for improvement. This review contributes by systemically identifying different sensor equipment,
datasets, methods, and applications, providing a taxonomy about the literature and the strengths and
limitations of different approaches, thereby providing guidelines for selecting equipment, methods,
and applications. Research questions and future scope to address the unresolved issues in the object
tracking field are also presented with research direction guidelines.
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1. Introduction

Object tracking using computer vision is one of the most important functions of
machines that interact with the dynamics of the real world, such as autonomous ground
vehicles [1], autonomous aerial drones [2], robotics [3], and missile tracking systems [4].
For machines to operate and adapt according to real-world dynamics, it is essential to
monitor changes. These changes are usually the motions that must be sensed through
different sensors, followed by the machines responding according to these changes [4].
Computer vision mimics the human ability to observe these changes. Humans intuitively
understand the change in their environment due to different senses, which helps them
navigate their world. Vision is one of the primary senses that allow humans to navigate
their environment. To design autonomous machines that perform human tasks such as
driving [1,3,5–10], fishing [11], agricultural activities [2], and medical diagnoses [12–16],
computer vision can help increase productivity. The inclusion of computer vision in human–
computer interaction, robotics, and medical diagnoses provides humans with better tools
for completing tasks efficiently and making decisions with better insights. Therefore, it is
essential to investigate different methods, tools, and potential applications to evaluate their
limitations and future scope for object tracking problems in computer vision to improve
work efficiency and develop an autonomous system that works well with humans.

Different insights can be gained by looking at a holistic view of object tracking in
computer vision that complements various aspects of the problem. Therefore, this re-
view synthesises and categorises information regarding different aspects, such as sensors,
datasets, approaches, and applications of object tracking problems in computer vision. The
main contributions of this review are as follows:
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• A systemic literature review in object tracking based on hardware usage, datasets,
image processing and deep learning methods, and application areas.

• Recommendations and guidelines for selecting sensors, datasets, and application
methodologies based on their advantages and limitations.

• A taxonomy for sensor equipment and methodologies.
• Research questions and future scope to address unresolved issues in the object track-

ing field.

This review highlights the development of object tracking methods in computer
vision over the last ten years. The review takes major journal articles published since
2013 in object tracking in computer vision and aims to outline the progress made in this
field. This review highlights the different approaches, methods, equipment, datasets, and
object tracking applications. By highlighting current development, the review consolidates
the data on methods, applications, and types of vision sensors, enabling engineers and
software developers to make informed choices while developing their systems for different
applications. Furthermore, this review identifies different limitations in current methods
and proposes future developments to help push the boundaries of object tracking.

In this paper, Section 2 outlines different reviews performed in object tracking and
distinguishes this review from these previous reviews. Section 3 discusses the types of
equipment for different vision sensors and how they impact development. Section 4 pro-
vides the overview of available datasets for benchmarking object tracking results. Section 5
lays out the different approaches and methods used in object tracking. Section 6 lists the
different areas where object tracking in computer vision is deployed. Section 7 provides
a discussion of object tracking methods and datasets. Section 8 provides limitations and
future work along with the research questions and recommendations to address them.
Section 9 outlines the conclusion of this study. Figure 1 shows the structure of the review.

Figure 1. Structure of the review.



Computers 2024, 13, 136 3 of 44

2. Previous Reviews

There has been a considerable development in object tracking using computer vision.
Previous review articles and surveys focus on a niche area of the object tracking problem.
A review focusing exclusively on a subarea of the research field is often beneficial in
investigating specific gaps in the literature. However, widening the scope of the literature
review helps to identify whether a particular approach has an advantage over the others.
Furthermore, a review of the field of research provides a roadmap for researchers and
engineers to investigate the problem further according to the needs of the application. This
section identifies different reviews covering different aspects of the object tracking problem
and distinguishes this review from these previous reviews. This section also outlines the
main contribution of each review, which acts as a roadmap for different research niches in
the object tracking literature.

2.1. Appearance Model

Any object, such as circles, squares, cylinders, and triangles, can be deconstructed to
its basic geometry. Identifying these geometric features can assist in detecting the objects
in an image frame. These types of visual appearance form object descriptors, which use
different features of the object, such as edges and corners, to construct a mathematical
model for object identification.

In their survey of appearance models, Li et al. [17] reviewed the literature on visual
representation as per their feature-construction mechanism. Since object tracking methods
have problems handling complex object appearance changes due to illumination, occlusion,
shape deformation, and camera motion, Li et al. [17] concluded that it was essential to
effectively model the 2D appearance of tracked objects for successful visual tracking.
Their survey focused on the detection methods as a precursor to the tracking-by-detection
approach. While appearance models are advantageous in object detection, they are still
handcrafted to particular object detection. Handcrafted feature models for face detection
will differ from human body detection. While that survey proposed learning techniques
such as support vector machines and particle filtering, their learning is dependent upon
the training sample selection.

2.2. Multi-Cue

Since the publication of the review by Li et al. [17] in 2013, there have been significant
improvements in deep learning methods, which have proven effective in object detec-
tion [18,19]. In their survey, Kumar et al. [19] identified the research in multi-cue object
tracking that used appearance models in traditional and deep learning approaches. Multi-
cue methods rely on multiple cues in the image, such as colour, texture, contour, and
object features, to develop descriptors to identify the object. They surveyed methods that
used handcrafted features integrated with deep learning-based models to provide robust
tracking algorithms.

2.3. Deep Learning

There was a surge in the review of deep learning methods for object tracking, with two
reviews in 2021 and three reviews in 2022. Park et al. [20] reviewed the evolution of multiple-
object tracking in deep learning by categorising the previous multiple object tracking
algorithm in 12 approaches. They also reviewed the benchmark datasets and standard
evaluation methods. Kalake et al. [21] reviewed deep learning-based online multiple-object
tracking and ranked the networks on different public benchmark datasets. Mandal et al. [22]
provided an empirical review of the state-of-the-art deep learning methods for change
detection by categorising the existing approaches into different deep learning methods.
Furthermore, they provided an empirical analysis of the evaluation settings adopted by
existing deep learning methods. Guo et al. [23] reviewed deep learning methods for
multiple-object tracking in autonomous driving. Their review categorised the algorithms
based on tracking by detection, joint detection and tracking, and transformer-based tracking.
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They identified multiple-object tracking datasets and provided an experimental analysis
and future research direction in deep learning. While it is important to examine deep
learning methods in isolation to identify the best methods according to the solution, it is
also important to consider traditional appearance-based and statistical models for certain
types of applications. Therefore, studying and reviewing traditional and deep learning
methods can provide insights into method selection based on hardware and applications.

2.4. Applications-Based

Recent reviews have looked into detection-based multiple-object tracking [24], data
association methods [25], long-term visual tracking [26], and methods used in ship track-
ing [27]. Dai et al. [24] introduced a taxonomy of multiple-object tracking and provided a
detailed summary of the results of algorithms on popular datasets. Liu et al. [26] reviewed
long-term tracking algorithms while describing existing benchmarks and evaluation pro-
tocols. Rocha et al. [27] reviewed datasets and state-of-the-art algorithms for single and
multiple-object tracking with the view of applying them to ship tracking. Furthermore,
they provided insights into developing novel datasets, benchmarking metrics, and novel
ship-tracking algorithms. These reviews are focused on specific applications, such as single-
or multiple-object tracking, and provide direction for research in their respective fields.

2.5. Trend in Reviews

Different approaches, such as appearance models, data association, and long-term
tracking, were reviewed from previous reviews over the last ten years. A summary of
reviews works on object tracking is provided in Table 1. Figure 2 shows the number of
reviews covering different areas of object tracking from 2013 to 2023. A trend is noticed in
Figure 2 where there is a peak of interest in object tracking in 2022, with five papers, out
of which three focus exclusively on deep learning methods. The exclusive nature of the
literature surveyed in recent reviews necessitates a comparative evaluation of the different
approaches. Also, hardware equipment and hardware constraints in the application require
investigating different types of sensors and their corresponding methods, applications,
and scopes. Furthermore, based on an overview of the object tracking field, guidelines,
and recommendations for the methods will contribute to the decision-making process for
specific applications. Therefore, this survey aims to investigate different sensor equipment,
datasets, approaches and methods, and object tracking applications in computer vision.

Figure 2. Trend in reviews from 2013 to 2023.
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Table 1. Summary of the review works on object tracking.

Paper Year Topic Main Contributions

[17] 2013 Appearance models in visual
object tracking

• Review of visual representation according to their feature-construction mechanism.
• Existing statistical modelling schemes for tracking by detection.

[19] 2020 Multi-cue-based visual tracking
• Categorisation of multi-cue object tracking based on the exploited appearance model

into traditional architecture and deep learning-based tracker.

[20] 2021 Multiple object tracking in deep
learning approach.

• Categorisation of previous MOT algorithms into 12 approaches and discussion of the
main procedures for each category.

• A review of the benchmark datasets and standard evaluation methods for evaluating
MOT.

[21] 2021
Deep learning approaches in
real-time multiple-object
tracking

• Review of deep learning-based online MOT methods and networks that rank highest in
the public benchmark.

[22] 2022 Deep learning frameworks for
change detection

• Model design-based categorisation of the existing approaches.
• Presentation of empirical analysis of evaluation settings for deep learning.
• Future directions for change detection.

[23] 2022

Deep learning-based visual
multiple-object tracking
algorithm for autonomous
driving

• Detailed review of object tracking methods: tracking by detection (TBD), joint detection
and tracking (JDT), and transformer-based tracking.

[24] 2022 Detection-based video
multiple-object tracking

• Taxonomy based on the MOT problem.
• Summary of the results of 40 algorithms on popular datasets.

[25] 2022 Data association in
multiple-object tracking

• Review of data association techniques via uniquely defined similarity functions and
filters for multiple-object tracking.

• Taxonomy of data association methods.

[26] 2022 Long term visual tracking
• Thorough review of long-term tracking, summarising the long-term tracking algorithms

from framework architectures, and utilisation of intermediate tracking results’
perspective.

[27] 2023 Ship tracking

• Review of datasets and state-of-the-art tracking algorithms for single- and
multiple-object tracking.

• Provides insights for developing novel datasets, benchmarking metrics, and novel
ship-tracking algorithms.

Ours 2024 Object tracking in computer
vision

• Systemic literature review on hardware usage, datasets, image processing and deep
learning methods, and application areas.

• Recommendations and guidelines for selecting sensors, datasets, and application
methodologies based on their advantages and limitations.

• Taxonomy for the sensor equipment and methodologies.
• Research questions and future scope to address unresolved issues in the object

tracking field.

3. Sensor Equipment

The development and implementation of object tracking methods begin with the
sensor input. The choice of sensor equipment depends upon different constraints of
the problem, such as depth requirement [10,28,29], tracking objects from multiple view-
points [30], or intercepting the object following a certain trajectory [4]. Based upon the
different problem constraints, different types of vision sensors such as monocular, stereo,
depth-based camera, and hybrid vision sensors are used. Figure 3 shows the taxonomy of
sensor equipment studied in the literature. The following sections categorise the research
based on the types of vision sensors.
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Figure 3. Taxonomy of sensor equipment.

3.1. Monocular Cameras

Monocular cameras are widely used in object tracking. A monocular camera refers
to a single camera in a computer vision system, where the system relies on extracting
information from a single image form the camera. While it is difficult to estimate the depth
from a single image, some researchers incorporate multiple monocular cameras with the
principles of stereoscopy that give the 3D position of the target object [30]. Considering the
advantages and limitations of monocular vision, different methods are developed based
on the information available from the single image or a modified system that incorporates
multiple monocular cameras [30], eventually becoming uncalibrated stereo vision [31].
Since the cost and availability of cameras are important considerations in some applications,
monocular cameras become a suitable option.

The camera setup is important for developing application-specific datasets. Kwon
et al. [4] used a monocular camera to acquire images from a moving camera. Their approach
for using a monocular camera was to derive homography matrices in estimating the pose
of a target in six DOFs. Their proposed methods were to be used in a missile application,
where the camera of the missile tracks a target missile as a moving object for interception.
Their approach for overcoming depth and size information was to use the image sequences
from the moving camera on the missile. The motion estimator used these images to estimate
the rotational and translation motion of the free-moving target. Their research focused
on deriving homography matrices for estimating the motion of a moving target using a
monocular camera, and a practical simulation was designed. However, the performance
of their methods depended upon accurate feature matching. Thus, any high-resolution
monocular camera could be used to apply their methods.

Zarrabeitia et al. [16] used a single and two monocular cameras to detect the trajectories
of a water droplet. Two monocular cameras allowed them to construct a stereo system for
3D trajectories. Yan et al. [32] used four fixed monocular cameras for handover problems
in computer vision to track a skater as the skater escapes the field of view (FOV) of one
camera to another. Gionfrida et al. [13] used a single monocular camera to capture the
participant’s images to develop a markerless hand motion capture system. They developed
the ground truth for the hand movement with a marker-based approach using an eight-
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camera Qualisys motion capture system. They compared the motion obtained from a
markerless monocular camera system with the ground truth. Huang et al. [33] developed a
setup consisting of an overhead crane trolley, a camera, a spherical marker, a computer with
a GUI connected to a motion control system, and a vision computer to process images and
track the motion of a payload. The setup was designed in the lab, but it had the potential to
be applied on outdoor overhead handling cranes.

The monocular camera setups have a unique application that solves a particular prob-
lem; however, the methods developed using these setups often require some modifications
if the constraints of the problems change. The advantage of constructing a monocular
camera setup is that multiple camera views can be used, which helps detect depth and
address occlusion. Furthermore, multiple cues become accessible in the image by using
different types of monocular cameras, such as infrared and RGB, on a setup. However, the
disadvantage of such a system could be that a thorough calibration must be performed.
Also, the delay in sequentially triggering multiple monocular cameras must be addressed
since the data could be lost due to a delay in image capture in a dynamic environment.
Knowing the capability and application is essential before selecting the appropriate camera
system. Table 2 summarises the different types of camera systems used in literature with
their depth estimation capability provided by the methods in the paper and their respective
applications. Therefore, monocular camera setups are often developed when the problem
has a unique requirement.

Table 2. Summary of monocular camera systems.

Paper Camera System Depth Estimation Depth Estimation
Method Application

[4] Moving camera ✓
Homography

matrices Missile interception

[16] One or two
cameras ✓

Stereo
reconstruction

Bloodletting events
(medical)

[32] Four cameras x - Tracking skaters
(sports)

[13] Single camera x -
Biomechanical

assessment
(Medical)

[33] Single camera x - Overhead crane

3.2. Depth-Based Cameras

Depth-based cameras provide images of the scene along with depth information.
Stereo and RGB-D (RGB-Depth) cameras are the two types of depth-based cameras used in
the object tracking literature. A stereo camera system comprises two or more monocular
cameras, often as a single unit such as Bumblebee2 [10,28,29] or built from multiple monoc-
ular cameras [30]. RGB-D cameras such as Microsoft’s Kinect sensor collect RGB images
and depth information using an infrared (IR) projector and camera based on the principle of
structured light [34]. Object tracking methods are developed by setting up the depth-based
camera [12,28] or by using a public dataset [35] as in the case of monocular camera data.
Since depth information is vital for machines to interact with their environment and know
the location of the object in the real world, it is important to consider different depth-based
camera setups for object tracking.

Stereo cameras are widely used in applications where depth measurement is required.
Garcia et al. [36] developed a prototype of a stereo camera by using two static low-cost
cameras. That stereo camera could be overhead in different urban environments with
constant lighting. With the constraint of constant lighting conditions, the system was
designed to track the movement, size, and height of the people passing under the camera.
The system could be adjusted to operate at different heights depending on the urban
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environment by adjusting the system parameters to comply with the average height of the
people and the camera location from the ground. Chuang et al. [11] used a stereo camera
with six LED strobes, batteries, and computer housing for underwater operation. Their
camera could have 4-megapixel images, and the data transfer rate was five frames per
second using an Ethernet cable. Hu et al. [37] used two AVT F-504B cameras to construct
a binocular stereo camera mounted on a tripod. They calibrated the camera using the
calibration toolbox [38] in MATLAB. Yang et al. [15] used a binocular stereo placed in front
of a person to collect data for hand gestures. Sinisterra et al. [29] mounted a Bumblebee2
stereo camera on top of an unmanned surface vehicle that was used for chasing a moving
marine vehicle. Busch et al. [2] mounted their stereo camera on a manipulator arm attached
to a drone for tracking tree branch movement. During the experimental procedures, they
placed the stereo camera in front of the tree branch on an actuation system capable of
performing sway action. Wu et al. [39] also developed a stereo camera mounted on a
quadcopter with an NUC computer to detect and track a target. Richey et al. [12] used a
stereo camera to track breast surface deformation for medical applications. Their setup
consisted of an optical tracker, ultrasound, guidance display, and pen-marked fiducial
points on the skin whose ground truth was collected by an optically tracked stylus. The
depth information measured with the help of the stereo-matching process helps in the
respective applications. Czajkowska et al. [14] used a stereo camera setup and a stereoscopic
navigation system called Polaris Vicra to evaluate ground truth. Since a binocular stereo
camera can be constructed by aligning two cameras or purchased as a single unit, the stereo
setup is becoming popular when depth information is required.

RGB-D is another depth-based camera with an infrared projector and collector system
to measure depth along with the RGB channels of the image [34]. The depth value relative to
the position of the camera is collected for every pixel in the RGB-D camera. Kriechbaumer
et al. [28] used RGB-D data for developing their methods; however, their methods were
adapted to stereo later. Similarly, Rasoulidanesh et al. [40] used the RGB-D Princeton
pedestrian dataset [41]. The use of RGB-D for tracking in the literature has been limited
to public datasets developed using RGB-D cameras and in the indoor environment, as
outlined by Kriechbaumer et al. [28]. An RGB-D camera has certain limitations when the
object is far away, making it difficult for applications to track objects using drones [42].
Therefore, while RGB-D cameras have advantages in the indoor environment, they may
not be suitable for outdoor applications due to their limited sensor range, which misses
faraway objects.

Depth-based cameras are useful for localising the tracking object in a 3D space relative
to the depth camera. Table 3 summarises the different types of depth-based vision sensors
used in the surveyed literature. The table categorises cameras based on “Off the shelf”
and “Constructed”. As the name suggests, off-the-shelf cameras are purchased as a single
unit, while constructed cameras use different components, such as two monocular cameras,
to construct a stereo camera. The advantage of using off-the-shelf products is that they
often come with a software development kit that allows the user to use pre-built tools
such as calibration, depth detection, disparity map, and point cloud map generation. The
constructed camera would have an advantage where the problem constraint requires
a custom baseline or camera lens, which may not be part of the off-the-shelf product.
Furthermore, other aspects such as depth calculation methods, frames per second (FPS),
and resolution play an important role in depth measurement accuracy and are often
constraints on applications. Therefore, a depth-based camera has an advantage over a
monocular camera as it provides all the information obtained from monocular (RGB image)
and depth estimation capability.
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Table 3. Summary of depth-based cameras.

Paper Type Off the Shelf Constructed Camera
Depth

Calculation
Method

Application FPS Resolution

[36] Stereo x ✓
Two static
cameras

Epipolar
geometry

Pedestrian
tracking 30 320 × 240

[11] Stereo ✓ x Cam-trawl Stereo
triangulation Tracking fish 5 2048 × 2048

[37] Stereo x ✓ AVT F-504B Epipolar
geometry

Pedestrian
tracking 25.6 1360 × 1024

[29] Stereo ✓ x Bumblebee2
Stereo

matching using
SAD

Tracking ship 15 320 × 240

[2] Stereo ✓ x ZED 3D point cloud Tree branch
tracking 30 1920 × 1080

[39] Stereo ✓ x Mynteye Stereo
matching

Air and ground
target tracking 25 752 × 480

[12] Stereo ✓ x Grasshopper Stereo
matching

Fiducial
tracking for

surgical
guidance

5 1200 × 1600

[28] Stereo ✓ x Bumblebee2 Stereo
triangulation

Autonomous
ship

localisation
8.2 1024 × 768

[40] RGB-D ✓ x KinectV2 Time of flight Pedestrian
tracking 30 1920 × 1080

3.3. Hybrid Sensors

In applications with uncertainties in vision data collection, additional sensors whose
data can complement that of the vision data are used. These sensor setups are classified as
hybrid sensors as they incorporate multiple sensors, which is important in the development
of the method. Cesic et al. [10] mounted a stereo camera and radar on a moving vehicle
in urban scenarios. Similarly, Ram et al. [43] also used radar and a monocular camera for
autonomous cars, while Feng et al. [5] used a combination of monocular camera with an
inertial measurement unit (IMU). Persic et al. [3] used a combination of stereo, monocular,
and motion capture systems, monocular and radar, and monocular and LiDAR systems
mounted on a car for autonomous driving. Kriechbaumer et al. [28] based their system on a
platform on a survey vessel consisting of a Bumblebee2 stereo camera, an inertial measure-
ment unit (IMU) fused with tri-axial MEMS gyroscope, accelerometer and magnetometers,
a GPS receiver, a 360-degree prism, and a total station, which is an equipment used for
land surveying. Contrary to detecting targets using drones, Zheng et al. [42] developed
a panoramic stereo camera system on the ground to detect flying drones. Their platform
comprised four stereo cameras mounted on a stand with a computer, IMU, router, and GPS
module. The IMU and GPS were located on the ground node and used to measure the
attitude and position of each sensing node in a global coordinate frame. Since the KITTI [35]
dataset consists of different types of sensors, the research in [1,5,8,9,44] using this dataset
also fit under hybrid sensors with the primary goal of localising a vehicle. Table 4 sum-
marises the sensors based on primary sensors and a vision sensor along with the secondary
sensor that complements the primary sensor. From the applications of different methods,
hybrid sensors are used where the risk and uncertainties are high, such as in autonomous
vehicles and drones. Therefore, for outdoor applications, combining vision sensor data
with other sensor data to create a hybrid system is beneficial for high-risk applications.
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Table 4. Summary of hybrid camera systems.

Paper Primary Sensor Secondary Sensors Application

[10] Stereo camera • RADAR Autonomous driving

[43] Monocular camera • RADAR Autonomous driving

[5] Monocular camera • IMU Autonomous driving

[3] Stereo camera
• Motion capture systems
• RADAR
• LiDAR

Moving target tracking

[28] Stereo camera

• IMU
• Gyroscope
• Accelerometer
• Magnetometer
• GPS

Autonomous ship tracking

[42] Stereo camera • IMU
• GPS Drone tracking

3.4. Recommendations for Sensor Selection for Applications

The sensor equipment is the first step to consider based on the type of object tracking
application. The correct selection process for the sensor equipment is essential as it relies
upon the capabilities of the sensor. Table 5 summarises the category of papers reviewed in
the literature in this section. While application plays an important role in selecting a sensor
type, other constraints, such as computing and hardware cost, must also be considered.
This subsection aims to summarise, compare, and suggest guidelines for selecting sensors.

Monocular cameras, such as webcams, are accessible and less expensive than depth-
based cameras. A high-resolution webcam can provide more details in terms of pixel
density. However, the higher the resolution, the higher the computation cost to process
the images. Furthermore, monocular cameras cannot provide depth information in the
scene, but the depth information can be obtained using multiple monocular cameras [16]
or a moving camera [4] along with the principles of stereography.

From the insights derived from the literature review, the following guidelines can be
used to determine when monocular cameras are sufficient:

• If the tracking application does not require depth information.
• If the system does interact with its environment, such as tracking in sports [32], a

biomechanical assessment [13], or observing pedestrian movements, a monocular
camera is sufficient.

• If depth information is required, uncalibrated stereo methods can be used with either
a moving camera [4] or multiple monocular cameras [16].

Depth-based cameras are more expensive compared to monocular cameras. The
advantage of using depth-based cameras such as stereo cameras or RGB-D is that they
provide depth information about objects relative to the position of the camera. This is
beneficial information for localising a target object in the 3D space. Off-the-shelf depth-
based cameras often have the advantage of proprietary software or a software development
kit (SDK) provided by the manufacturer. The software provides functionality such as
camera calibration, disparity map generation, and point cloud generation. An SDK often
comes with the option of multiple programming languages, which provides pre-built code
packages. These camera code packages, with features such as depth detection and point
cloud generation, can be integrated within projects without the need to develop code from
scratch for the camera input processing. Some of the functionalities of the SDK, such as
real-time point cloud generation, often require high computer hardware specifications
such as a GPU [2]. However, alternative software libraries such as OpenCV can be used to
develop methods that do not require GPUs for image processing.
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The following guidelines are recommended for selecting depth-based cameras
for applications:

• Depth-based cameras are ideal if the depth information of the target object is needed.
• Stereo cameras are better than RGB-D ones in outdoor settings since an RGB-D camera

relies on structured light, which may not be suitable for outdoor environments.
• RGB-D cameras are a better option than stereo cameras for indoor applications as the

depth accuracy will be higher due to the structured light.
• A constructed stereo setup is a better option for a custom baseline, and the focal length

of the lens is required for applications such as in panoramic stereo systems [42].

Hybrid sensors provide additional data for the overall application. For highly critical
applications, such as autonomous vehicles, more data that can benefit the dynamic system,
such as a moving vehicle in a dynamic environment, are essential. Sensors like IMUs,
gyroscopes, and accelerometers can help maintain the stability of the dynamic system, while
GPS helps localise it in 3D space. It is important to consider the stability of autonomous
vehicles, their localisation in the environment, and other moving objects such as pedestrians
and other vehicles.

The following are the recommendations for deciding on a hybrid system:

• Hybrid sensors are the best choice for a dynamic system interacting with a dynamic
environment such as an autonomous vehicle [5,10,28,43].

• GPS as an additional sensor with the camera helps localise the camera system in the
real world, thereby allowing the localisation of target objects.

• An IMU, accelerometer, and gyroscope provide additional data that can help the
control system of the dynamic system for stability while tracking objects.

Table 5. Categorisation of papers based on the vision sensors.

Vision Sensor Papers

Monocular [4,13,16,32,33]
Depth-based [2,6,11,12,14,15,29,36,37,39]
Hybrid [3,5,10,28,42,43]

4. Datasets

Datasets are essential for evaluating methods and setting standards which cover a
wide variety of scenarios. A diverse dataset is helpful to develop methods that can be
evaluated before they are deployed in real-world systems. Some public datasets such as
HumanEVA [45] and KITTI [35] cover various data catering to specific applications. In
contrast, some others [7,42,43,46] develop their datasets for general tracking applications.
Researchers who create an in-house dataset are looking for specific scenarios for their
applications. The dataset is used for machine learning and deep learning methods to train
a classifier for detection and tracking. Therefore, the availability of a dataset is essential
for benchmarking the methods and training a machine learning or deep learning model to
accomplish the tasks.

4.1. Object Tracking Datasets in Autonomous Vehicles

Research on autonomous driving has significantly increased in the past few years [47].
The KITTI dataset [35] is widely used for benchmarking the methods in autonomous
driving applications. The KITTI dataset consists of high-resolution colour and greyscale
stereo images, laser scans, GPS, and IMU data. Several researchers [1,5,8,9,44] developed
their object tracking methods using the KITTI dataset in the application of autonomous
driving. Deepambika and Rahman [9] also used the DAIMLER dataset [48], a pedestrian
dataset, to evaluate their methods for autonomous driving. The DAIMLER dataset consists
of stereo images captured from a calibrated stereo camera mounted on a vehicle in an
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urban environment. The pedestrian cutout is comprised of 24-bit PNG format images, float
disparity maps, and ground truth shapes.

The Multivehicle Stereo Event Camera (MVSEC) dataset [49] is another stereo image
dataset for event-based cameras developed for autonomous driving cars. The MVSEC
dataset consists of greyscale images along with IMU data. The stereo camera was con-
structed from two Dynamic Vision and Active Pixel Sensors (DAVIS) cameras. A Visual
Inertial (VI) sensor [50] was mounted on top of the stereo camera. This setup was mounted
on a motorcycle handlebar along with GPS. A Velodyne LiDAR system was used to get the
ground-truth depth information.

HCI [51] is a synthetic dataset comprising 24 designed scenes with the ground truth
of a light field. The dataset comprises four images for three scenes: stratified, test, and
training. These scenes consist of patterns and household images with their ground truth.
They provide an additional 12 scenes with their ground truth in the dataset, which is
not used for official benchmarking. Shen et al. [7] created their dataset for developing
their methods by building on the HCI dataset for a potential application in autonomous
driving. An autonomous driving dataset is often accompanied by additional sensor data
such as GPS, IMU, and stereo camera images. Autonomous navigation is treated as an
object tracking problem, and the dataset’s availability can help benchmark the methods
before deploying them for autonomous cars to avoid dynamic obstacles by tracking them
in real time.

4.2. Single-Object Tracking Datasets

Single-object tracking (SOT) is the research area where a single object, as opposed
to multiple objects, is the subject of the tracking. There have been different versions of
Visual Object Tracking (VOT) datasets from its inception in 2013, with the latest being
VOT2022 [52] as a part of the VOT Challenge. The VOT dataset consists of monocular
images and is used to benchmark the methods for visual object tracking. Unlike MOT
datasets, VOT datasets are for single object tracking.

In VOT2022 [52], the following evaluation protocols were used:

• Short-term tracker :

– Target is localised and reported in each frame.
– For the target that goes out of frame or gets occluded, there is no target re-

detection from these trackers.
– The information on the target object is not retained when the object is occluded.

• Short-term tracking with conservative updating:

– Similar to the short-term tracker, the target is localised in each frame, and there is
no re-detection of the target.

– Tracking robustness is increased by a selective updating of the visual model based
on the estimation confidence.

– The tracking reliability relies on the confidence estimation, which is based on the
object detection confidence, thereby performing a detection operation when the
tracking estimation confidence is low.

• Pseudo-long-term tracker:

– When the target position is predicted to be “not visible” due to occlusion or when
the target is out of the image frame, it is not reported.

– There is no explicit tracking re-detection, which means that when the object is
occluded, the detection failure is reported, and there are no further efforts to
search the object in the image frame.

– There is an internal mechanism to identify tracking failure where the failure could
be due to low confidence in the estimation, object detection, or both.

• Re-detecting long-term tracker:

– Target position is not reported when the target prediction is “not visible”.
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– Unlike a pseudo-long-term tracker, there is an explicit search over the image
frame when the object is lost during tracking.

– Object detection techniques can be employed to detect the object in the entire
image frame.

– Upon re-detection, the tracking is continued from the new location.

Object Tracking Benchmark (OTB) [53] is another single-object tracking dataset. OTB-
50, consisting of 50 difficult target objects out of 100 targets from OTB [53], was used by
Yan et al. [32] to evaluate their trackers. OTB has annotations consisting of 11 attributes:
illumination variation, scale variation, occlusion, deformation, motion blur, fast motion,
in-plane rotation, out-of-plane rotation, out-of-view, background clutters, and low resolu-
tion [53]. The Rigid Pose dataset [54] is a single-object tracking dataset created synthetically.
Along with tracking, the dataset can also be used to evaluate methods for occlusion. The
dataset consists of four objects from public KIT object model data [55]. These object models
are placed on the image and manually manipulated to record the trace, which is used as
ground truth.

Zhong et al. [56] used the Rigid Pose dataset for their evaluation. Furthermore, the
ACCV14 dataset [57], an RGB-D dataset, was used for their evaluation. The Princeton [41]
dataset is an RGB-D dataset used by Rasoulidanesh et al. [40] for evaluating their method
for tracking the object along with depth. The Princeton dataset comprises 100 video clips
with RGB and depth information and manually annotated bounding boxes as ground truth.
Microsoft’s Kinect 1.0 sensor was used for data collection with a depth range between 0.5
and 10 m. The Princeton dataset consists of three types of targets, with each scene having a
different level of clutter in the background and occlusion.

HumanEva [45] is a multi-view synchronised motion capture dataset consisting of
40,000 frames for each camera. The HumanEva dataset is a pose estimation dataset of four
human subjects performing six predefined actions. The ground truth for the motion was
captured with ViconPeak, a commercial motion capture system.

Web crawling to download publicly available images on different websites has become
more relevant [58]. The Stanford Cars Dataset [59] uses 16,185 images of 196 classes of cars.
This dataset was used by Mdfaa et al. [46] to train a classifier for the moving-object class
such as a car, and the Describable Textures Dataset (DTD) [60] was used for the non-moving
class, such as buildings, in their application of tracking using a drone in a simulated urban
environment. Stanford’s car images dataset [59] was collected by web crawling popular
websites. Then, a deduplication process was applied using perceptual hashing [61] to
ensure distinct images belonged to a class. Then, Amazon Mechanical Turk was used to
crowdsource the annotations. The DTD [60] consists of 5640 texture images annotated with
47 describable attributes. Like the Stanford dataset, DTD was also downloaded online
instead of collecting images in the lab. Although both the Stanford and describable texture
datasets are not developed for object tracking, they were used by Mdfaa et al. [46] for
training a classifier that would be used for tracking by a detection approach. To evaluate
their tracking methods, they used Visual Object Tracker (VOT) benchmarks [62–65]. Thus,
a large dataset was available for training.

4.3. Multiple-Object Tracking Datasets

Multiple-object tracking (MOT) is a method in which multiple objects are tracked
simultaneously in a given scene. Several datasets have been developed to benchmark the
methods where multiple objects are present in a crowded environment. Pedestrian tracking
is one such example where the video from a CCTV can be tracked over time. However,
any problem in detecting and tracking multiple objects can be classified as an MOT-based
problem. MOT [66] is a widely used dataset for evaluating multiple object problems. The
MOT dataset, a part of MOTChallenge, has had several versions (MOT15 [67], MOT16 [68],
MOT17 [68], and MOT20 [69]) over the years. The images in these datasets are a collection
of images from publicly available datasets with standardised annotations. Luo et al. [70]
reviewed the MOT tracking methods that outlined the collection of different MOT datasets.
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The evaluation metrics are different for multiple object tracking. MOT20 [66] provided
the following evaluation metrics:

• Tracker to target assignment:

– No target re-identification.
– Target object ID is not maintained when the object is not visible.
– Matching is not performed independently but by a temporal correspondence in

each consecutive video frame.

• Distance measure:

– The Intersection over Union (IoU) is used to detect similarity between target and
ground truth.

– The IOU threshold is set to 0.5.

• Target-like annotations:

– Static objects such as pedestrians sitting on a bench or humans in a vehicle are
not annotated for tracking; however, the detector is not penalised for tracking
these objects.

• Multiple-Object Tracking Accuracy (MOTA):
MOTA combines three sources of error: false negatives, false positives, and mis-
match error.

MOTA = 1 − ∑t(FNt + FPt + IDSWt)

∑t GTt
(1)

– t is the video frame index.
– GT is the number of ground-truth objects.
– FN and FP are false negatives and false positives, respectively.
– IDSW is the mismatch error or identity switch.

• Multiple-Object Tracking Precision (MOTP):
MOTP is the measure of localisation precision, and it quantifies the localisation accu-
racy of the detection, thereby providing the actual performance of the tracker.

MOTP =
∑t,i dt,i

∑t ct
(2)

– ct is the number of matches in frame t
– dt,i is the bounding box’s overlap of target i with the ground truth object

• Tracking quality measures:
Tracking quality measures how well the object is tracked over its lifetime.

– The target is mostly tracked for successful tracking for at least 80% of its lifetime.
– The target is mostly lost for successful tracking of less than 20% of its lifetime.
– The target is partially tracked for the rest of the tracks.

Caltech’s Pedestrian [71] dataset consists of a video recorded from a car comprising
low-resolution images and occluded pedestrians. Wang et al. [72] used the first 1000 frames
of the Caltech dataset for their Centretown sequence. Caltech’s dataset consists of 10 h
of video in traffic in an urban area taken from a vehicle. The dataset consists of 250,000
images along with 350,000 bounding boxes with labels and 2300 unique pedestrian an-
notations. Caltech’s dataset also considered occlusion in their annotation, where they
annotated the image frame with a bounding box even when the object was occluded.
Three sequences were included in the data. MOT challenges keep improving upon their
datasets by including different conditions in the image dataset for future development of
MOT methods.

Different datasets were used to evaluate the object tracking methods over different
applications. A diverse dataset helps evaluate the methods in different scenarios, improving
their potential for adaptability to different real-world circumstances. For the pedestrian
tracking problem, the PETS2009 sequence [73] was used. The PETS2009 sequence consists
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of an image sequence and its ground truth from the footage recorded outdoors in different
weather conditions of people performing different behaviours [73]. The PETS2009 dataset
was used by Gennaro et al. [30] and Wang et al. [72] for pedestrian tracking application. The
region-based object tracking (RBOT) [74] dataset is a monocular RGB dataset developed
to determine the pose, such as translation and rotation, of the objects. These are known
objects, and their pose is relative to the camera.

4.4. Miscellaneous Datasets

Different from the public datasets, some researchers create their in-house datasets.
The reason for creating a dataset is either the unavailability of the data for an application or
the application of their methods in a niche case where public datasets are insufficient.

Several datasets were developed using stereo or multiple cameras to detect the 3D
location of an object. Zheng et al. [42] developed a stereo vision dataset for tracking
unknown MAVs. Yan et al. [32] built a dataset of skaters where the movements of the
skaters were tracked over four different monocular cameras as a part of the handover
problem in computer vision. Busch et al. [2] collected a dataset using a stereo ZED camera
of a pine tree branch. The pine tree branch was mounted on an actuator system to simulate
the movement of the branch when capturing the images. Hu et al. [37] build a fully labelled
dataset of seven sequence pairs and 20 objects using a calibrated binocular camera. They
annotated their dataset with similar attributes to that of OTB [53]. Cesic et al. [10] developed
a radar and stereo vision-based dataset for an application in autonomous driving and MOT.
The data were collected by mounting the sensors on a car driving in the centre of a three-
way street. Kriechbaumer et al. [28] collected more than 15,000 images on a 50 m long reach
of the river for the application of tracking surface vehicles. Most of these datasets are either
private or available upon request. The use of multiple cameras helps in the localisation and
tracking of an object in 3D space.

Datasets developed on monocular cameras are also helpful in 2D tracking. These
types of datasets are often accompanied by additional sensor data such as radar or IMU
data. Ram et al. [43] created a dataset using a monocular camera and radar equipment for
automotive target tracking. Gionfrida et al. [13] developed a labelled dataset for monocular
2D tracking. Garcia and Younes [75] developed a dataset with 8746 images of a mock
drogue for the automatic refuelling application of unmanned aircraft. Monocular camera-
based datasets are useful when the object’s 3D information is not required. However, they
are often accompanied by additional sensor data for 3D tracking.

The data collection process is not feasible for some applications, such as aerospace
and different illumination conditions. Therefore, researchers create synthetic datasets
generated using mathematical models or computer-generated designs. Kwon et al. [4]
developed a simulated dataset based on a mathematical model for the applications of
missile interception. Biondi et al. [76] developed simulated data by exploiting mathematical
models of a smooth Keplerian motion of the target. The Keplerian motion of the target
was assumed to describe the equation that provides the position of the centre of mass of
the target object and chaser vehicle in the earth-centred inertial frame of reference. They
also included the occlusion period in their dataset. While synthetic datasets are readily
available to test different methods, they must be evaluated to ensure their authenticity
for application.

4.5. Recommendations for Dataset Selection

There are several public datasets available for evaluating methods. The public datasets
used for developing and testing object tracking methods are mentioned in Table 6. Devel-
oping more datasets by addressing the lack of diversity in current datasets is helpful for
the research community in developing better methods.

While the two main categorisations of datasets are single-object tracking and multiple-
object tracking, they are further categorised based on their applications. Different uncer-
tainties must be taken into account for autonomous driving, such as self-localisation, safe
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navigation, obstacle avoidance, and pedestrian detection. Therefore, while autonomous
vehicles can be classified as a multiple-object detection problem, they deserve their own
category due to their complexity and the research area dedicated to the application of
autonomous navigation. Since autonomous vehicles include a range of vehicles, such as
automobiles, ships, and aerial vehicles, different datasets cater to each type of application.
This dataset is often developed with the help of hybrid sensors because they can provide
multiple types of data for high-risk operations.

Single- and multiple-object detection datasets are similar with one exception: their
names suggest that they track single or multiple objects. The approach to developing the
datasets for single and multiple objects differs from its application and evaluation metrics.
Miscellaneous datasets do not fit in either the SOT or MOT categories and were developed
by researchers to solve particular problems. The trackers developed for these datasets are
limited to the application for which the datasets were developed.

The following are the recommendations for selecting the datasets:

• SOT datasets are sufficient for indoor environments where the tracker is focused on
one object.

• MOT datasets are ideal for any outdoor applications where multiple objects are tracked,
and their trajectories need to be remembered by the tracker.

• A dataset can be developed and annotated manually or crowd-sourced using platforms
like Mechanical Turk [59].

• A simulated or synthetic tracking dataset such as Kwon et al.’s [4] can be developed
for applications where the data collection process is not feasible.

Table 6. Datasets used for developing and evaluating object tracking methods.

Dataset Description Sensor Type Data Type Used by Links +

KITTI [35]
High-resolution colour and
greyscale stereo images, laser
scans, GPS, IMU

Stereo + hybrid MOT [1,5,8,9,44] https://www.cvlibs.net/
datasets/kitti/

PETS2009 [73]
RGB images from the real
world with multiple
synchronised cameras

Monocular MOT [30,72]
ftp://ftp.cs.rdg.ac.uk/pub/
PETS2009/Crowd_PETS09_
dataset/a_data/

RBOT [74] Semi-synthetic dataset with
6-DOF pose tracking Monocular SOT [77] https://github.com/

henningtjaden/RBOT

MVSEC [49] Event-based stereo images with
IMU and GPS data Stereo + hybrid + event-based MOT [6] https://daniilidis-group.

github.io/mvsec/

VOT [62–65] Visual object tracking dataset Monocular SOT [46] https:
//www.votchallenge.net/

MOT (MOT15 [67], MOT16 [68],
MOT17 [68], and MOT20 [69])

Collection of publicly available
dataset Monocular MOT [78–80] https://motchallenge.net/

Rigid Pose [54]
Synthetic dataset with varying
objects, background motion,
occlusions, and noise.

Stereo SOT [56] http://www.karlpauwels.
com/datasets/rigid-pose/

Princeton [41]
Video clips along with depth
information with manually
annotated bounding boxes.

RGB-D SOT [40] http:
//tracking.cs.princeton.edu

DAIMLER [48] Pedestrian dataset with a single
object class Stereo MOT [9]

http://www.gavrila.net/
Datasets/Daimler_Pedestrian_
Benchmark_D/daimler_
pedestrian_benchmark_d.html

Caltech pedestrian [71] Pedestrian dataset with ten
hours of footage Monocular MOT [72] https://data.caltech.edu/

records/f6rph-90m20

HumanEva [45] Human subjects performing
predefined actions Monocular + motion sensor SOT [81] https://github.com/mhd-

medfa/Single-Object-Tracker

+ The links to the datasets were accessed on 27 February 2024.

5. Approaches and Methods

Computer vision problems are being addressed with two main approaches: classical
image processing and deep learning. Since object tracking is also a computer vision problem,
these two approaches address this problem. Object tracking problems in computer vision
are often divided into two steps: first, the object of interest is detected and then tracked

https://www.cvlibs.net/datasets/kitti/
https://www.cvlibs.net/datasets/kitti/
ftp://ftp.cs.rdg.ac.uk/pub/PETS2009/Crowd_PETS09_dataset/a_data/
ftp://ftp.cs.rdg.ac.uk/pub/PETS2009/Crowd_PETS09_dataset/a_data/
ftp://ftp.cs.rdg.ac.uk/pub/PETS2009/Crowd_PETS09_dataset/a_data/
https://github.com/henningtjaden/RBOT
https://github.com/henningtjaden/RBOT
https://daniilidis-group.github.io/mvsec/
https://daniilidis-group.github.io/mvsec/
https://www.votchallenge.net/
https://www.votchallenge.net/
https://motchallenge.net/
http://www.karlpauwels.com/datasets/rigid-pose/
http://www.karlpauwels.com/datasets/rigid-pose/
http://tracking.cs.princeton.edu
http://tracking.cs.princeton.edu
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html
https://data.caltech.edu/records/f6rph-90m20
https://data.caltech.edu/records/f6rph-90m20
https://github.com/mhd-medfa/Single-Object-Tracker
https://github.com/mhd-medfa/Single-Object-Tracker
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over a sequence of images. The tracking is further divided into different approaches, such
as tracking by detection, where the target object is detected in each image frame, and joint
tracking, where the detection and tracking happen simultaneously. The tracking can be
performed only when the input is a sequence where the object is within the image frame.
There are instances where the object disappears because it goes out of the field of view of
the camera or is obstructed by other objects. Keeping track of these objects in the middle of
the video when they partially disappear has created a class of problems called occlusion.
Different filtering and morphological operations are performed in the image processing
methods to develop a model for detection and tracking [11,15].

Deep learning models use training data to develop a classifier that detects and locates
the object [82–84]. After detecting the objects, both approaches involve using statistical or
data association methods to track them. Some researchers aim to develop an end-to-end
deep learning model using attention mechanisms to learn a classifier that can track the
objects [40].

Apart from tracking by detection, joint detection methods detect the object in a frame
and connect the location of the object for every subsequent frame in the video sequence.
Another approach is detection by tracking where the objects are located in the first frame of
the video. Then, statistical methods predict the future location, and the confidence score is
increased further by detection [8,15,44].

Figure 4 gives the taxonomy of the approaches and methods used for object tracking
that classifies the approach and categorises the methods in each approach. The following
subsections also highlight the strengths and limitations of each approach. This section
categorises the methods that rely solely on image processing and deep learning detection
methods. Each of the tracking procedures and type of problem, such as MOT and SOT, are
outlined in each category.

Figure 4. Taxonomy of approaches and methods for object tracking.

5.1. Detection and Localisation Methods

The first step in most tracking problems is detecting and localising the object. Detecting
features and tracking those features using image processing has been an approach in many
research studies for a long time. However, deep learning methods are becoming more



Computers 2024, 13, 136 18 of 44

prominent due to their higher accuracy and the use of end-to-end networks for localising
and classifying objects. This section categorises and reviews the detection and localisation
problems into image processing and deep learning approaches.

5.1.1. Classical Approaches

The classical approach encompasses the methods built using different image process-
ing operations and algorithms. Since the operations and algorithms are tailored to fit the
applications and datasets, no standard sets of operations are generalised for all the use
cases. Furthermore, kernel size and threshold values are often empirically selected for
different filtering and morphological operations in image processing [85]. Despite the
tailored approach to solving the detection and tracking problem, some generalised steps
are often used in many research approaches. However, researchers tweak the parameters to
fit into their applications to find the optimal values that work with different operations and
algorithms. The classical approach can be grouped by the methods that dominate these
approaches. This paper further categorises the classical detection approaches into feature
matching, morphological operation-based, and marker-based detection.

A. Using feature matching
Image matching deals with identifying features in the image and then matching
them with the corresponding features on other images [86]. Kriechbaumer et al. [28]
developed two algorithms for visual odometry for aquatic surface vehicles in a
GPS-denied location. The first algorithm was based on image matching of sparse
features [87] from the left and right input of the stereo camera along with consec-
utive stereo image frames where the input was a rectified greyscale image from a
calibrated stereo camera. Additionally, a Kalman filter [88] was used for smoothing
the estimated trajectory. The second algorithm was an appearance-based algorithm
modified from the methods [89] developed for RGB-D cameras where the input of
depth information was provided. Their experimental results were evaluated using
ground-truth data collected using an electronic theodolite integrated with an elec-
tronic distance meter (EDM) and a total station, which is the equipment used in land
surveying. Visual odometry enhances navigational accuracy on different types of
surfaces. The position error with the feature-based technique was smaller than the
appearance-based algorithm with a mean of ±0.067 m, under the permitted limit of
1 m considered accurate. They performed a linear regression analysis that revealed
that the error depended on the movement of the ship and the image features of the
scene. Thus, the methods for environment surveying required further modifications
depending on the type of application for river monitoring.
Jenkins et al. [90] developed methods for fast motion tracking by developing a fast
compressive tracking method. They implemented a template matching technique
using weighted multi-frame template matching and similarity metrics to detect
the objects in consecutive video frames. They aimed to address problems such
as occlusion, motion blur, and tracker offset. A bounding box with a confidence
score was incorporated over the object detected with template matching over the
image sequences. Overall, they developed a robust method to identify and keep
track of the object in real time at an operating speed upwards of 120 FPS with
minimal computation time. This was still dependent on the frame-by-frame template
matching, and there was a potential of missed object detection in an image frame in
case of occlusion.
Busch et al. [2] developed a method for detecting the branch of a pine tree by using
the depth information from the stereo camera. They mounted the camera on a drone,
and after calculating the depth of the features of the pine tree, they set a threshold
of 0.6 metres to identify the ROI. The 0.6-metre threshold was arbitrarily selected
as it would be the closest distance between the branch and the drone during the
application. The distance threshold was used to generate a mask to isolate the ROI.
They used a brute-force feature matching for the stereo matching operation from the
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OpenCV [91] software library to calculate a 3D map of the tree branch to generate a
point cloud of the branch. This detection approach was only limited to the pine tree
branch detection.

B. Morphological operation
Morphological operations are a set of image processing operations that apply a struc-
turing element that changes the structure of the features in the image. Two common
types of morphological operations are erosion, where an object is reduced in size,
and dilation, where the object is increased in size. A generalised way of approaching
object tracking problems is tracking by detection. In tracking by detection, the focus
is on detection operation in every image frame of a video sequence. Figure 5 shows a
generalised diagram of tracking by detection, where the target object is detected, and
the location information is stored and tracked for each video frame. The location of
the object detected in each image frame of the video sequence is the tracking location
of the object. Using stereo images, Chuang et al. [11] tracked underwater fish as an
MOT problem. Their method included image processing steps such as double local
thresholding, which includes Otsu’s method [92] for object segmentation, histogram
back-projection to address unstable lighting conditions underwater, the area of the
object, and the variance of the pixel values within the object region. They developed
a block-matching algorithm that broke the fish object down into four equal blocks
and matched them using a minimum sum of the absolute difference (SAD) crite-
rion. This detection process had too many morphological operations with varied
parameters, such as kernel sizes and threshold values. Furthermore, the block-sized
stereo-matching approach was innovative in reducing computation. However, it
may not be a generalised solution to detect other aquatic life for applications in the
fishing industry.

Figure 5. A generalised diagram of tracking by detection.

Yang et al. [15] developed a process for 3D character recognition with a potential
for medical applications such as sign language communication or human–computer
interaction in medical care by using binocular cameras. Their hand detection process
involved converting the image from the RGB to YCbCr colour space and then apply-
ing morphological operations such as erosion [85] to eliminate small blobs not part of
the hand. Then, they used Canny edge detection [93] to calculate the minimum and
maximum distance of the edges in the image frame to determine the centre of the
hand and then calculate the finger position, which would be the maximum distance
from the centre. The tracking process relied on detecting the hand in each video
sequence frame. The validity of hand gestures was determined by calculating the
distance between the centre and the outermost feature. The distance value helped
to know if the hand was not in a fist position and therefore, ready to be tracked.
They further used stereo distance computing methods to track the feature in 3D
space. Their method had several limitations, such as the hand needing to be the
only skin exposed during the recording because if the face was visible, it would have
been difficult to eliminate it during morphological operation, and it would have
led to confusion regarding the location of the hand. Since the tracking relied upon
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detection, object location data were lost for any false negatives. The morphological
operations could cause a loss of the exact location of the fingertip. Also, multiple
processing stages in detection and tracking meant that the overall robustness of the
system relied upon each stage working efficiently. Due to these reasons, there is a
need for improvement in these methods for a robust implementation.
Deepambika and Rahman [9] developed methods for detecting and tracking vehicles
in different illumination settings. They addressed motion detection using a sym-
metric mask-based discrete wavelet transform (SMDWT). Their system combined
background subtraction, frame differencing, SMDWT, and object tracking with dense
stereo disparity-variance. They used the SMDWT instead of the convolution or
finite impulse response (FIR) filter method, as these lifting-based [94] methods are
good in terms of computation cost. They used background subtraction and frame
differencing, binarization and logical OR operations, and morphological operations
for motion detection. Background subtraction allows the detection of moving objects
from the present frame based on a reference frame. The output from the background
subtraction and frame differencing was binarized for the thresholding operation to
eliminate the noise in the image. Morphological operations could eliminate other
undesired pixels. The next step was to obtain a motion-based disparity mask to
extract the ROI for the object. Furthermore, the disparity map was constructed using
SAD [95], a useful component for depth detection and stereo matching.
Czajkowska et al. [14] used a set of image processing steps to detect a biopsy needle
and estimate its trajectory. They began by performing needle puncture detection.
The detection algorithm applied a weighted fuzzy c-means clustering [96] technique
to identify ultrasonic elastography recording before the needle touched the tissue.
The needle detection was performed using the Histogram of Oriented Gradients
(HoG) [97] detector.

C. Marker-based
Some detection methods use predefined markers. Markers are physically known
objects the vision system has prior knowledge about. These markers are relatively
easier to detect than markerless detection, which relies on feature extraction and
comparison with the features of the target object. Huang et al. [33] developed a
detection method for tracking the payload swing attached to an overhead crane. The
payload detection was performed using the spherical marker attached to the payload.
Similarly, Richey et al. [12] used a marker-based approach to detect breast surface
deformations. Their marker-based detection approach used alphabets with specific
ink colour and KAZE feature [98] detection for stereo matching. Using a marker-
based approach reduces the computation cost in detection because the features to be
detected in the image are known beforehand. However, the marker-based approach
has certain problems, as object tracking only works for known objects in a controlled
indoor environment. These methods are not ideal for tracking objects in the outdoor
environment where the markers may be compromised due to external environmental
factors such as wind or rain.

5.1.2. Deep Learning Approaches

Object detection uses a Convolutional Neural Network (CNN), a deep learning method.
The primary use of CNNs in object tracking methods is to extract features for further
template matching. Any deep learning methods capable of localisation and classifying
the object in the image frame can be deployed in the object detection stage. This section
investigates the different deep learning methods used to detect objects within the context
of object tracking.

A. R-CNN
R-CNN [99] is an object localisation and classification method. R-CNN performs
localisation and classification in two steps. First, different regions of the images are
extracted and passed through a CNN for classification. If the object is detected in
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these extracted regions, it is localised in the image. Fast R-CNN [84] and its variants,
such as Mask R-CNN [100] and Faster R-CNN [101] are other prominent object
detection methods used within the context of object tracking for the detection stage.
Meneses et al. [79] used R-CNN [99] to extract the detection features. Garcia and
Younes [75] used Faster R-CNN [101] for object detection, where they trained the
network on 8746 images of a mock drogue for its application to detecting a beacon.
Li et al. [1] used Mask R-CNN [100] for object segmentation for segmenting vehicles
in the application of autonomous driving. They developed the DyStSLAM method,
which modified SLAM [102] to work in dynamic environments.
R-CNN [99] is beneficial for the localisation and classification of objects in an image.
Detection windows of different sizes scan the image to extract small regions that
are passed through the CNN for classification. This process ensures that different
scales of objects are detected. However, the problem with this approach is that
scanning multiple times over the images with different window sizes and passing
each extracted region to classify the object is time-consuming. For the tracking-by-
detection approach, the object detection process will be time-consuming for each
image frame of a video sequence. Therefore, using R-CNN may not be ideal for
real-time applications.

B. Single-shot detection methods
Single-shot detection methods such as Single-Shot Multibox Detector (SSD) [103] and
You Only Look Once (YOLO) [82] can perform localisation and classification. These
methods use default bounding boxes with different aspect ratios within the image to
classify objects. The bounding boxes with higher confidence scores are responsible
for object detection. YOLO [82] and its subsequent versions identified in the review
by Terven et al. [104] have significantly improved object localisation, classification,
pose estimation, and segmentation.
In the object detection for tracking, Aladem and Rawashdeh [8], Zhang et al. [80],
Ngoc et al. [44], Wu et al. [39] used YOLOv3 [83], while Zheng et al. [42] used
YOLOv5 [105]. Xiao et al. [78] used a Fast YOLO [106] network to localise a pedestrian
object in each video frame and at the same time, they used the MegaDepth [107]
CNN for the depth estimation.
The advantage of SSD [103] or YOLO [82] over R-CNN [99] is that both the local-
isation and classification process happen in a single pass through the CNN. Due
to the single-pass detection, these methods are better than R-CNN for real-time
applications. SSD and YOLO require a large dataset and computational power to
train. Also, the detection is limited to the training images used to train the network.
Therefore, it is important to consider if the target object class is present in the training
dataset for these networks before deploying these methods for tracking.

C. Other CNN methods
Yan et al. [32] used CNN as a feature extractor and used these features in the template
matching approach. Mdfaa et al. [46] used a CNN whose architecture was designed
with the augmentation of SiamMask [108] and MiDaS [109] architectures where each
of them was trained separately. ResNet18 [110] was used for binary classification, and
two datasets, the Stanford Cars Dataset and Describable Textures Dataset (DTD) [60],
were used for training. Gionfrida et al. [13] used OpenPose [111] to detect the
hand pose for further tracking. DyStSLAM helps localise an autonomous vehicle
by extracting dynamic information from the scene. The deep learning methods
incorporated in detection are used or developed based on the applications. Faster
detection methods are helpful when the applications are on a real-time system like
autonomous driving. Thus, deep learning methods should be evaluated on these
datasets with the development of new datasets. If the results are not accurate enough,
they will motivate the development of new methods.
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5.2. Tracking Methods

The tracking process takes place after object detection. The tracking method keeps
track of the movement of the object over multiple video sequence frames. This subsection
highlights the tracking methods based on the image processing framework, while iden-
tifying their strengths and weaknesses. Approaches towards tracking methods use the
multi-step image processing approach or end-to-end deep learning methods. In image
matching, the standard procedure is to identify the features of the object and match them
in consecutive video frames. The image matching technique is often accompanied by data
association methods that help to keep track of the object. The deep learning methods often
use end-to-end networks trained on image sequences. Deep learning can also be a two-step
approach where detection occurs before tracking, and the network tracks the features in
the subsequent frames. The literature outlines the two approaches used for object tracking.

5.2.1. Tracking by Detection

Tracking-by-detection (TBD) methods involve detecting objects in each image frame
without prior knowledge or estimation of their future state. The object is associated with
the previous detection [23].

A. Data association
Data association is the process of using previously known information about the
object pose, movement, and change in appearance and comparing it with the newly
identified objects and tracking movements of the object [25]. Data association is one
of the most used methods for tracking and it is often modified as per the specifications
of the applications. Chuang et al. [11] developed tracking for low-frame-rate video
to track live fish. Their method used stereo matching by dividing the fish object
into four blocks of equal size. The four blocks were formed by taking four equal
column widths of the object’s bounding box. These blocks in each of the left and right
images of the stereo were matched using the sum of absolute difference (SAD). The
stereo-matching process was followed by feature-based temporal matching, where
four cues, such as vicinity, area, motion direction, and histogram distance, were
considered. They further modified the Viterbi data association used in single-target
tracking to multiple tracking, using the Viterbi algorithm [112] for tracking. Since
the video had low contrast and a low frame rate, the Viterbi data association process
helped track the object in multiple frames.
Feng et al. [5] used 3D bounding boxes generated by an object detector [113]. These
bounding boxes were the basis for a multilevel data association method and a
geometry-based dynamic object classification method, enabling robust object track-
ing. The system also introduced a sliding window-based tightly coupled estimator
that optimised the poses of the ego vehicle with the sensors mounted on it, IMU
biases, and object-related factors that formed different features of the dynamic ob-
jects. This approach allowed for the optimisation of both the vehicle and object states.
These tracking methods used visual odometry data for self-localisation and object
detection to know the position of the object relative to the vehicle. Their approach re-
quired further development for tracking non-rigid objects and testing their methods
in real-world applications.
Zhang et al. [80] proposed a Multiplex Label Graph based on graph theory. This
graph was developed so that each node stored information about multiple detec-
tors. A CNN generated these detectors from the Part-Based Convolution Baseline
(PCB) [114] network that was trained on the Market-1501 dataset [115]. They treated
the object tracking in the frame as a graph optimisation problem where the goal is to
find the path of a detector in multiple image frames of a video sequence. To achieve
this, they broke down the video frames into a group of images called “window”
and detected the object within each successive frame in the window. They tested
different window sizes on MOT16 and MOT17 [68] datasets and determined that
a window size of 20 was the optimal value that increased tracking accuracy. Then,
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a data association was performed with certain threshold functions that identified
whether the nodes in the successive frames were associated. The distance between
the nodes in the successive frames checked that association.

B. Template matching
Template matching is a process of identifying small parts of the target image that
match the features using cross-correlation methods to a template image of the object
by scanning the target image [116]. Jenkins et al. [90] developed their methods
to track different types of objects available in the tracking dataset [117]. For this
purpose, they implemented a template matching technique using weighted multi-
frame template matching to detect the objects in consecutive video frames. The
weighted multi-frame template approach was tested using similarity metrics such
as normalised cross-correlation and cosine similarity. The results of the similarity
metrics showed a significant increase in accuracy on their chosen evaluation dataset.
Overall, they developed a robust method to identify and keep track of the object
in real time with minimal computation time. Tracking robustness depended upon
frame-by-frame template matching, which may pose problems during the detection
of any false negatives during the tracking stage.
Yang et al. [15] developed tracking methods for tracking the movement of hands in
medical applications. The tracking process was performed by detection. They used
hand gestures to automate the decision-making process regarding the beginning and
end of the tracking process. They further used stereo-matching methods to compute
the distance between the camera and the hand, allowing them to track the hand in
3D space. Their method relied on detection, which means that tracking information
would be lost for any false negative detection.
Richey et al. [12] developed tracking methods for breast deformation while the
patient was supine, and the video frames were collected using stereo cameras during
the hand movement of the patient. The labelled fiducial points, with the alphabet
written in blue ink on the breasts, were tracked over the video frame. The labels were
propagated through a camera stream by matching the key points to previous key
points. The features obtained from these fiducial points leveraged the ink colours
and adaptive thresholding, which were tracked using KAZE [98] feature matching.
The features were stored in order to be tracked over the sequences of images. This
method relied upon detecting all 26 English alphabets written on the breast; therefore,
a detection failure may disrupt the tracking process.
Zheng et al. [42] tracked drones from a ground camera setup. They proposed a
trajectory-based Micro Aerial Vehicle (MAV) tracking algorithm that operated in two
parts: individual multi-target trajectory tracking within each sensing node based on
its local measurements and the fusion of these trajectory segments at a central node
using the Kuhn–Mumkres [118] matching matrix algorithm. This research introduced
an MAV monitoring system that effectively detected, localised, and tracked aerial
targets by combining panoramic stereo cameras and advanced algorithms.

C. Optical flow
Optical flow deals with the analysis of the moving patterns in the image due to the
relative motion of the objects or the viewer [119]. Czajkowska et al. [14] developed
a tracking method for needle tracking. The detection step provided information
about the position of the needle. The tracking of needle tips focused on the single-
point tracking technique. Methods like Canny edge detection [93] and Hough
transform [120] were used for the trajectory detection. To implement the tracking
process in real time with low computation resources, they considered using the
Lucas–Kanade [121] approach that helped solve the optical flow equation using
the least square method. Finally, they used the Kanade–Lucas–Tomasi (KLT) [122]
algorithm that introduces the Harris corner [123] features. Furthermore, the pyramid
representation of the KLT algorithm was combined with minimum eigenvalue-based
feature extraction to avoid missing the tracking point of the needle. The two paths
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used for tracking were helpful in addressing both cases of fully and partially visible
needles with ultrasonic images. Their method had a low computational cost in
tracking, so it could be used in real time.
Wu et al. [39] designed and implemented a target tracking system for quadcopters
for steady and accurate tracking of ground and air targets without prior information.
Their research was motivated by the limitations of existing unmanned aerial vehicle
(UAV) systems that failed to track targets accurately in the long term and could not
relocate targets after they were lost. Therefore, they developed a vision detection
algorithm that used a correlation filter, support vector machines, Lucas–Kanade [121]
optical flow tracking, and the Extended Kalman Filter (EKF) [124] with stereo vision
on a quadcopter to solve the existing detection problems in UAVs. Their visual track-
ing algorithm consisted of translation and scale tracking, tracking quality evaluation
and drift correction, tracking loss detection, and target relocation. The target position
was inferred from the correlation response map of the translation filter. Based on the
target position, the target scale was predicted by a scale filter [125]. Then, the drift of
the target position was corrected with an appearance filter that detected if the target
was lost and allowed the tracking quality evaluation, which had a similar structure
to that of the translation filter. Furthermore, the tracking quality was evaluated by
the confidence score, composed of the average peak-to-correlation energy (APCE)
and the maximum response of the appearance filter. If the confidence score exceeded
the re-detection threshold, the target was tracked successfully, and the translation
and scale filters were updated. Otherwise, the SVM classifier was activated for target
re-detection. They made improvements on the Lucas–Kanade [121] optical flow and
Extended Kalman filter algorithms to estimate the local and global states of the target.
Their simulation and real-world experiments showed that the tracking system they
developed was stable.

D. Descriptor-based
Descriptors are the feature vectors of the object that capture unique features that help
to classify a particular object [126]. Aladem and Rawashdeh [8] used the YOLOv3
detector as a tool to create an elliptical mask by using a bounding box to extract
the features for a feature detector such as Shi–Tomasi’s [127] for feature matching.
The feature matching process was followed by Binary Robust and Oriented Features
(BRIEF) [128] for matching between the consecutive frames. Their method was
for the odometry data evaluated on the KITTI [35] dataset. There were certain
limitations, such as losing the objects and being unable to detect them. When the
same objects reappeared, they were classified as new objects. They suggested that
using a Kalman filter [88] in the future would help to deal with the missing object
problem during detection.
Ngoc et al. [44] used the features from YOLOv3 [83] for tracking. The features
extracted within the bounding box of this object detector were used in the particle
filter algorithm [129]. These particles were tracked in the subsequent frames of the
KITTI dataset [35]. While solving this problem, they also focused on identifying
multiple objects when the camera was in motion. They took a hybrid approach, using
stereo and IMU data for target tracking. Their method also took into account the
camera movement. Their method had a future scope of application in mobile robotics.

E. Kalman Filter
Kalman filtering is an algorithm that uses prior measurements or states and produces
estimates for future states over a time period [88]. The Kalman filter has a wide range
of applications where the future state estimate of the object of interest is required ,
such as guidance, navigation, and control of autonomous vehicles. Since the target
object in a video sequence shows the same property of moving states where state
estimates are required, the Kalman filter is applied in object tracking problems.
Busch et al. [2] tracked the movement of a pine tree branch. They tested different
types of feature descriptors such as SIFT [130], SURF [131], ORB [132], FAST [133],
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and Shi–Tomasi [127]. Their results showed that FAST-SIFT and Shi–Tomasi combi-
nations performed best at 1 m and a camera perspective of 0 degrees. These numbers
indicated the optimal position and orientation of the camera on the drone for collect-
ing the pine tree branch data. These features were further filtered and mapped to 3D
space to create a point cloud. The principal component analysis method was used
to detect the direction of the branch. A developed Kalman filter [88] was derived
that improved the intercept point estimation of the pine tree branch, which was the
point at 75 mm from the tip of the branch. This developed Kalman filter reduced the
intercept point error, which was helpful when determining the intercept point as the
sway parameter.
Huang et al. [33] developed a method where a Kalman filter initially predicted the
target position [88]. The tracking ball area was obtained through mean shift iteration
and target model matching. Since mean shift has problems with tracking fast objects,
combining it with a Kalman filter offers stability in detection since a Kalman filter is
useful in estimating the minimum mean square error in the dynamic system. Then,
the minimum area circular method was integrated to identify the position of the
tracking ball correctly and quickly. The recognition part was more robust when an
auxiliary module that pre-processed the area determined by the mean shift iteration
was proposed. Geometric methods obtained the swing angle for the ball mounted
on the crane payload. Their method was tested on an experimental overhead crane
with a swing payload setup. Therefore, the methods may need further modification
when the vision tracking system is applied to an outdoor overhead traveling crane
with background disturbances and unexpected outdoor environmental factors such
as wind and illumination.

5.2.2. Joint Detection and Tracking

Different from tracking by detecting, joint tracking methods are end-to-end trainable
networks where tracking and detection are performed in a single network [23]. Different
research groups have experimented with available CNN architectures, with more research
literature being added. With the development of more methods, the deep learning approach
can be further classified based on their methods. In this section, deep learning approaches
for tracking are categorised based on CNN-based, R-CNN-based, YOLO, and other neural
network-based methods. Deep learning methods for tracking are investigated by different
reviews [21–23] that focus on MOT methods and their application for autonomous driving.
In this subsection, the deep learning approach is classified based on the primary methods
used for localisation for tracking by detection and joint tracking.

A. CNN-based approaches
Convolutional Neural Network-based approaches involve using deep learning meth-
ods for feature extraction to track these features in consecutive video frames. Rasoul-
idanesh et al. [40] developed a tracking method with an RGB and depth frame input.
The spatial attention network extracted a glimpse from these data as the part of the
frame where the object of interest was probably located. Then, the features of the
object were extracted from the glimpse using a CNN with the first three layers of
AlexNet [18]. The glimpse could extract two types of features: ventral and dorsal.
The former extracted appearance-based features, while the latter aimed to compute
the foreground and background segmentation. These features were then fed to an
LSTM [134] network and fully connected neural networks to give a bounding-box
correction. The bounding-box correction was fed back to the spatial attention section
to compute the new glimpse and appearance for the next frame to improve object
detection and foreground segmentation. They showed that adding depth increased
accuracy, especially in more challenging environments. Their results showed that the
depth-based models could perform accurate tracking with only depth information,
without RGB.



Computers 2024, 13, 136 26 of 44

Zhong et al. [56] used an encoder–decoder network. They proposed to combine
a learning-based video object segmentation module with an optimisation-based
pose estimation module in a closed loop. After solving the current object pose, they
rendered the 3D object model generated on a computer to obtain a refined, model-
constrained mask of the current frame. It was then fed back to the segmentation
network for processing the next frame, closing the whole loop. To detect the occluded
object, they designed a novel six-DOF object tracking pipeline based on a mutual
guidance loop of video object segmentation along with six-DOF object pose estima-
tion and combining learning and optimisation methods. They presented a robust
six-DOF object pose tracker that could handle heavy occlusions. The experiments
showed that their method could achieve competitive performance on non-occluded
sequences and significantly better robustness on occluded sequences.
Yan et al. [32] developed a tracking method for the handover problem. They proposed
a tracking algorithm that improved the tracking accuracy based on the MDNET [135],
which is a multi-domain network. The target state in the initial frame of the video
sequence was given, and the tracking was started. Then, the target handover began
when the target crossed the field of view (FOV) line of the camera. The target feature
extracted by a CNN was used for template matching. When the target handover
was completed, the target was tracked in the next camera. In their research, they
mainly improved the accuracy of target tracking and target handover. In terms
of tracking, they improved on the original MDNET algorithm. In addition, they
combined perspective transformation with features extracted by a CNN to realise
the target handover.

B. R-CNN-based approaches
Meneses et al. [79] used R-CNN to extract features. The data association method
used these features to track the object. They developed SmartSORT, which modelled
the frame-by-frame association between new detections and existing targets as an
assignment problem. They considered neural networks trained with the backpropa-
gation algorithm as the regression model. Thus, given that the feature vector from
R-CNN was related to the detection and the target, the regression model calculated
their association cost. Once the regression model had computed every association
cost, it optimally solved the assignment problem via the Hungarian method [136],
which is an optimisation method that selects the best possible cost for a combination
of activities, in this case, the tracking path over the frame of images.
Garcia and Younes [75] developed a tracking system that worked by capturing an
image with a Kinect camera sensor, which acted as an input to a deep learning object
detector using Faster R-CNN [101], which output the bounding box around each
of the eight beacons on a drogue used to refuel an aircraft. Then, the navigation
algorithms that used non-linear least squares and collinearity equations were used to
find the position and orientation of the drogue, thereby allowing the aircraft to align
with the beacon for refuelling. They performed their experiments on a mock drogue
and verified their solution using the VICON motion tracking system. There were
issues with the trained detectors with the inference time being too large. Also, they
made several assumptions regarding using a mock drogue, and their image dataset
was too small for training with limited augmentation.

C. YOLO and other neural network-based approaches
Mdfaa et al. [46] developed methods that used depth information and training data
to train a Siamese network [137] to track an object. Since their application involved
tracking a moving object using an aerial drone, they developed a system in which
the drone kept following the object until it reached its location or the moving object
stopped. In this type of tracking, there are two sub-tasks: identifying the tracked
object and estimating its state, which is its position and orientation. The objective
of the tracking mission is to automatically predict the state of the moving object
in consecutive frames given its initial state. Their proposed framework combined
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2D SOT with monocular depth estimation (RGB-D) to track moving objects in 3D
space. Using this information, the Siamese network tracked the target object, which
produced a mask, a bounding box, an object class, and an RPN score for the object.
Xiao et al. [78] used Fast YOLO [106] and MegaDepth [107] for detection and depth
estimation. The results from these two networks were used as features for object
detection and tracking using a Kalman Filter [88]. They proposed an algorithm
that helped them track the pedestrian object in the video frame and developed
data association rules regarding remembering the objects in case of occlusion. They
developed a method that tracked the movement of multiple objects in 3D space on a
video. However, their real-time tracking needed improvement for a dynamic system
that interacts with the environment.
Yang et al. [6] developed the Self-Attention Optical Flow Estimation Network (SA-
FlowNet) for applications on event-based cameras. SA-FlowNet independently
uses crisscross and temporal self-attention mechanisms that help capture long-range
dependencies and efficiently extract the temporal and spatial features from the event
stream. Their proposed network used an end-to-end learning method to adopt a
spiking-analogue neural network architecture. It gained significant computational
energy benefits, especially for Spiking Neural Networks (SNNs) [138]. Their network
architecture was based on a deep spike-analogue neural network architecture that
combined event cameras for energy-efficient optical flow estimation. Their network
could achieve higher performance and save energy consumption. It could also be
used for object detection, motion segmentation, and challenging scenery tasks in dim
light, occlusions, and high-speed conditions.

5.3. Recommendations for Approaches and Methods for Applications

The methods for object tracking in computer vision rely on object detection followed
by tracking the detected object. The reliance on object detection before tracking ensures
that object detection methods are studied and improved. This review outlines a detailed
study of the detection methods incorporated into the object tracking literature over the last
ten years.

Based on the insights gained from the literature survey and the identification of ad-
vantages and limitations of different methods as presented in Tables 7 and 8, the following
recommendations are made for the selection of object detection methods:

• The classical approach is helpful when the target object can be identified by its geome-
try and where the computation resources and annotated datasets are limited to train a
deep learning model.

• Deep learning approach in detection for tracking applications is helpful for objects
with no standard geometry where the annotated dataset and computational resources
are available.

The object tracking process involves keeping track of the detected objects over different
video frames. Some methods detect objects in each video frame and then use association
techniques to match the detection. This process of detecting objects in each image frame
and later connecting the tracks is called tracking by detection (TBD). A different approach
to tracking involves joint detection and tracking (JDT), where an end-to-end framework
is used with estimation techniques to predict the objects in the next frame by using object
features from the previous frame. Figure 6 shows a generalised diagram of end-to-end
tracking using prior knowledge.
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Figure 6. A generalised diagram of end-to-end tracking using prior knowledge.

Table 7. Summary of classical approaches for detection.

Paper Key Methods Advantages Limitations

[28] Sparse feature image matching, Kalman filter
Enhances navigational accuracy using visual
odometry techniques, particularly useful in
GPS-denied environments.

Relies on accurate feature matching and may not
be ideal for objects without known feature
geometries.

[90] Template matching, weighted multi-frame
template, confidence scoring

Provides a fast and robust method for object
tracking in real-time video streams.

Template matching methods may not be suitable
for different environmental conditions.

[2] Depth-based feature matching, thresholding,
point cloud generation

Effective for detecting specific objects in complex
environments using depth information.

Limited to applications where depth information
is available and may not generalise well to
scenarios with different types of objects or
backgrounds.

[9] Morphological operations, wavelet transform,
object tracking

Robust approach for vehicle detection and
tracking in varying illumination conditions.

Accurate motion detection and further tests are
required to address fast-moving uncertain
objects.

[14] Fuzzy clustering, HoG feature detection Effective for detecting and tracking biopsy
needles in medical applications.

Requires accurate needle puncture detection and
feature extraction. Further tests are needed to
ensure higher performance in scenarios with
complex tissue structures or noisy ultrasound
images.

[33] Marker-based detection, geometric methods Provides a reliable method for tracking payload
swing in overhead cranes.

The methods were tested on a prototype in the
laboratory setting, and the results of real-world
data would confirm the robustness of the
methods.

[12] Marker-based detection, KAZE feature matching
Effective for detecting breast surface
deformations using markers and stereo
matching.

Using alphabets as markers sets the marker
limits to 26 markers based on the English
alphabet. A different marker identification
system is required to overcome this limitation.
Also, the method is suitable for detecting
markers with a particular ink colour.

[11] Stereo matching, block matching, Otsu’s
thresholding

Enables tracking of underwater fish using stereo
image processing techniques.

The block stereo matching helps detect the fish.
Morphological operations with arbitrary
threshold values are used. The block-matching
approach is not general enough to detect a
variety of aquatic life.

[15] Morphological operations, feature detection,
stereo tracking

Provides a method for 3D character recognition
and tracking using stereo vision.

The hand must be the only skin exposed during
the recording because if the face is visible, it
would be difficult to eliminate it during
morphological operation, and it would lead to
confusion regarding the location of the hand.

From the insights in terms of advantages and limitations of different methods and
approaches presented in Tables 9 and 10, the following are the recommendations for the
selection of tracking approaches:
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• The tracking-by-detection method is useful to track multiple objects when the objects
are not often occluded.

• Using data association methods is useful to track the trajectories of the target objects.
• Joint detection and tracking is useful when a dataset for tracking for a specific ap-

plication and the computational resources are available to develop an end-to-end
framework.

Table 8. Summary of deep learning approaches for detection.

Paper Key Methods Advantages Limitations

[1,75,79] R-CNN, Faster R-CNN for object detection,
Mask R-CNN for object segmentation

Effective for object localisation, classification,
and segmentation. Widely used in various
applications like beacon detection and
autonomous driving.

Time-consuming due to scanning multiple
regions with different window sizes for each
image frame and may not be suitable for
real-time applications. Requires extensive
training on target-specific datasets.

[8,39,42,44,78,80] YOLOv3, YOLOv5, Fast YOLO for object
detection

Performs localisation and classification in a
single pass through a CNN; suitable for
real-time applications. Efficient object
detection for tracking without prior
information.

Requires large datasets and computational
power for training. Detection limited to
classes present in the training dataset and
may misclassify untrained class of object.

[32,46] Custom CNN architecture for feature
extraction, object detection

Combines deep learning features with
traditional approaches. Incorporates multiple
architectures for improved object detection
performance.

Resource-intensive training process. Requires
large datasets and computational power.

[13] OpenPose for hand pose detection Provides accurate hand pose detection for
further tracking applications.

Dependent on the quality of the input data
and the performance of the OpenPose model.

Table 9. Summary of tracking-by-detection methods.

Paper Key Methods Advantages Limitations

[11] Stereo matching, feature-based temporal
matching, Viterbi data association

Effective for low-frame-rate video tracking,
integrates stereo matching and feature-based
matching for robust tracking.

Viterbi data association may introduce
computational cost and may not perform
optimally in scenarios with high object occlusions.

[5] Multilevel data association, geometry-based
dynamic object classification

Robust tracking based on 3D bounding boxes and
dynamic object classification.

Further development is needed for tracking
non-rigid objects and testing in real-world
applications.

[80] Multiplex Label Graph based on graph theory,
CNN-based object detectors

Offers a novel approach to object tracking using
graph optimisation techniques.

Computational complexity may be high, and
optimisation parameters may require tuning for
different scenarios.

[90] Weighted multi-frame template matching Robust template matching technique for real-time
object tracking.

Relies on accurate template matching in
consecutive frames, and it may suffer from
computational complexity in scenarios with high
frame rates.

[15] Stereo matching, 3D tracking Enables 3D tracking of hands in medical
applications using stereo matching.

Tracking relies on accurate detection, may lose
tracking information for false negative detections.

[12] Feature extraction, fiducial tracking, KAZE
feature matching

Tracks fiducial points on the breast for
deformation analysis using stereo cameras.

Relies on accurate fiducial detection and may face
challenges with detection in scenarios with
complex backgrounds or lighting conditions.

[42] Trajectory-based tracking, Kuhn–Mumkres
matching matrix algorithm

Effective for tracking MAVs using panoramic
stereo cameras and trajectory optimisation
algorithms.

The method may face challenges with fast-moving
objects or environments with limited visual cues.

[14] Lucas–Kanade optical flow, KLT algorithm Provides real-time needle tracking using optical
flow and feature matching techniques.

Requires robust feature extraction and matching
algorithms, and the accuracy may be affected in
scenarios with rapid motion or complex
backgrounds.

[39] Correlation filter, SVM classifier, Lucas–Kanade
optical flow, EKF

Stable and accurate target tracking system for
UAVs using a combination of visual detection
algorithms.

Complex algorithmic pipelines may introduce
computational overhead and require fine-tuning
for different UAV platforms or tracking scenarios.

[8] YOLOv3 object detection, Shi–Tomasi feature
matching, BRIEF descriptor

Efficient tracking using YOLOv3 features and
robust feature matching techniques.

Relies on accurate object detection and feature
matching, and robustness may be affected in
scenarios with object occlusions or cluttered
backgrounds.

[44] YOLOv3 object detection, particle filter Hybrid approach for object tracking using
YOLOv3 features and particle filtering.

Parameter tuning may be required, and
computational cost will increase in scenarios with
large numbers of objects.
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Table 9. Cont.

Paper Key Methods Advantages Limitations

[2] SIFT, SURF, ORB, FAST, Shi–Tomasi feature
descriptors, Kalman filter

Provides accurate tracking of pine tree branches
using a combination of feature descriptors and
Kalman filtering.

Requires careful selection and tuning of feature
descriptors and may face challenges in complex
branch motion or occlusion scenarios.

[33] Mean shift, Kalman filter, geometric methods Effective for tracking crane-mounted objects using
mean shift and Kalman filtering.

There is a possibility of reduced robustness in
outdoor environments with unpredictable factors
such as wind or lighting changes.

Table 10. Summary of joint detection and tracking methods.

Paper Key Methods Advantages Limitations

[40] Use of depth information for tracking accuracy
enhancement

Improved accuracy, especially in challenging
environments

Depth-based models may require additional
hardware or sensors, increasing complexity and
cost

[56] Combination of video object segmentation and
pose estimation in a closed loop

Robust tracking performance, particularly in
handling occlusions

Complexity of closed-loop system may increase
computational overhead

[32] Integration of CNN features for template
matching and perspective transformation Improved accuracy for handover tracking tasks

The method is specific to handover tracking
tasks and may not generalise well to other
tracking scenarios

[79] R-CNN features for frame-by-frame association Accurate frame-by-frame association for tracking
objects

Computational complexity may increase with the
use of R-CNN features, potentially limiting
real-time performance

[75] Implementation of Faster R-CNN for object
detection and navigation algorithms

Accurate object detection and navigation for
aircraft refuelling

Issues with large inference time and limited
training data may hinder real-world applicability

[46] Integration of Siamese networks with depth
information for 3D object tracking

Capability to track objects in 3D space, useful for
applications like drone surveillance

Depth information may not always be available
or reliable, limiting the applicability of the
method

[78] Usage of Fast YOLO and MegaDepth for
pedestrian tracking

Efficient pedestrian tracking with consideration
of occlusions

Real-time performance may be impacted by the
computational demands of YOLO and
MegaDepth networks

[6] Introduction of SA-FlowNet for energy-efficient
optical flow estimation

Reduced energy consumption and improved
performance for object detection and motion
segmentation

Specific to event-based cameras, may not be
directly applicable to conventional camera
systems

6. Applications

The main reason for developing different methods and datasets is to ensure they are
applied to solve real-world problems. Each real-world scenario and problem is different,
and each has its constraints. In object tracking using computer vision, each problem,
depending upon the environmental conditions such as indoor or outdoor applications,
available computational resources, and the cost of the system, can become a constraint. This
section outlines the different domains in which the object tracking methods are applied.
Table 11 categorises different papers based on their applications studied in this review.
Some of the papers in Table 11 overlap the application domains, such as multiple-object
tracking (MOT) application methods that can be applied to detect multiple pedestrians
for surveillance applications. The following subsections are grouped by their primary
applications, and Figure 7 shows the structure of the categorisation of the application.
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Figure 7. Structure of primary applications of object tracking.

6.1. Medical

Computer vision is preferred in medical applications where non-intrusive diagnoses
are required. Non-intrusive diagnoses involve imaging and computational methods that
elaborate results to help medical practitioners better diagnose patients. Richey et al. [12]
used object tracking to track marked fiducial points for breast conservation surgery. Gion-
frida et al. [13] used hand-pose tracking in the clinical setting to study hand kinematics
using pose with a potential application in rehabilitation. Czajkowska et al. [14] developed
processes for tracking a biopsy needle. Zarrabeitia et al. [16] applied their method for
tracking 3D trajectories of droplets, which has a potential application in medicine for
bloodletting events. Yang et al. [15] developed the 3D character recognition methods by
tracking hand movement, which has an application in physical health examination and
communicating using sign language. The results from object tracking provide insights
into the operation procedure, providing greater details to the practitioners to make in-
formed decisions. Thus, object tracking has a wider scope of application in numerous
medical fields.

6.2. Autonomous Vehicles

An accurate object tracking solution is required in fields with a lot of dynamic move-
ment, and autonomous driving is a primary example. Several types of research focus on
detecting objects that could be observed in potential driving scenarios, thereby creating
evaluation datasets of cars [35] and pedestrians [48] in the autonomous driving context.
Different methods [1,3,5–10] have been proposed for applications in autonomous driving
for detecting objects. Object tracking in autonomous driving involves detecting all moving
objects, such as cars and pedestrians, from the sensor systems of the car. The datasets [35,49]
collected for autonomous driving come with different attributes such as GPS, IMU, radar,
and images. Yet, the scope of object detection for autonomous driving applications is
limited to the few attributes in the dataset, such as radar, IMU, and images.

Similar to autonomous driving, water surface vehicle applications [28,29] face similar
problem constraints. These attributes help detect objects and compute their trajectories in
3D space from the relative position of the vision system mounted on the vehicle. Knowing
the movement of different objects around the autonomous vehicle, a future aim is to use
this information for cruise control.
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Autonomous aerial vehicles need to be aware of the dynamic environment around
them. There are multiple applications in the field of aerial vehicles. Some applications track
objects using sensors mounted on the aerial vehicle, while others track the flying aerial
vehicle from the ground. Regarding tracking flying drones, Zheng et al. [42] applied their
methods to develop a panoramic stereo to track rogue drones. Mdfaa et al. [46] developed
a single-object tracker to be mounted on an aerial vehicle. Garcia and Younes [75] applied
their method in automatically refuelling unmanned aerial vehicles using a drogue. Busch et
al. [2] developed object tracking for the application of drones in agriculture. Wu et al. [39]
applied target tracking on a quadcopter. The wide range of applications of unmanned
aerial vehicles indicates that there are different niche cases to consider in aerial applications,
which demand more datasets and methods. Figure 8 provides an overview of object
tracking methods and their application to autonomous vehicles.

Figure 8. Overview of object tracking in autonomous vehicles.

6.3. Surveillance

Human movement tracking is one of the methods that is used in surveillance and
sports. It is important to track the path of human movement in the scene and detect and
track it over a longer period using multiple cameras. The application of human move-
ment tracking also has to consider the problem of occlusion [56]. Yan et al. [32] tracked
human skaters over multiple cameras to solve the object handover problem. Multiple
methods [30,36,37,72,78,80,139,140] were developed for their applications in human pedes-
trian tracking. Along with human movement, pose estimation is another problem that
fits well with action tracking. Different methods [13,77,81] were developed for pose esti-
mation, which has applications in human action tracking and robotics [3,8]. The action
tracking methods have different applications in surveillance, pose estimation, and robotics.
Further development in these methods will have a wider scope for human–computer
interaction problems.

6.4. Robotics

In robotic applications, a robot is an example of a dynamic system that interacts and
manoeuvres itself autonomously within its environment. A robot needs to localise itself
and the objects around it. Different sensors provide environmental input data to the robot,
helping it accomplish its goals and operate safely without breaking itself, damaging nearby
objects, or harming humans. Vision sensors on robots provide fine-grained data of the
objects of interest, enabling the robots to perceive their surroundings. Busch et al. [2] used
an object tracking method on aerial robots to investigate the movement of tree branches.
Similarly, Wu et al. [39] also deployed a vision-based target-tracking method on aerial
robots to track both ground and aerial objects. Therefore, using robots in object tracking
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applications is essential when the environment is too hostile or fast-paced for humans to
operate, such as examining tree tops [2] or tracking aerial vehicles [39].

Persic et al.’s [3] method has an application in autonomous vehicles and robotics. Since
their method focused on moving target tracking, it has a potential application in mobile
or industrial robotics where there are different moving objects with higher uncertainty of
object collisions. Similarly, Aladem and Rawashdeh [8] also developed their methods for
safe navigation for mobile robots.

The field of robotics can benefit from object tracking as it allows the robots to perceive
their environment while ensuring safe operation and preventing harm to humans. There is
further potential for the application of object tracking methods in human–robot interaction,
where the robots track human actions to work together to achieve a common goal.

6.5. Agriculture

Object tracking has potential in agriculture applications. Collecting information about
plants and trees constantly swaying due to environmental factors such as wind and rain is
important in agriculture. Busch et al. [2] applied object tracking to identify the swaying
motion of a pine tree branch. Their motivation for developing tracking methods for tree
branches was to allow researchers in the forestry industry to select trees for breeding,
analyse genetics, and monitor plant diseases. The use of aerial vehicles with computer
vision to examine tree branches outdates the use of ladders or manually climbing trees with
a rope. In their application, they mounted their camera on an unmanned aerial vehicle
with a manipulator arm to collect data on pine tree branches. Their proposed application
has the potential to be used in the forestry industry to improve the efficiency of collecting
tree data and thus maintain healthy forests.

Using an autonomous system in fishing is an important application in the fishing
industry. Chuang et al. [11] developed methods for tracking live fish underwater. Tracking
the movement of fish underwater is beneficial as it improves the efficiency of fishing
operations. Knowing the positions of the fish, an autonomous system can deploy a trawl
to catch fish. Furthermore, a computer vision system with object detection and tracking
algorithms can lead to sustainable fishing techniques without damaging the ecosystem.
Drawing inspiration from these applications, many more potential applications can be
developed in agriculture using object tracking and computer vision.

6.6. Space and Defence

Object tracking has been applied to space and defence applications. Tracking space
debris is an important application in the space industry. The damage caused by space
debris could lead to the loss of space shuttles and human lives. Tracking space debris is
essential for safer space flight, and thus, the space debris must be removed. Biondi et al. [76]
developed their method to estimate the dynamic rotational state of space debris. Using
computer vision to track space debris could lead to potential unmanned space missions to
clear the space debris for safer space flights.

Defence applications are also using computer vision for object tracking tasks. Kwon
et al. [4] developed a method for tracking and intercepting missiles with applications in
defence technology. Their method aimed to solve the problem where both the target and
the camera are moving. Thus, the method had potential applications in mobile robotics
and unmanned aerial vehicles.

Garcia and Younes [75] developed methods for applications in autonomous aerial
refuelling of aircraft. In the aerial refuelling task, a tanker aerial vehicle provides a refuelling
probe to the drogue of the receiving aircraft and the refuelling is performed mid-air. In
their research, their vision system, comprising a monocular camera on an unmanned aerial
vehicle, used object detection to track the refuelling drogue in mid-flight and automatically
refuel without human intervention. The refuelling task accounted for turbulence, and both
the camera system and refuelling drogue were in motion.
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The above-mentioned applications are reported based on computer simulation or
experimental tests only. Further development will need to be conducted before they can be
reliably deployed to real-world and critical applications.

Table 11. Categorisation of papers based on applications.

Application Papers

Medical [12–16]
Aerial vehicles [2,39,42,46,75]
SOT [33,40,46]
MOT [11,44,76,79]
Human action tracking [30,32,36,37,56,72,78,80,139,140]
Pose estimation [13,77,81]
Autonomous driving [1,3,5–10]
Aquatic surface vehicle [28,29]
Robotics [3,8]
Agriculture [2,11]
Space/Defence [4,76]

7. Discussion

Despite extensive research, object tracking using computer vision is still an active
research area. The different solutions proposed to solve the tracking problem emerge
from the constraints of the problem regarding resources and applications. The application
of object tracking in different domains drives the development of the datasets, methods,
and evaluation processes. Object tracking methods have several potential applications in
different industries and research domains. The development of methods to address the
problem constraints has evolved the approach from a set of image processing steps to using
end-to-end deep learning models. While significant progress has been made in the last
ten years in object tracking using computer vision, there is still room for improvement in
addressing issues such as developing generalised procedures or frameworks, addressing
lighting conditions, tracking fast-moving objects, and occlusion.

7.1. Methods

Despite the lack of a formal generalised procedure or framework for object tracking,
the closest generalisation of procedure in the literature is first object detection and then
object tracking. While this generalised tracking procedure is becoming more common, the
dependency on multiple processing steps during the detection affects the overall robustness
of the method. These image processing steps are developed iteratively, adjusting their pa-
rameters empirically or using statistical methods based on the results. When the algorithm
receives the least error, it is ready for deployment. However, the method’s accuracy is set
based on the dataset upon which it was evaluated. Therefore, the two-step detection and
tracking process can be combined into a single end-to-end deep learning framework.

Deep learning detection methods also incorporate an iterative process; however, since
different architectures are already evaluated on a large and varied detection dataset with
multiple classes, they become useful out of the box for detection. The object detection
community is incrementally improving the detection method to be faster in real time [83].
Yet, these efficiency improvements come at higher computation costs. Classification and
localisation can be performed simultaneously in real time with the detection architectures,
such as YOLO [82] and subsequent versions. This dual functionality of deep learning
methods to localise and classify in real time has led to a considerable leap in multiple-
object tracking problems. However, in unique applications where the network was not
trained to include a class of objects, the network needs to be trained either from scratch or
using transfer learning [141] methods. Training a deep network requires computational
resources; the image processing steps are preferred where such resources are unavailable.
However, image processing methods in recent years have declined due to the availability of
computational resources and pre-trained deep network architectures for detection. Apart
from detection, very few methods use deep learning architecture for tracking. Tracking
objects is still performed using estimation methods such as data association and Kalman
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filter. Using methods such as LSTM has helped create an end-to-end detection process in
deep learning.

One of the important reasons for developing object tracking methods is for the ma-
chines to interact with their dynamic environment. This problem falls under the domain
of ego-based problems where the sensors are mounted on machines such as robots or
autonomous vehicles [5]. For ego-based problems, the objects are localised and tracked
from the point of view of the machines. At the same time, the machines must also be able
to localise themselves in the dynamic environment to function in a complex environment
such as traffic or manufacturing. Therefore, there is a future scope for developing methods
and procedures to adapt these vision systems on robots or autonomous vehicles to make
an adaptive system in a dynamic environment.

Autonomous aerial vehicles such as unmanned drones are being used to track vehi-
cles [39,46] and in the agricultural sector [2]. Since the range of vision sensors is limited,
these drones often have to fly closer to the target, which can interfere with the object’s
natural state, such as vegetation, or distract humans in a crowded environment. Also,
tracking drones from the ground station is an important application, and the distance from
the ground station to the drone impacts the localisation and tracking of the drones [42].
Furthermore, in space applications for tracking debris, it is essential to track a fast-moving
object at a faraway distance [76]. The range of measuring distance using a stereo camera
depends upon the stereo camera parameters, such as the baseline between the two cameras.
Zheng et al. [42] calculated the effective sensing range of the entire system of panoramic
stereo reached 80 metres. Therefore, progress in increasing the current range of a state-of-
the-art system will be significant progress in detecting faraway objects. Therefore, there is
further scope for developing vision sensors and methods to track faraway objects.

7.2. Datasets

The applications of object tracking in diverse domains, from medical applications to
autonomous navigation, have led to the creation of datasets catering to specific domains.
The availability of the dataset ensures that all possible conditions of applications are
considered. Since consistently testing on real-world applications can be expensive, the
datasets can often simulate the real world to test the applications. In this case, the data
can be manually collected from the real world or generated synthetically. However, if
the methods are only evaluated on the dataset, it leaves further questions about their
applicability in real-world dynamic situations.

In the iterative development process, real-world scenarios may often not be considered,
and the method may be more accurate than the dataset. Still, it may not perform well in
real-world applications. The most widely used odometry dataset, KITTI [35], consists of
different sensor data types that help localise autonomous driving. Researchers combine
different object detection datasets and develop methods to cater to real-world applications
in a dynamic driving environment. The methods are developed on simulated datasets since
some applications are particular, such as space applications [4,76]. For such applications, it
is difficult to obtain real datasets and to experiment on such systems, which is an expensive
process. While the ground truths often consist of object location, it will be helpful to
have additional ground truths about tracking in different situations, such as variations in
illumination, at high speed, and with occlusions.

While it is important to develop vision sensors and methods for detecting and tracking
faraway objects, developing the dataset for training a deep learning network and evalu-
ating methods is equally important. For applications such as missile tracking or missile
intercepting systems [4], collecting data can be a cumbersome process. An alternative in
this situation is to generate a synthetic dataset that imitates the real-world application.
However, this synthetic dataset needs to be validated before the methods and equipment
are developed for the applications. Therefore, researching approaches to create synthetic
datasets and evaluating their validity for complex applications such as faraway object
detection can be an important research focus.
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Several problems in object tracking incorporate the use of multiple cameras [30,32]. A
class of problem that uses multiple cameras is the handover problem [32] in object tracking,
where the object disappears from the field of view of a camera and appears in the field of
view of the next camera. A large-scale dataset can be generated using multiple cameras
with ground truths that track objects over multiple cameras.

8. Limitations and Future Work

As computer vision systems are being incorporated into different engineering domains,
these systems’ ability to interact with the dynamic world relies on tracking objects in real
time. New problems are encountered in object tracking as new applications are investigated.
While developing a generalised method is often the researchers’ goal, addressing all the
issues encountered in object tracking in one method is challenging. Therefore, the scope for
developing methods in object tracking using computer vision is wide, and several areas
can be further investigated to address each problem.

The literature review in this paper raised significant questions about the future scope
of research. The research questions, along with recommendations, are outlined as follows:

Q1 Could an end-to-end deep learning approach be developed to detect, classify, esti-
mate the pose, and track the object in a 3D space?
Recommendation: There is significant development in object detection and classifica-
tion methods such as YOLO [82], R-CNN [99], and Fast R-CNN [84]. Since methods
such as YOLO [105] can localise, classify, segment objects, and estimate object pose,
it will be worth investigating if the additional feature of tracking can be incorporated
in this deep learning framework over video frame sequence. A sequence of video
frames could act as an input to these networks, and post-processing steps such as
estimating the tracks and stereo matching can be incorporated to detect and track
objects. Methods such as SA-FlowNet [6] use a sequence of images for event-based
cameras to track objects over time. Spatial attention networks [40] address the track-
ing using a sequence of video frames for depth estimation using RGB-D sensors.
These methods can be further investigated for both calibrated and uncalibrated
stereo cameras for depth estimation using a deep CNN.

Q2 Could the range of 3D tracking for faraway objects be extended?
Recommendation: Object tracking is being incorporated in applications of aerial
vehicles where the long-range for depth estimation is important. The current state-
of-the-art system uses a DS-2CD6984F-IHS/NFC HIKVISION camera and achieves
a tracking range of 80 metres using panoramic stereo on a ground station for drone
detection [42]. The range may be enhanced by using cameras with a higher zoom fac-
tor to construct a similar panoramic system. However, it will be worth investigating
whether changing the camera parameters will significantly impact the results using
the same methods or if the current state-of-the-art method will require modifications
to track faraway objects.

Q3 How can object tracking be implemented on adaptive systems in a dynamic environment?
Recommendation: Robotics is an example of an adaptive system where the robots
are subjected to a dynamic environment with moving objects. In this environment,
robots need to know the position of the moving objects relative to their position
and estimate their location with respect to their trajectory to avoid a collision. This
problem may be addressed by developing methods in robots that monitor their
environment in real time. The tracking process used in the present methods is
performed as a post-processing method where the entire video sequence is available.
This creates a limitation in a real-time system, where future information about the
environment is unavailable. A predictive tracking algorithm will be helpful for the
robot to avoid collision with moving objects. Therefore, for applications in adaptive
systems, object tracking accompanied with tracking prediction will have a wider
scope for robotics application.

Q4 What improvements are required in the current datasets for object tracking?
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Recommendation: The datasets currently used for object tracking, as highlighted
in Section 4, were developed for their respective applications. Datasets such as
KITTI [35] are specific for autonomous driving, which consist of not only stereo
camera video data but also IMU, GPS, and laser scan data. Other datasets such
as pedestrian tracking [48,71] were developed for surveillance applications. These
datasets are specific to their applications, and their limitation is that they are not
generalised enough for a wider application in multiple scenarios.
To develop a dataset for 3D object tracking, stereo camera data of diverse objects
similar to ImageNet [142] or MS COCO [143] with their ground truth will provide
a common ground to evaluate the performance of object tracking methods. Along
with a wider range of object classes, this dataset should also consider the 3D position
of the object with respect to the camera. Therefore, an object-tracking dataset may
consist of the following attributes:

• Stereo camera video sequence;
• Object classes in each video frame;
• Object location with its bounding-box coordinates in each video frame;
• Ground truth for object tracks for each video sequence;
• Ground truth for object’s 3D position relative to the camera.

Generating such a dataset may require extensive effort. However, some data collec-
tion processes could be automated, such as using ultrasonic sensors and structured
light sensors such as RGB-D [34] to collect ground truth for distance where possible,
and the annotation for the dataset could be crowd-sourced using Amazon Mechani-
cal Turk as used by Stanford’s dataset [59]. Therefore, there is a scope for developing
methods and processes for data collection and benchmarking the dataset for object
tracking in computer vision.

Q5 Should hybrid sensors be used for object tracking, or should object tracking com-
pletely rely on computer vision?
Recommendation: Having more sensor data when possible is always beneficial. In the
case of the KITTI [35] dataset, multiple sensor data are available to the user. Since the
application is focused on autonomous driving, using a variety of sensors helps this
type of adaptive system make better decisions based on its dynamic environment.
There are systems where having more sensors could create an additional payload
on the mechanical system. Aerial drones and industrial robots are examples of
adaptive systems where the additional payload can create functional problems.
Having a single vision sensor on these devices, such as a stereo or RGB-D camera,
could reduce their weight, thereby reducing the additional power requirement for
operation. In these situations, relying on computer vision is beneficial. Thus, there
is a requirement for better methods that address the diverse scenarios where these
systems are deployed.

9. Conclusions

Object tracking is still an ongoing research area, and there is no standardised approach
to solving it. Many approaches are developed using different hardware, datasets, and
application methodologies. This paper conducted a synthesised review to group these
methods according to the hardware and datasets used, the methodologies adopted, and
the application areas for object tracking.

In particular, we divided the literature according to the type of cameras used, such as
monocular, stereo, depth, and hybrid sensors. The datasets were grouped according to their
focused research applications, such as autonomous driving, single-object tracking, multiple-
object tracking, and other miscellaneous applications. We also classified the existing
literature according to the methodologies used. The application of object tracking is also
grouped based on their area of focus, such as medical, autonomous vehicles, single-object
tracking, multiple-object tracking, surveillance, robotics, agriculture, space, and defence.
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The contribution of this review is the systemic categorisation of different aspects of the
object tracking problem. This review highlighted the trends and interest in object tracking
research over the last ten years, thereby contributing to the detailed literature review on
hardware, datasets, approaches, and applications. Furthermore, tabulated information
summarised different tools and methods to develop an object tracking system. A taxonomy
was provided for the methods, while identifying the advantages and limitations of different
approaches and methods. The review also recommended when the equipment, datasets,
and methods can be used. Also, from the review of the literature, different research
questions were identified with a recommended approach to address these questions.
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Abbreviations
The following abbreviations are used in this manuscript:

APCE Average peak-to-correlation energy
CNN Convolutional Neural Networks
DTD Describable Textures Dataset
EDM Electronic distance meter
FIR Finite impulse response
FOV Field of view
GUI Graphical User Interface
HCI Heidelberg Collaboratory for Image Processing
HoG Histogram of Oriented Gradients
IMU Inertial measurement unit
JDT Joint detection and tracking
KITTI Karlsruhe Institute of Technology and Toyota Technological Institute
LiDAR Light Detection and Ranging
MEMS Micro-Electromechanical System
MOT Multiple-object tracking
MVSEC Multivehicle Stereo Event Camera
NUC Next Unit Computing
R-CNN Regions with CNN features
RBOT Region-based object tracking
RPN Risk Priority Number
SAD Sum of absolute difference
SMDWT Symmetric mask-based discrete wavelet transform
SNN Spiking Neural Networks
SOT Single-object tracking
SSD Single-Shot Multibox Detector
TBD Tracking by detection
VI Visual Inertial
VOT Visual object tracking
YOLO You Only Look Once
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