
Citation: Lima, J.G.; Giusti, R.;

Dias-Neto, A.C. LeakPred: An

Approach for Identifying

Components with Resource Leaks in

Android Mobile Applications.

Computers 2024, 13, 140. https://

doi.org/10.3390/computers13060140

Academic Editors: Phivos Mylonas,

Katia Lida Kermanidis and Manolis

Maragoudakis

Received: 2 May 2024

Revised: 23 May 2024

Accepted: 31 May 2024

Published: 3 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

LeakPred: An Approach for Identifying Components with
Resource Leaks in Android Mobile Applications
Josias Gomes Lima * , Rafael Giusti and Arilo Claudio Dias-Neto

Institute of Computing, Federal University of Amazonas, Manaus 69080-900, Amazonas, Brazil;
rgiusti@icomp.ufam.edu.br (R.G.); ariloclaudio@gmail.com (A.C.D.-N.)
* Correspondence: josias@icomp.ufam.edu.br

Abstract: Context: Mobile devices contain some resources, for example, the camera, battery, and
memory, that are allocated, used, and then deallocated by mobile applications. Whenever a resource
is allocated and not correctly released, a defect called a resource leak occurs, which can cause
crashes and slowdowns. Objective: In this study, we intended to demonstrate the usefulness of the
LeakPred approach in terms of the number of components with resource leak problems identified in
applications. Method: We compared the approach’s effectiveness with three state-of-the-art methods
in identifying leaks in 15 Android applications. Result: LeakPred obtained the best median (85.37%)
of components with identified leaks, the best coverage (96.15%) of the classes of leaks that could
be identified in the applications, and an accuracy of 81.25%. The Android Lint method achieved the
second best median (76.92%) and the highest accuracy (100%), but only covered 1.92% of the leak
classes. Conclusions: LeakPred is effective in identifying leaky components in applications.

Keywords: mobile apps; resource leak; tool evaluation; database; Android; static analysis; application

1. Introduction

The number of mobile devices used in 2022 was almost 16 billion [1], nearly twice
the world population, which was reported as 8.1 billion this year [2]. These devices
include resources such as memory, sensors, microphone, GPS (Global Positioning System),
bluetooth, camera, and NFC (Near Field Communication), which must be handled by
applications to provide functionalities to the users. During the development of a mobile
application, developers implement the acquisition, use, and release of such resources. For
example, when one opens a camera application, the camera resource is acquired and used
to take pictures, and, once the application is closed, the camera resource must be released.
However, sometimes these resources are acquired by a mobile application and not properly
released, resulting in a defect called resource leak, which can lead to unnecessary battery
consumption, crashes, and slowdowns [3].

In recent years, some methods have been developed to identify resource leaks in
mobile applications. For example, Android Studio has the Android Lint method that inspects
code and shows resource leaks as well as other defects [4]. The FindBugs method performs
code analysis in order to find structural problems and resource leaks [5].

In a previous work, the authors presented the LeakPred approach, which manages to
identify resource leaks in Android applications using machine learning (ML) [6]. A study
was carried out to verify which is the best ML classifier to be used in LeakPred and showed
that the KNN (K-Nearest Neighbor) and DNN (Deep Neural Network) classifiers obtained
the best results [6].

Continuing with the evolution of this approach, we want to demonstrate the usefulness
of LeakPred by helping app developers to identify components (in this work, a component is
considered a method of a class of an object-oriented program) with resource leak problems.
So, we validated this approach with three state-of-the-art methods through a controlled

Computers 2024, 13, 140. https://doi.org/10.3390/computers13060140 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13060140
https://doi.org/10.3390/computers13060140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-4234-2899
https://orcid.org/0000-0002-1288-7126
https://orcid.org/0000-0002-1034-4806
https://doi.org/10.3390/computers13060140
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13060140?type=check_update&version=1

Computers 2024, 13, 140 2 of 17

experiment. These state-of-the-art methods identify a limited number of kinds of resource
classes with leaks, and the current number of these resources class is greater. Therefore,
this article will present a comparative study.

The three state-of-the-art methods used in the study were Android Lint [4], FindBugs [5],
and Infer [7]. This new study was carried out in the form of a controlled experiment,
where 15 mobile applications were used, which were randomly selected from the list of
applications available at [8].

The results of this study indicate the feasibility of the LeakPred approach to assist
developers in identifying components with resource leaks, since the approach reached the
best median (85.37%) of components with identified resource leaks and had the highest
coverage (96.15%) of classes of resource leaks in applications. The main contributions of
this work are as follows:

• The CompLeaks database was updated with 22 more applications containing 467 com-
ponents with resource leaks, available at https://bit.ly/3zLmgFj (accessed on 1 May
2024);

• An analysis of the effectiveness of the LeakPred approach was conducted in relation
to three state-of-the-art methods in identifying leaky components in Android mobile
applications;

• The material necessary to replicate this study is available at https://bit.ly/3o8U1gU
(accessed on 1 May 2024).

This article is organized as follows: Section 2 shows the related work, Section 3
presents the planning and execution of the study, Section 4 shows the results found,
Section 5 presents the study discussions, and Section 6 discusses the threats to the validity
of the study. Finally, Section 7 shows the conclusions and future work.

2. Related Work

In recent years, many resource leak identification techniques have been proposed in
order to help Android developers to properly manage device resources. However, there
was no database of applications with leaks, so in order to evaluate these new techniques, it
was necessary to make an effort to find applications to be used in studies [8]. To reduce
this problem, Liu et al. [8] presented the DroidLeaks database and also revealed some
characteristics of leaks in Android applications, as well as some defect patterns in resource
management. To demonstrate the usefulness of the database, they performed a study
comparing eight methods in relation to detecting leaks in Android mobile applications,
where the Android Lint and FindBugs methods did not have any false positives, but also,
they have not achieved the best detection rates [8].

Some state-of-the-art techniques for identifying resource leaks in Android applications
are LeakPred, Infer, FindBugs, and Android Lint, which will be briefly explained below.

Lima et al. [6] proposed an approach called LeakPred, which uses machine learning
to identify leaks in Android application components. In ML, a database is needed, and
Lima et al. presented the CompLeaks database, which was based on the DroidLeaks database.
Aiming at analyzing which would be the best classifier to be used, a study was carried out
comparing six classifiers commonly used in studies for defect prediction, where a KNN
and DNN had the best results, and in this study, the DNN classifier was used, which had
the best result (78.93%) in the ROC AUC metric. This evaluation metric was chosen because
it is recommended for when the database is unbalanced [6].

Facebook [7] uses the Infer method, which uses static analysis. It can parse Java and
C/C++/Objective-C code. After parsing, it will produce a list of possible defects (including
resource leaks). Some of the companies that use this method are Amazon Web Services,
Spotify, Uber, WhatsApp, Microsoft, Mozilla, and Instagram [7].

Pugh et al. [5] presented the static analysis method FindBugs. It can identify more
than 200 defect patterns, such as null pointers, infinite recursive loops, resource leaks, the
misuse of Java libraries, and deadlocks. The project is open-source, has been downloaded
over 230,000 times, and is used by many large companies and financial institutions [5].

https://bit.ly/3zLmgFj
https://bit.ly/3o8U1gU

Computers 2024, 13, 140 3 of 17

Android [4] provides the Android Lint method. This method helps to find code with
an inefficient structure that can affect the reliability and efficiency of Android applica-
tions (including resource leaks) and make code maintenance difficult. Possible defects
and improvements are grouped according to the following criteria: accuracy, security,
performance, usability, accessibility, and internationalization [4].

3. Study Planning

This feasibility study aimed to compare the identification of components with resource
leaks using the LeakPred approach with state-of-the-art methods, in which mobile appli-
cations from the Android platform were used. With this, it was expected that the results
obtained and the body of knowledge resulting from the study’s conduction will provide
information that will allow for the evolution of the approach and improve its use in the
identification of leaking components in Android mobile applications.

The purpose of this study was to answer the following question: “Is the use of the
LeakPred approach feasible in analyzing its effectiveness in comparison to representative
state-of-the-art methods in identifying components with resource leaks in mobile applica-
tions on Android platform?”. Effectiveness is understood in this study as the number of
components with resource leaks identified in relation to the total number of components
with resource leaks in mobile applications. In this context, the list of components identified
with resource leaks by the LeakPred approach was compared with the list identified by each
of the state-of-the-art methods. Therefore, the research question defined for this study was
the following:

RQ1. How effective is the LeakPred approach in relation to the identification performed
by state-of-the-art methods regarding the number of components with identified resource
leaks?

To help answer the research question, five metrics were chosen: the True Positive Rate
(TPR, also known as Recall), which is the probability that a leaking component will be
identified as leaking (Equation (1)); the False Discovery Rate (FDR), which is the expected
ratio of the number of non-leaking components identified as leaking (false discoveries)
to the total number of leaking components identified (Equation (2)); the accuracy; the
precision; and the f1-score. In Equations (1) and (2), TP is the number of components with
leaks correctly identified, P is the number of leaks that could be identified, and FP is the
number of non-leaking components identified as having a leak.

TruePositiveRate =
TP
P

(1)

FalseDiscoveryRate =
FP

FP + TP
(2)

3.1. Methodology for Identifying Resource Leaking Components

To identify components with resource leaks, the same protocol used to assemble
the DroidLeaks database in [8] was followed. Figure 1 shows an overview of the process
followed formed by two steps: (1) search for keywords in the commit logs (some example
keywords appear in Table 1) and commit code differences (examples of keywords are
shown in Table 1); and (2) the manual validation of resource leaks identified in the commits
found in step 1. The process presented in this subsection was followed in the applications
discussed in the next subsection, and some of the applications with identified resource
leaks were used to evaluate the effectiveness of the approach LeakPred.

Computers 2024, 13, 140 4 of 17

Figure 1. Resource leak identification process.

Table 1. Keywords for commit logs and code differences.

Commit logs

leak leakage release
recycle cancel unload
unlock unmount unregister
close

Code differences

.close(.stop(.stopPreview(

.release(.abandonAudioFocus(.stopFaceDetection(

.removeUpdates(.cancel(.unregisterListener(

.unlock(.disableNetwork(

3.2. Mobile Applications Selection

Liu et al. [8] provided a list of 170 mobile applications that meet the following criteria:

1. They have more than 10,000 downloads in the store (application is popular);
2. They have a public defect tracking system (defects are trackable);
3. The application’s code repository has over 100 code reviews (application is actively

maintained);
4. They have at least 1000 lines of Java source code (the application has a medium or

high level of complexity) [8].

For the creation of the DroidLeaks database, 34 applications of these 170 were used.
Therefore, for this study, 32 applications were randomly selected among the remaining
136 (Figure 2). These 32 selected applications are shown in Table 2, of which 22 were used
to increase the database, and 5 of these 22 were also randomly selected to be used in the
comparison study between the methods, and the other 17 were used together with the old
version of the database (CompLeaks) for the training of the LeakPred approach. Therefore,
15 applications were used in this study. More information, such as the component name
and leaked resource class, is found at https://bit.ly/3o7XJr9 (accessed on 1 May 2024).

Table 2. The 32 apps selected randomly.

ID App Name Leak Quantity Use Successfully Compiled
1 Aard 8 database/experiment no
2 Android-Project 20 database **
3 BART_Runner 9 database **
4 BeeCount 13 database **
5 BeTrains-for-Android 52 database/experiment no
6 BetterWeather 1 database **
7 Bitcoin 26 database **
8 BombusMod 78 database **
9 Dimmer 1 database **
10 FareBot 3 database/experiment no
11 FBReader TTS+ Plugin 10 database **
12 GPSLogger 74 database **
13 KeepScore 2 database **

https://bit.ly/3o7XJr9

Computers 2024, 13, 140 5 of 17

Table 2. Cont.

ID App Name Leak Quantity Use Successfully Compiled
14 Navit 9 database **
15 OI Notepad 12 database/experiment yes
16 OI Safe 30 database/experiment yes
17 Pedometer 41 database **
18 Public Transport Timisoara 21 database **
19 RedReader Beta 28 database **
20 Shattered Pixel Dungeon 25 database **
21 WiFi Analyzer 3 database **
22 Yubico Authenticator 1 database **
23 AnyMemo 12 experiment yes
24 Avare 22 experiment yes
25 OpenDocument Reader - experiment no
26 Tinfoil for Facebook - experiment no
27 Wikipedia - experiment no
28 Seafile 42 experiment yes
29 SMS Backup+ - experiment no
30 Chess - experiment no
31 EP Mobile - experiment no
32 Persian Calendar - experiment no

Legend: “-” means that the amount of resource leakage in the application is unknown. Where “**” appears, it
means that no attempt was made to compile the application.

Figure 2. Mobile application selection.

3.3. Tools

For this study, some of the state-of-the-art methods for resource leak detection in
mobile applications were selected, which were selected from a systematic mapping that we
performed on techniques related to resource leaks. Those selected are as follows:

1. Android Lint provides a code scan that helps identify resource leaks and other
structural code issues, using static analysis to check if the code breaks existing lint
rules [4]. A lint rule has the following information: id, summary, explanation, category,
priority, severity, detector class (responsible for detecting the occurrence of the issue;
could be written using UAST—Universal Abstract Syntax Tree), and scope [9].

2. FindBugs is a program that uses static analysis to look for defects (including resource
leaks) in Java code [5]. It often syntactically matches source code with faulty code
patterns, but also uses data flow analysis to check for defects [10].

3. Infer checks using static analysis for resource leaks and other defects [7]. It develops a
compositional, bottom-up variant of the RHS inter-procedural analysis algorithm [11].

These methods will serve as a basis for comparisons with the LeakPred approach [6].

Computers 2024, 13, 140 6 of 17

3.4. Execution of the Study

The execution of this study had three steps: (1) compiling the applications (some
methods need the application compiled), (2) executing the methods, and (3) listing the
classes of resource leaks by method. These steps are presented in Figure 3. For steps 1 and
2, a maximum time of 2 weeks was provided (this amount of time was chosen as it was
believed to be reasonable for understanding how to prepare the environment to compile an
application or run a method) to try to solve compilation problems or for the execution of
each application and method. If even with this amount of time, it was not possible to solve
the problem, the application or the method would not be used in the study.

Figure 3. Study execution process of this study.

The first step was to compile the 15 applications randomly selected for this study
(the applications contain the word experiment in the use column of Table 2). Applications
with gray background in the table and with ids 1, 5, 10, 25, 26, 27, 29, 30, 31, and 32
were not compiled due to library dependencies and design errors. It was only possible to
compile the applications that have the green background in the table, namely, OI Notepad
(15), OI Safe (16), AnyMemo (23), Avare(24), and Seafile(28). Therefore, of the 15 methods
previously selected, only five could be used in this study, as some of the methods require
the application to be compiled.

The second step was to implement state-of-the-art methods. The Android Lint, FindBugs,
and Infer methods were successfully executed. Thus, the three methods plus the LeakPred
approach were executed to analyze resource leaks in the five mobile applications.

The third step was to make a list of resource leak classes that each method could
identify in the five applications (Table 3), as each method identifies some types of resource
leaks and not all methods provide a list of the resource classes that they can identify. For
this, we used the list of leaks identified by at least one of the methods in the five applications
and the list of leaks that each method could identify mapped in DroidLeaks [8]. In the next
subsection, the analysis of the results will be shown, and the detection rate of each method
was based only on the leaks that it could identify in each application.

Table 3. The resource leak classes that could be identified by each method in the OI Notepad, OI Safe,
AnyMemo, Avare, and Seafile applications.

Target Java Class LeakPred Infer FindBugs Android Lint

android.app.AlarmManager X - - -
android.app.NotificationManager X - - -
android.app.Service X - - -
android.bluetooth.BluetoothSocket X - - -
android.content.BroadcastReceiver X - - -
android.content.res.XmlResourceParser X - - -
android.content.ServiceConnection X - - -
android.database.Cursor X X - X
android.database.sqlite.SQLiteDatabase X X - -
android.databaseMatrixCursor - X - -
android.graphics.Bitmap X X X -
android.hardware.SensorManager X - - -
android.location.LocationManager X - X -
android.media.MediaMetadataRetriever X - X -

Computers 2024, 13, 140 7 of 17

Table 3. Cont.

Target Java Class LeakPred Infer FindBugs Android Lint

android.media.MediaPlayer X - - -
android.media.SoundPool X - X -
android.os.AsyncTask X - - -
android.os.CountDownTimer X - - -
android.speech.tts.TextToSpeech X - - -
android.support.v4.app.NotificationManagerCompat X - - -
com.github.kevinsawicki.http.HttpRequest X - - -
java.io.BufferedInputStream X X X -
java.io.BufferedOutputStream X X X -
java.io.BufferedReader X - X -
java.io.BufferedWriter X X X -
java.io.DataInputStream X X - -
java.io.DataOutputStream X - X -
java.io.File X - - -
java.io.FileInputStream X X X -
java.io.FileOutputStream X X X -
java.io.FileReader - X - -
java.io.FileWriter X X - -
java.io.InputStream X X X -
java.io.InputStreamReader X X X -
java.io.OutputStream X X X -
java.io.PrintWriter X - - -
java.io.RandomAccessFile X X - -
java.io.Reader X X - -
java.io.Writer X X - -
java.lang.Thread X - X -
java.net.DatagramPacket X - - -
java.net.DatagramSocket X - - -
java.net.HttpURLConnection X - - -
java.net.URL X - - -
java.net.URLConnection X - - -
java.text.Format X - - -
java.util.Timer X - - -
java.util.zip.ZipFile X X X -
java.util.zip.ZipInputStream X - - -
java.util.zip.ZipOutputStream X - - -
org.nocrala.tools.gis.data.esri.shapefile.ShapeFileReader X - - -

Legend: “X” means that the method can identify resource class resource leaks, and “-” means that it cannot.

4. Results

The results of this study will be shown for each of the mobile applications, starting with
the application OI Notepad followed by the results for the applications OI Safe, AnyMemo,
Avare, and Seafile. More information (for example, resource class or which method identified
each leak) about the components with identified resource leaks in each of the applications
is available at https://bit.ly/3mq5RTv (accessed on 1 May 2024).

4.1. Results: OI Notepad Application

Table 4 presents the 20 resource leaks identified by the methods in the application
OI Notepad. For a better understanding of how many resource leaks were identified by
more than one method, Figure 4 shows a Venn diagram showing resource leaks and false
positives, in which it can be seen that LeakPred identified 17 leaks, while identified FindBugs
0 (zero), and the methods Infer and Android Lint identified 10 leaks each. Still, in Figure 4,
the detection rates of resource leaks and false positives are presented, where it is possible
to observe that the LeakPred approach obtained the best detection coverage, with 85%, as
well as the highest percentage of false positives, with 37.04%. The FindBugs method did not
find either of the two leaks it could identify, and it did not have any false positives either.

https://bit.ly/3mq5RTv

Computers 2024, 13, 140 8 of 17

Table 4. Components with resource leaks in the OI Notepad application.

Package Class Component Parameters Return

org.openintents.notepad.theme ThemeUtils addThemeInfos (PackageManager,String,ApplicationInfo,List) void
org.openintents.notepad.search SearchQueryResultsActivity doSearchQuery (Intent,String) void
org.openintents.notepad.search SearchSuggestionProvider getSuggestions (String,String[]) Cursor
org.openintents.notepad.search SearchSuggestionProvider refreshShortcut (String,String[]) Cursor
org.openintents.notepad.search FullTextSearch getCursor (Context,String) Cursor
org.openintents.notepad.noteslist NotesList updateTagList () void
org.openintents.notepad.noteslist NotesList sendNoteByEmail (long) void
org.openintents.notepad.noteslist NotesList encryptNote (long,String) void
org.openintents.notepad.noteslist NotesList saveFile (Uri,File) void
org.openintents.notepad.noteslist NotesList writeToFile (File,String) void
org.openintents.util ProviderUtils getAffectedRows (SQLiteDatabase,String,String,String[]) long[]
org.openintents.notepad.activity SaveFileActivity writeToFile (Context,File,String) void
org.openintents.notepad.activity SaveFileActivity getFilenameFromNoteTitle (Uri) Uri
org.openintents.notepad NoteEditor onPause () void
org.openintents.notepad NoteEditor deleteNote () void
org.openintents.notepad NoteEditor importNote () void
org.openintents.notepad NotePadProvider query (Uri,String[],String,String[],String) Cursor
org.openintents.notepad NotePadProvider insert (Uri,ContentValues) Uri
org.openintents.notepad NotePadProvider delete (Uri,String,String[]) int
org.openintents.notepad NotePadProvider update (Uri,ContentValues,String,String[]) int

Figure 4. Components with leaks, detection rates, and false positives in OI Notepad application.

The three leaks that the LeakPred approach failed to identify were two from the
java.io.BufferedWriter class (the two components are about 81% the same) and one from the
android.database.Cursor. Regarding the false positives reported by the LeakPred approach,
nine are from the android.database.Cursor class and one from the java.io.InputStream class. We
can consider that the approach could decrease the percentage of detected false positives.

Computers 2024, 13, 140 9 of 17

4.2. Results: OI Safe Application

Table 5 presents the 13 resource leaks discovered by the methods in the OI Safe
application, and Figure 5 shows the number of resource leaks and false positives that each
method identified and how many were identified by more than one method. For example,
LeakPred identified eight leaks, and Infer, seven. Also, in Figure 5, the detection rates of
resource leaks and false positives are shown, where the method Android Lint scored 100% in
coverage, identifying the only leaky component it could identify in this application. Next is
the Infer method with 70% coverage, and then the LeakPred approach with 61.54% coverage,
identifying 8 out of 13 possible leaks to be identified.

Table 5. Leaking components in the Safe application.

Package Class Component Parameters Return

org.openintents.util SecureDelete delete (File) boolean
org.openintents.safe.service AutoLockService onDestroy () void
org.openintents.safe CSVWriter read (Clob) String
org.openintents.safe CSVWriter close () void
org.openintents.safe CryptoHelper encryptFileWithSessionKey (ContentResolver,Uri) Uri
org.openintents.safe CryptoHelper decryptFileWithSessionKey (Context,Uri) Uri
org.openintents.safe DBHelper DBHelper (Context) void
org.openintents.safe AskPassword keypadOnDestroy () void
org.openintents.safe Export exportDatabaseToWriter (Context,Writer) void
org.openintents.safe CategoryList backupToFile (String) void
org.openintents.safe PRNGFixes generateSeed () byte[]
org.openintents.safe Backup write (String,OutputStream) boolean
org.openintents.safe Restore restoreFromFile (String) void

Figure 5. Components with leaks, detection rates, and false positives in textitOI Safe application.

Computers 2024, 13, 140 10 of 17

It is worth mentioning that the LeakPred approach does not identify resource leaks in
an intermediate class that inherits the original resource class, and this application had two
resource leaks that were in this situation. The resource leaks were from the InputStreamData
class, which inherited from the java.io.InputStream class, making it impossible to identify
this resource leak using the approach LeakPred. These 2 resource leaks were counted in the
13 that could be identified.

With regard to false positives, the LeakPred approach had the highest percentage, with
33.33%, followed by the Infer method with 30%. The Android Lint and FindBugs methods
did not report any false positives. However, the FindBugs method did not find any of the
six resource leaks that could be identified in this application.

4.3. Results: AnyMemo Application

The 12 leaked components detected by the methods in the AnyMemo application are
presented in Table 6. For a better understanding of how many leaks were identified by
each method, Figure 6 is shown. In this figure, it can be seen that Infer identified two leaks
and had a false positive. Still, in Figure 6, the detection rates of leaks and false positives
are shown, in which it is highlighted that the LeakPred approach had the best coverage,
identifying 100% of the leaks that the approach could identify. As far as false positives go, 7
out of 18 were in test files. Therefore, an improvement in the approach would be to ignore
test files during code analysis.

The Infer method had the second best coverage with 50%. The Android Lint method,
on the other hand, did not have any leaks that it could identify in this application, and the
FindBugs method had two possible leaks to be identified, but it did not identify any of them
and had a false positive (100%).

Figure 6. Components with leaks, detection rates, and false positives in the AnyMemo application.

Computers 2024, 13, 140 11 of 17

Table 6. Components with resource leaks in the AnyMemo application.

Package Class Component Parameters Return

org.liberty.android.fantastischmemo.converter Supermemo2008XMLImporter convert (String,String) void
org.liberty.android.fantastischmemo.converter MnemosyneXMLImporter convert (String,String) void
org.liberty.android.fantastischmemo.converter CSVExporter convert (String,String) void
org.liberty.android.fantastischmemo.converter SupermemoXMLImporter convert (String,String) void
org.liberty.android.fantastischmemo.converter Mnemosyne2CardsImporter xmlToCards (File) List<Card>
org.liberty.android.fantastischmemo.converter QATxtImporter convert (String,String) void
org.liberty.android.fantastischmemo.converter Mnemosyne2CardsExporter createMetadata (String,File) void
org.liberty.android.fantastischmemo.tts AnyMemoTTSImpl stop () void
org.liberty.android.fantastischmemo.receiver SetAlarmReceiver cancelNotificationAlarm (Context) void
org.liberty.android.fantastischmemo.receiver SetAlarmReceiver cancelWidgetUpdateAlarm (Context) void
org.liberty.android.fantastischmemo.utils AMZipUtils zipDirectory (File,String,ZipOutputStream) void
org.liberty.android.fantastischmemo.ui CardImageGetter getDrawable (String) Drawable

4.4. Results: Avare Application

Table 7 shows the 22 resource leaks found by the methods in the application Avare.
Figure 7 shows the number of leaks identified by each method. The LeakPred approach
identified 20 leaks and had 39 false positives. Also, in Figure 7, the detection rates of leaks
and false positives are shown, and it is observed that the LeakPred approach achieved the
best coverage, 90.91%, as well as the highest percentage of false positives, 62.10%. Next is
the FindBugs method with a coverage of 11.11% and a false positive rate of 50%.

The Infer method could identify 11 leaks but did not identify any of them, and the
Android Lint method had no leaks that could be identified in this application. Regarding
the false positives of the LeakPred approach, it can be noted that 14 of the 39 were from
resources in class-level variables and not from the component; in other words, generally,
these resources are not closed in the component where they are used.

Table 7. Components with resource leaks in the Avare application.

Package Class Component Parameters Return

com.ds.avare.externalFlightPlan SkvPlanParser parse (String,FileInputStream) ExternalFlightPlan
com.ds.avare.utils ZipFolder zipFiles (String,OutputStream) boolean
com.ds.avare.utils ZipFolder unzipFiles (String,InputStream) boolean
com.ds.avare.utils NetworkHelper getVersionNetwork (String) String
com.ds.avare.utils Helper readFromFile (String) String
com.ds.avare.utils Helper writeFile (String,String) boolean
com.ds.avare.shapes Layer parse (String,String) void
com.ds.avare.shapes ShapeFileShape readFile (String) ArrayList<ShapeFileShape>
com.ds.avare LocationActivity onDestroy () void
com.ds.avare ChecklistActivity onPause () void
com.ds.avare PlanActivity onPause () void
com.ds.avare WnbActivity onPause () void
com.ds.avare ToolsFragment$ImportTask doInBackground () String
com.ds.avare ToolsFragment$ExportTask doInBackground () String
com.ds.avare.adapters ChartAdapter$ViewTask doInBackground () Boolean
com.ds.avare.network Download$DownloadTask copyInputStream (InputStream,OutputStream) void
com.ds.avare.network Download$DownloadTask run () void
com.ds.avare.adsb AudibleTrafficAlerts stopAudibleTrafficAlerts () void
com.ds.avare.gps Gps stop () void
com.ds.avare.instruments FuelTimer stop () void
com.ds.avare.instruments UpTimer stop () void
com.ds.avare StorageService destroy () void

4.5. Results: Seafile Application

Table 8 displays the 42 leaking components that the methods identified in the Seafile
application. To distinguish how many components were identified by more than one
method, Figure 8 is shown. It shows that the same leak was identified by the LeakPred, Infer,
and Android Lint methods. The LeakPred approach had the best coverage, 85.37%, and the
highest false positive rate, 40.68%. Right after this method is the Infer method, with 37.50%
coverage and a false positive rate of 25%.

Computers 2024, 13, 140 12 of 17

Figure 7. Components with leaks, detection rates, and false positives in the Avare application.

The Android Lint method did not have any false positives, but it only identified 2 out of
21 possible leaks (9.52%), and the FindBugs method did not have any leaking components
that could be identified in this application.

Figure 8. Components with leaks, detection rates, and false positives in Seafile application.

Computers 2024, 13, 140 13 of 17

Table 8. Components with resource leaks in Seafile application.

Package Class Component Parameters Return

com.seafile.seadroid2 SeafConnection realLogin (String,String,boolean) boolean
com.seafile.seadroid2.gallery BitmapManager cancelThreadDecoding (Thread,ContentResolver) void
com.seafile.seadroid2.gallery MultipleImageSelectionActivity onPause () void
com.seafile.seadroid2.gallery ImageManager isMediaScannerScanning (ContentResolver) boolean
com.seafile.seadroid2.gallery ImageBlockManager$ImageBlock recycle () void
com.seafile.seadroid2.notification BaseNotificationProvider notifyCompleted (int,String,String) void
com.seafile.seadroid2.notification BaseNotificationProvider notifyCompletedWithErrors (int,String,String,int) void
com.seafile.seadroid2.notification BaseNotificationProvider cancelNotification () void
com.seafile.seadroid2.data DatabaseHelper getFileCacheItem (String,String,DataManager) SeafCachedFile
com.seafile.seadroid2.data DatabaseHelper getFileCacheItems (DataManager) List<SeafCachedFile>
com.seafile.seadroid2.data DatabaseHelper getRepoDir (Account,String) String
com.seafile.seadroid2.data DatabaseHelper getCachedStarredFiles (Account) String
com.seafile.seadroid2.data DatabaseHelper repoDirExists (Account,String) boolean
com.seafile.seadroid2.data DatabaseHelper getCachedDirents (String,String) String
com.seafile.seadroid2.data DatabaseHelper getCachedDirentUsage (String) int
com.seafile.seadroid2.data DatabaseHelper getEnckey (String) Pair<String,String>
com.seafile.seadroid2.ui.activity SeafilePathChooserActivity onDestroy () void
com.seafile.seadroid2.ui.activity ShareToSeafileActivity getSharedFilePath (Uri) String
com.seafile.seadroid2.ui.activity BrowserActivity$SAFLoadRemoteFileTask doInBackground () File[]
com.seafile.seadroid2.util Utils copyFile (File,File) void
com.seafile.seadroid2.util Utils getFilenamefromUri (Context,Uri) String
com.seafile.seadroid2.util Utils getPath (Context,Uri) String
com.seafile.seadroid2.util SeafileLog writeLogtoFile (String,String,String) void
com.seafile.seadroid2.provider SeafileProvider$Runnable run () void
com.seafile.seadroid2.ui.dialog SslConfirmDialog onCreateDialog (Bundle) Dialog
com.seafile.seadroid2.ssl CertsDBHelper getCertificate (String) X509Certificate
com.seafile.seadroid2.avatar AvatarDBHelper hasAvatar (Account) boolean
com.seafile.seadroid2.avatar AvatarDBHelper getAvatarList () List<Avatar>
com.seafile.seadroid2.monitor SeafileObserver startWatching () void
com.seafile.seadroid2.monitor FileMonitorService onDestroy () void
com.seafile.seadroid2.monitor MonitorDBHelper getAutoUploadInfos () List<AutoUpdateInfo>
com.seafile.seadroid2.account AccountDBHelper getAccountList (SQLiteDatabase) List<Account>
com.seafile.seadroid2.account AccountDBHelper getServerInfo (SQLiteDatabase,String) ServerInfo
com.seafile.seadroid2.cameraupload CameraSyncAdapter onPerformSync (Account,Bundle,String,ContentProviderClient,SyncResult) void

Computers 2024, 13, 140 14 of 17

Table 8. Cont.

Package Class Component Parameters Return

com.seafile.seadroid2.cameraupload GalleryBucketUtils getVideoBucketsBelowApi29 (Context) List<Bucket>
com.seafile.seadroid2.cameraupload GalleryBucketUtils getImageBuckets (Context) List<Bucket>
com.seafile.seadroid2.cameraupload CameraUploadDBHelper isUploaded (File) boolean
com.seafile.seadroid2.gesturelock LockPasswordUtils checkPassword (String) boolean
com.seafile.seadroid2.gesturelock LockPatternUtils saveLockPattern (List) void
com.seafile.seadroid2.gesturelock LockPatternUtils checkPattern (List) boolean
com.seafile.seadroid2.account AccountDBHelper migrateAccounts (Context) void
com.seafile.seadroid2.editor EditorActivity readToString (File) String

Computers 2024, 13, 140 15 of 17

5. Discussion

The LeakPred approach achieved the best coverage (mean of 84.56% and median of
85.37%) of leaks identified and with a coverage of 96.15% of the classes of leaks that could be
identified in the five applications. This approach also had the highest rate of false positives
(mean of 47.84% and median of 40.68%). Therefore, the need for further refinement to
reduce false positives was noticed.

In the false positives of the LeakPred approach, we have three patterns that we can
highlight. (1) When a class-level variable is being instantiated in a component and released
in another, a possible way of improvement would be to find metrics that could represent
this situation. (2) Test files were analyzed, which caused some false positives in these files.
One solution would be to ignore the test files during code analysis. (3) It was observed
that during file manipulation, a resource class is instantiated and passed as a parameter to
instantiate another resource class and so on. Sometimes, it is necessary to close only one
of them for the resource to be released correctly. A way to solve this problem would be to
define a heuristic to deal with this phenomenon. Another way to decrease false positives
would be to increase the amount of database leakage.

Table 9 shows a summary of metrics. The Android Lint method had the second highest
coverage (mean of 62.15% and median of 76.92%) and the highest accuracy (median of
100%) of components with identified resource leaks and no false positives. However, it can
only identify the resource class android.database.Cursor (1.92%) among the leak classes of the
five applications in the study. The Infer method had the second highest accuracy (median
of 95.16%), and the LeakPred method had the lowest accuracy (median of 81.25%).

The LeakPred approach can identify leaks in several resource classes. This is an ad-
vantage, since the fact that a method can identify several categories of leaks reduces the
number of methods to be configured and executed, which can help in its use during the
development of mobile applications and, consequently, in reducing costs and/or time
throughout the project.

Table 9. Metric summary.

Tool OI Notepad OI Safe
TPR FDR Accuracy Precison f1-Score TPR FDR Accuracy Precison f1-Score

LeakPred 85 37.04 79.03 62.96 72.34 61.54 33.33 92.91 66.67 64
Infer 52.63 9.09 83.61 90.91 66.67 70 30 95.16 70 70
Lint 76.92 0 94.55 100 86.96 100 0 100 100 100
Find Bugs 0 0 95.45 0 0 0 0 95 0 0

AnyMemo Avare
TPR FDR Accuracy Precison f1-score TPR FDR Accuracy Precison f1-score

LeakPred 100 62.07 81.25 37.93 55 90.91 66.10 88.48 33.90 49.38
Infer 50 33.33 96.63 66.67 57.14 0.00 0.00 96.81 0.00 0
Lint 0 0 100 0 0 0 0.00 100 0 0
Find Bugs 0 100 96.55 0 0 11 50 94.89 50 18.18

Seafile Median
TPR FDR Accuracy Precison f1-score TPR FDR Accuracy Precison f1-score

LeakPred 76.81 59.18 51.55 40.82 53.31 85 59.18 81.25 40.82 55
Infer 0 46.15 53.85 53.85 0 50 30 95.16 66.67 57.14
Lint 0 0 0 0 0 0 0 100 0 0
Find Bugs 0 0 18.18 0 0 0 0 95 0 0

Mean
TPR FDR Accuracy Precison f1-score

LeakPred 82.85 55.97 79.09 44.03 55.34
Infer 34 27.90 87.52 51.44 36.86
Lint 20 0 80 20 20
Find Bugs 2.22 30 79.92 10 3.64

Computers 2024, 13, 140 16 of 17

6. Threats to Validity

This study has internal, building, and external threats that must be examined. This
section details each one as follows:

Internal Validity: The sample of projects was not completely random, as they were
randomly selected from the list of open-source applications presented in [8]. As this was a
feasibility study, it is believed that this issue does not pose a significant threat.

Construction Validity: This feasibility study used five Android platform applications
from different categories developed in the Java language. This study may not be repre-
sentative for other categories of mobile applications. Commits containing resource leak
fixes were identified using keywords, and to ensure that the commit was related to a leak,
a manual validation step was included.

External Validity: To reduce this threat, five applications from four different categories
were used, namely, productivity, maps and navigation, tools, and education. Likewise, the
LeakPred approach was compared with more than one state-of-the-art method. In the future,
it is intended to increase the number of applications of different categories. We also chose
the median, as it provides a direct understanding of the central point of the data and is not
as influenced by outliers as the mean.

7. Conclusions

In this work, a feasibility study for the LeakPred approach was presented, aiming to
analyze it through a controlled experiment with respect to its effectiveness in identifying
components with resource leaks compared to state-of-the-art methods. The results show the
possibility of using the LeakPred approach to identify resource leaks in mobile applications,
as it obtained the highest median coverage percentage of identified resource leaks with
85.37%, as well as having the highest percentage of leak class coverage, 96.15%. However,
it had the lowest accuracy (median of 81.25%). There is also the possibility of refinement to
reduce the number of false positives.

The results found provide a basic understanding of the feasibility of the LeakPred
approach. As future work, a study could be carried out that increases the number of
open-source mobile applications and uses company applications. Another possibility is
to evaluate the efficiency of the methods. Another interesting future research would be
removing the limitation of the LeakPred approach in identifying leaks in an intermediate
class that inherits the original leak class and removing the parsing of the test files. Finally,
there is the possibility to adapt the approach and carry out a feasibility study for the
iOS platform.

Author Contributions: J.G.L. contributed to the conceptualization of the research, developing the
methodology, analyzing the results, and the writing of the manuscript. R.G. and A.C.D.-N. supervised
the research. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by CAPES (Coordination for the Improvement of Higher Edu-
cation Personnel), Brazil, Finance Code 001; and Research Support Foundation State of Amazonas
(FAPEAM) - PAPAC Project (Edital 005/2019).

Data Availability Statement: We made the replication package available at https://bit.ly/3o8U1gU,
and the CompLeaks database updated is found at https://bit.ly/3zLmgFj.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Statista. Number of Mobile Devices Worldwide 2020–2025. 2024. Available online: https://www.statista.com/statistics/245501

/multiple-mobile-device-ownership-worldwide/ (accessed on 2 May 2024).
2. World. Current World Population. 2024. Available online: https://www.worldometers.info/world-population/ (accessed on 2

May 2024).
3. Zhang, H.; Wu, H.; Rountev, A. Automated test generation for detection of leaks in Android applications. In Proceedings of the

11th International Workshop on Automation of Software Test, Austin, TX, USA, 14–15 May 2016; pp. 64–70.
4. Android. Android Lint. 2024. Available online: https://developer.android.com/studio/write/lint (accessed on 2 May 2024).

https://bit.ly/3o8U1gU
https://bit.ly/3zLmgFj
https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide/
https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide/
https://www.worldometers.info/world-population/
https://developer.android.com/studio/write/lint

Computers 2024, 13, 140 17 of 17

5. Pugh, B.; Loskutov, A.; Lea, K. FindBugs. 2024. Available online: https://findbugs.sourceforge.net/bugDescriptions.html
(accessed on 2 May 2024).

6. Lima, J.G.; Giusti, R.; Neto, A.C.D. Resource Leak Prediction in Android Applications Using Machine Learning. Braz. J. Dev.
2021, 7, 47820–47837.

7. Facebook. Infer. 2024. Available online: https://fbinfer.com/ (accessed on 2 May 2024).
8. Liu, Y.; Wang, J.; Wei, L.; Xu, C.; Cheung, S.C.; Wu, T.; Yan, J.; Zhang, J. DroidLeaks: A comprehensive database of resource leaks

in Android apps. Empir. Softw. Eng. 2019, 24, 3435–3483. [CrossRef]
9. Android. Writing Custom Lint Rules. 2024. Available online: https://googlesamples.github.io/android-custom-lint-rules/

(accessed on 2 May 2024).
10. Rutar, N.; Almazan, C.B.; Foster, J.S. A comparison of bug finding tools for java. In Proceedings of the 15th International

Symposium on Software Reliability Engineering, Bretagne, France, 2–5 November 2004; pp. 245–256.
11. Calcagno, C.; Distefano, D.; Dubreil, J.; Gabi, D.; Hooimeijer, P.; Luca, M.; O’Hearn, P.; Papakonstantinou, I.; Purbrick, J.;

Rodriguez, D. Moving fast with software verification. In Proceedings of the NASA Formal Methods Symposium, Pasadena, CA,
USA, 27–29 April 2015; Springer: Cham, Switzerland, 2015; pp. 3–11.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://findbugs.sourceforge.net/bugDescriptions.html
https://fbinfer.com/
http://doi.org/10.1007/s10664-019-09715-8
https://googlesamples.github.io/android-custom-lint-rules/

	Introduction
	Related Work
	Study Planning
	Methodology for Identifying Resource Leaking Components
	Mobile Applications Selection
	Tools
	Execution of the Study

	Results
	Results: OI Notepad Application
	Results: OI Safe Application
	Results: AnyMemo Application
	Results: Avare Application
	Results: Seafile Application

	Discussion
	Threats to Validity
	Conclusions
	References

