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Abstract: Permanent Magnet Synchronous Motors (PMSMs) with high energy efficiency, reliable
performance, and a relatively simple structure are widely utilised in various applications. In this
paper, a suboptimal controller is proposed for PMSMs without sensors based on the state-dependent
Riccati equation (SDRE) technique combined with customised impulsive observers (IOs). Here, the
SDRE technique facilitates a pseudo-linearised display of the motor with state-dependent coefficients
(SDCs) while preserving all its nonlinear features. Considering the risk of non-available/non-
measurable states in the motor due to sensor and instrumentation costs, the SDRE is combined with
IOs to estimate the PMSM speed and position states. Customised IOs are proven to be capable
of obtaining quality, continuous estimates of the motor states despite the discrete format of the
output signals. The simulation results in this work illustrate an accurate state estimation and control
mechanism for the speed of the PMSM in the presence of load torque disturbances and reference
speed changes. It is clearly shown that the SDRE-IO design is superior compared to the most popular
existing regulators in the literature for sensorless speed control.

Keywords: permanent magnet synchronous motor; state-dependent Riccati equation; pseudo-
linearisation; impulsive observer; speed control

1. Introduction

Permanent Magnet Synchronous Motors (PMSMs) have advantages such as constant
speed, an adjustable power factor, high efficiency, field winding elimination, DC power
supply rejection, Joule loss deletion in excitation circuits, omission in brushes and slip rings,
a short radial length, and easy maintenance [1–5]. They have simple configurations and
easy-to-understand operation mechanisms which make them ideal to be used as actuators
in many applications [6,7].

The control of PMSMs has progressed very well in the last few decades. Examples
include works such as [8], where Nonlinear Model Predictive Speed Controllers (NMPSCs)
are proposed to predict and control the positions and speed at each sampling period
through the variable forecast horizon. In [9], to estimate and control the rotor speed and
position, an Extended Kalman Filter (EKF) is designed for a sensor-free vector control drive.
In [10,11], linear model prediction controllers (MPCs) with the addition of least mean square
(LMS) identification strategies and online parameter detection are presented for permanent
magnet synchronous generators (PMSGs). In [12], a Robust Adaptive Backstepping Control
(RABC) is suggested for High-Speed Permanent Magnet Synchronous Motors (HSPMSM).
In [13], a Sliding Mode Observer (SMO) and Sliding Mode Control (SMC) are, respectively,
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employed to estimate and control the motor speed, torque, and current with third-degree
harmonic current. In [14], a model reference adaptive system (MRAS) for estimating
and controlling the velocity in internal PMSMs with bandwidth modulation is offered.
Furthermore, in [15], an MRAS controller is utilised for sensorless speed control. The
authors used the pseudo-linearisation technique and produced state-dependent matrices.
Then, the state-dependent matrices were applied to an MRAS mechanism. It should
be noted that only the pseudo-linearisation concept was used, and the Riccati equation
technique was not investigated in [15]. Moreover, an adaptive, interconnected observer
was suggested in order to estimate the speed. In [16], a robust adaptive observer-based
approach for the sensorless speed control of PMSMs is studied to estimate the rotor shaft
speed and position. In [17], an Adaptive Nonlinear Continuous Observer (ANCO) is used
to estimate the self-induction coefficient, stator resistance, rotor velocity/position, and
load torque by using the current measurements for the PMSM. In [18], adaptive fuzzy RST
digital control (AFRSTD), digital control, and fuzzy digital RST control are generated for a
PMSM system. In [19], a Sliding Mode focused on an Extended State Observer (SMESO)
and Fast Terminal Sliding Mode Control (FTSMC) is recommended to develop disturbance
elimination capacity and increase the dynamic performance of PMSM drive systems.

Reviewing the literature as summarised above reveals that most of the controllers and
observers designed for PMSMs have been based on approaches that depend on linear or
linearised models. These approaches, although simple, are not ideal for dealing with the
inherent nonlinearities of a PMSM. Conventional linearisation methods such as Jacobian
approximations do not preserve critical information about the nonlinear mechanisms and
are usually time-invariant to reduce the controller design efforts. However, these aspects all
reduce the control performance. In the same context, Linear Quadratic Regulators (LQRs)
have been shown to perform very well for many linear systems. Therefore, numerous efforts
have been made to expand them to nonlinear dynamical systems. The introduction of the
state-dependent Riccati equation (SDRE) [20–23] technique was an effort to fulfil this desire.
The SDRE technique is a state-dependent control method based on a pseudo-linearisation
display which produces a optimal plan for the cost function of a suboptimal solution [20–23].
In the SDRE technique, the nonlinear system is transformed into a pseudo-linearised matrix
depending on states without any approximation. This pseudo-linearisation representation
might not be unique, and there might be countless versions that would make the degrees
of freedom of the controller infinite. This is one of the aspects that requires research for its
application in different systems.

The SDRE technique has been applied in many applications, such as robotics, navi-
gation systems, Unmanned Aerial Vehicles (UAVs), submarines, Heating Ventilation and
Air Conditioning Systems (HVACs), healthcare, and power systems [21–23]. In [24], a
suboptimal SMC was obtained from a mix of the SDRE and SMC for a class of nonlinear
closed-loop systems for the Scout robot. In [25], an SDRE controller was designed for UAVs
using the Artificial Potential Field (APF) approach. In [26], the nonlinear SDRE was applied
for the fault-tolerant control of a DC micro-grid (MG) in the power system.

On the other hand, the SDREs face challenges regarding access to the system’s states
for feedback design. Here, state observers can provide a solution. In [27], the SDRE method
is utilised for both control and observation purposes for an Air Handling Unit (AHU)
system. The Riccati equation is solved at every sample time, and a suboptimal control
law and an estimated state vector are produced based on its solution. It should be noted
that the SDRE observer needs continuous data from output sensors at each sample time.
In this regard, impulsive systems and observers are well suited for simulating real-world
systems in which internal states change instantaneously. Compared to classical continuous
and discrete systems, impulsive systems can contain sudden, abrupt, and intermittent
changes at variable time intervals [28,29]. In such a mechanism, an impulse could model
the sudden change that happens in the system state. The time intervals between these
impulses can be fixed or variable with time, known or unknown, and deterministic or
stochastic. In [30], an impulsive observer (IO) is introduced based on state-dependent
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matrices for nonlinear time-delay systems. Furthermore, an adaptive IO (AIO) is suggested
for a class of nonlinear time-delay systems with unknown parameters in [31]. Moreover,
in [32], an AIO is investigated based on the feasibility of a centralisation perspective for a
class of uncertain nonlinear systems.

Based on the literature review summarised and the challenges listed above, in this paper,
a state-dependent, centred pseudo-linearisation representation is combined with an impulsive
observer to not only estimate motor speed/position in a so-called “sensorless” scheme but
also to control these parameters. The proposed observer can provide continuous estimates
of the output states of the system, even in the presence of discrete output measurements.
Through this approach, by utilising a pseudo-linearisation display instead of linearisation, not
only is the design of a linear control scheme facilitated, but also all the nonlinear specifications
of the system are preserved along with an accurate estimate of the states.

It should be mentioned that in [27], the authors used an SDRE controller and SDRE
observer for an AHU system. The SDRE observer used continuous output signals to
estimate the states, and its structure is of the Luenberger type but with state-dependent
matrices. Both controller and observer gains are obtained by solving the SDRE at every
sample time. In the present paper, the SDRE controller is used with an observer state-
dependent impulsive observer for the PMSM when no speed sensors are available. This
observer only utilises the output signal at impulse times and does not require continuously
estimated states (between the impulses). In [15], the authors used an MRAS to control
an IPMSM. The purpose of the mentioned paper was to use the pseudo-linearisation
presentation in the structure of the MRAS controller. To estimate the speed, stator resistance,
winding inductance, and torque load, an augmented adaptive interconnected observer
(AAIO) was used with a similar structure in [33].

In [30], the basic structure of the state-dependent impulsive observer is introduced for
nonlinear time-delay systems. The Congo Ebola disease is addressed and presented as a
case study without any input control signal criteria. The combination of the SDRE and an
impulsive observer was introduced for the first time by the authors of [34] for a manipulator
robot case study. The major difference between the present paper and this previous one
is that each joint of the manipulator arm was assumed to have a control actuator, and
there were the same number of output and control input signals in this system. Thus, the
input matrix was an orthogonal one. Unlike the previous case study, the PMSM system
in the present paper has only states that are measurable. Therefore, for the speed and
position signals, no direct control is available. Also, here, it is assumed that the angles
are measured and available only in impulse time stamps, and only angular velocities are
estimated by the observer, i.e., there is no access to physical measurements. Addressing this
state access problem while there is a nonlinear dependency between the outputs and speed
signals is the key challenge addressed in this work. This challenge is addressed through
the following:

1. Developing a pseudo-linearised representation of the PMSM system.
2. Designing a controller for optimal tracking of the PMSM’s reference speed with high

accuracy and a quick speed without a speed sensor.
3. Estimating motor speed in a sensorless framework.
4. Addressing the challenge of disturbances during the course of the control.
5. Maintaining the function of estimation and speed control during all times of sampling

and not just at the impulse sample times.
6. Quantifying the effects of impulse intervals (the sample rate) and load torque.

The simulated examples in this work demonstrate the performance of the controlled
system despite the changes in the reference speed and load torque and the variable sample
rates. To show the superiority of the proposed estimation and control approach, the results
are compared with the linear control approach of LQRs. It is worth noting that the PMSM
here is only considered as a case study, and the proposed work has the potential to be applied
to systems with similar challenges and requirements without a loss in generalisability.
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Given the introduction and motivation for this work given above, the rest of the paper
is organised as follows: Section 2 is dedicated to the state-dependent Riccati equation
principles, and Section 3 summarises the fundamentals of the impulsive state estimator.
Section 4 includes the main results and the proposed work; the stability theorems and the
proofs are given in this section. Section 5 is dedicated to the PMSM control case study, with
simulations and visualisations given in Section 6; this section includes a comprehensive
discussion of the results, the sensitivity analysis, and practical considerations as well.
Comparisons are also included in this section. The last section includes the conclusion and
potential future work.

2. State-Dependent Riccati Equation

In the SDRE method, the nonlinear system is first transformed into a pseudo-linearisation
form without any approximation, and then the benefits of the linear representation are used
to design the controller, observer, or any nonlinear filters. Its ability to be implemented in a
wide range of nonlinear systems, the existence of a methodical process for the transforma-
tion, and the possibility of obtaining optimal solutions for control purposes are among the
advantages of the SDRE technique [21–23].

The dynamics of a nonlinear system are considered as follows [21]:

.
x(t) = f (x(t), u(t))
y(t) = h(x(t)),

(1)

where x ∈ Rn, u ∈ Rp, and y ∈ Rq are, respectively, the states, control, and output vectors
of the system. f : Rn × Rp → Rn and h : Rn → Rq are the nonlinear functions here. The
pseudo-linearised display of the system (1) is as follows:

.
x(t) = A(x(t))x(t) + B(x(t))u(t)
y(t) = C(x(t))x(t),

(2)

A(x(t)) ∈ Rn×n, B ∈ (x(t)) ∈ Rn×p, and C(x(t)) ∈ Rq×n are the system’s state-
dependent coefficient matrices, inputs, and outputs, respectively. To track the reference path of
the system, the cost function with the SDRE’s infinite time horizon is defined as follows:

J =
∫ ∞

0

{
(Cx(t)− r(t))TQ(x)(Cx(t)− r(t)) + uT(t)R(x)u(t)

}
dt, (3)

where the weight coefficients Q(x) and R(x) are state-dependent [24] and can determine
state or input preferences. The control input to minimise the cost function (4) is calculated
as follows [20]:

u(t) = −K(x)x(t) + R−1(x)BT(x)ν(x), (4)

such that K(x) = R−1(x)BT(x)P(x) and P(x) are the solutions to the Riccati equation in
the form of (5):

AT(x)P(x) + P(x)A(x)− P(x)B(x)R−1(x)BT(x)P(x) + CTQ(x)C = 0, (5)

where ν(x) is the solution to the following algebraic equation:

(A(x)− B(x)K(x))Tν(x) + CTQ(x)r(t) = 0

→ ν(x) = −
(
(A(x)− B(x)K(x))T

)−1(
CTQ(x)r(t)

)
.

(6)

In the process presented above, optimal tracking can be achieved without worrying
about the rank reduction in the controllability and observability matrices.
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3. Impulsive Observer

In this section, it is described how the state observer is designed to estimate the states
of the system. Through this framework, the controller can perform based on the estimated
states. Impulsive systems have two continuous and discrete dynamic behaviours. The
continuous dynamic behaviours are described by differential equations that are continuous
in time, describing the intervals between impulses. However, the discontinuous dynamic
behaviour is described by differential equations that denote the impulse moments when
system states abruptly change. According to these features, impulsive systems are very
suitable for describing real-world variable processes in which system states change instan-
taneously at certain points in time. Impulsive dynamic systems can be seen as a subset
or class of hybrid systems with precipitate jumps. There is a main continuous or discrete
dynamic in impulsive systems, in which moments also occur between impulses and change
the states of the system. The time interval between these impulses can be fixed or variable
with time, known or unknown, and deterministic or stochastic.

In general, for a nonlinear system, the system is denoted as in Equation (7) [28]:{ .
x(t) = f (t, x(t)); t ̸= tk

∆x(t) = f I(x(t)); t = tk
(7)

with x ∈ Rn as the continuous state vector and t as the time variable. With, f : R+ ×Rn → Rn

and fI : Rn → Rn as nonlinear functions with appropriate dimensions, the state variable
jumps can be expressed as ∆x(tk) = x

(
t+k

)
− x(tk), in discrete intervals of k = 1, 2, . . .tk,

where tk > tk−1 > 0. ∆x(tk) is also known as the Impulsive Differential Equation (IDE).
There are two main approaches to studying stability issues in impulsive systems. The classical
approach is based on the positive definite Lyapunov function, with a negative derivative for
non-impulsive systems. It should be noted that most of the existing articles have used the
classical perspective to examine the stability of a system or its observer. Unlike non-impulsive
systems, impulsive systems can have a positive derivative at some point in time but have a
descending trend overall [28].

A system with impulsive equations is defined as follows:{ .
w(t) = g(t, w(t)); t ̸= tk
w
(
t+k

)
= ψk(w(tk)),

(8)

where V ∈ V0 and g : R+ × R+ → R are continuous, and ψk : R+ → R+ is non-descending.
Also, the following equations are established:{

D+V(t, x) ≤ g(t, V(t, x)); t ̸= tk
V(t, x + ∆x) ≤ ψk(V(t, x)); t = tk

(9)

Hypothesis 1. It is assumed that f (t, 0) = 0, f I(0) = 0, and g(t, 0) = 0 for all k with t > 0.

Therefore, the obvious response of the main system and the comparison system is in
( tk−1, tk] . The theorem of the comparison system is presented as Theorem 1.

Theorem 1. The conditions are assumed to be as follows:

- V : R+ × Sρ → R+ , V ∈ V0, ρ > 0 in ( tk−1, tk] , and D+V(t, x) ≤ g(t, V(t, x)).
- There is a ρ0 > 0, so x ∈ Sρ0 and x + ∆x ∈ Sρ0 for all k, and in t = tk, V(t, x + ∆x)

≤ ψk(V(t, x)).
- b(∥x∥) ≤ V(t, x) ≤ a(∥x∥) on R+ × Sρ when a, b ∈ κ.

Moreover, the stability characteristics of the obvious solution to the comparison system
will result in the stability of the main system [28].
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Outcome 1. Suppose g(t, V(t, x)) =
.
ξ(t)V(t, x) when ξ ∈ C1[R+, R+

]
and ψk(V(t, x))

= dkV(t, x). The origin of the main system will be asymptotically stable if the following conditions
are met: 

.
ξ(t) ≥ 0
dk ≥ 0; k = 1, 2, . . .
ξ(tk)− ξ(tk−1) + ln(γdk) ≤ 0; γ > 1

(10)

State-Dependent Impulsive Observer

A state-dependent impulsive observer (SDIO) is suggested as follows:
.
x̂ = A(x̂)x̂ + B(x̂)u; t ̸= tk

ŷ = Cx̂
∆x̂ = F(x̂)(y − ŷ); t = tk

(11)

where x̂ and ŷ are the estimated state and output vectors, respectively. ∆x̂ is the jump
vector of the estimated states. The observer gain is F, which is also determined according
to the closed-loop stability theorem [29].

4. Main Design: SDRE Controller Based on State-Dependent Impulsive Observer

The impulsive observer is assumed to be state-dependent (11). The control input when
using the state-dependent Riccati controller is as follows:

u(t) = −R−1(x)BT(x)P(x)x(t) + R−1(x)BT(x)ν(x)

ν(x) = −
(
(A(x)− B(x)K(x))T

)−1(
CTQ(x)r(t)

)
.

(12)

Hypothesis 2. The following Lipshitz conditions are assumed to be valid for the system:

∥Ac(x)x − Ac(x̂)x̂∥ ≤ KA∥e∥
∥Bc(x)r − Bc(x̂)r∥ ≤ KB∥e∥ (13)

where KA and KB are constant and positive.

Theorem 2. The proposed state-dependent impulsive observer’s estimation error for the SDRE
controller is e = x − x̂, which will converge to zero asymptotically when the following assumptions
and conditions are met: ∑i

(
ε−1

1 + ε−1
2

)
Mi(

ε−1
1 + ε−1

2

)
Mi −

(
ε−1

1 + ε−1
2

)
I

 ≤ 0; i = 1, 2 (14)

∑
i
= AT

c (x̂)Mi + Mi Ac(x̂) + (M1 − M2)/∆k +
(

2ε1K2
A + ε2K2

B

)
I + 2ε1 AT

c (x̂)Ac(x̂)− αMi (15)

[
−σM1 M2 −

(
F(x̂)CT)

M2 − F(x̂)C −M2

]
≤ 0 (16)

α∆k + ln(γσ) ≤ 0 (17)

where α ≥ 0, σ ≥ 0, γ ≥ 1, and γσ ≤ 1 are the design parameters, and F(x̂) = F(x̂)M−1
2 .

Proof of Theorem 2. The SDRE closed-loop system is written as follows:

.
x = A(x)x + B(x)(−k(x)x + ν(x)r)
= (A(x)− B(x)k(x))x + B(x)ν(x)r = Ac(x)x + Bc(x)r,

(18)
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where Ac(x) = A(x) + B(x)k(x) and Bc(x) = B(x)ν(x). It can also be written for the
observer in t ̸= tk:

.
x̂ = (A(x̂)− B(x̂)k(x̂))x̂ + B(x̂)ν(x̂)r = Ac(x̂)x̂ + Bc(x̂)r (19)

Therefore, the dynamics of the estimation error in t ̸= tk are rewritten as follows:

.
e = Ac(x)x + Bc(x)r − Ac(x̂)x̂ + Bc(x̂)r

= Ac(x̂)(x − x̂) + (Ac(x)− Ac(x̂))x + (Bc(x)− Bc(x̂))r
= Ac(x̂)e + Ãx + B̃r

(20)

where Ã = Ac(x)− Ac(x̂) and B̃ = Bc(x)− Bc(x̂). In t = tk,

∆e = F(x̂)Ce(tk) → e
(
t+k

)
= (I − F(x̂)C)e(tk). (21)

The positive definite Lyapunov function is introduced as follows:

V(x, t) = eT Me; M = (1 − ρ)M1 + ρM2,
ρ = tk−t

∆k
; ∆k = tk − tk−1; t ∈ (tk−1, tk],

(22)

where M is an alternating matrix in t ∈ (tk−1, tk], and M1 and M2 are defined as symmetric,
positive definite matrices.

M(tk) = M1; M
(
t+k

)
= M2, (23)

So, the derivative of the Lyapunov function in the time interval t ∈ (tk−1, tk] is equal to

.
V(x, t) = eT

(
AT

c (x̂)M + MAc(x̂) +
M1 + M2

∆k

)
e + xT ÃT Me + eT MÃx + rT B̃T Me + eT MB̃r. (24)

Using the Yang inequality [30], the result is as follows:

xT ÃT Me + eT MÃx ≤ ε1xT ÃT Ãx + ε−1
1 eT M2e

rT B̃T Me + eT MB̃r ≤ ε2rT B̃T B̃r + ε−1
2 eT M2e,

(25)

And, according to Hypothesis 2, the following result is obtained:

xT ÃT Ãx =
∥∥∥Ãx

∥∥∥2
≤ 2∥Ac(x)x − Ac(x̂)x̂∥2 + 2∥Ac(x̂)(x − x̂)∥2

≤ 2K2
AeTe + 2eT AT

c (x̂)Ac(x̂)e
(26)

rT B̃T B̃r =
∥∥∥B̃r

∥∥∥2
≤ K2

BeTe. (27)

Hence, the derivative of Lyapunov’s function will be taken as follows:

.
V ≤ eT(AT

c (x̂)M + MAc(x̂) + (M1 + M2)/∆k +
(
2ε1K2

A + ε2K2
B
)

I

+
(

ε−1
1 + ε−1

2

)
M2 + 2ε1 AT

c (x̂)Ac(x̂))e.
(28)

By applying ±αV(x, t) to (28), the following result is obtained:

.
V(x, t) ≤ eT∑e + αV(x, t), (29)

which can be written as follows:
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∑ = ∑1 + ρ∑2 + ρ2∑3,

∑1 = AT
c (x̂)M1 + M1 Ac(x̂) + (M1 − M2)/∆k +

(
2ε1K2

A + ε2K2
B
)

I +
(

ε−1
1 + ε−1

2

)
M2

1 + 2ε1 AT
c (x̂)Ac(x̂)− αM1,

∑2 = AT
c (x̂)(M2 − M1) + (M2 − M1)Ac(x̂) + 2

(
ε−1

1 + ε−1
2

)
M1(M2 − M1)− α(M2 − M1),

∑3 =
(

ε−1
1 + ε−1

2

)
(M2 − M1)

2.

(30)

If 0 ≤ ρ(t) ≤ 1, ∑3 ≥ 0, and the following conditions are satisfied by the LMIs (14), as
well as the definition of

.
λ(t) = α ≥ 0, the first condition of the comparison system theorem

is established as follows:
∑1 ≤ 0

∑1 + ∑2 + ∑3 ≤ 0.
(31)

In t = t+k , the Lyapunov function is presented as follows:

V
(

x, t+k
)
= eT(t+k

)
M
(
t+k

)
e
(
t+k

)
= eT(tk)(I − F(x̂)C)T M2(I − F(x̂)C)e(tk). (32)

This is the case if the following condition is met:

(I − F(x̂)C)T M2(I − F(x̂)C) ≤ σM1 (33)

which is the same condition for the LMI (16) as V
(
x, t+k

)
≤ σV(x, tk) and dk = σ ≥ 0.

Therefore, the second condition of the comparison system theorem is established. □

According to the third condition, the upper limit of the impact distance is obtained
as follows:

∆kmax = − ln(γσ)/α (34)

5. Case Study: Permanent Magnet Synchronous Motor

The dynamic model of the permanent magnet synchronous motor used in this paper
on the d − q axis is as follows [35]:

did
dt = − Rs

Ld
id + ωriq +

Vd
Ld

diq
dt = − Rs

Lq
iq − ωrid − λ f ωr +

Vq
Lq

dωr
dt = 3

2
Np
J λ f iq − B

J ωr − TL
J

dθ
dt = ωr

(35)

where id and iq are the currents and Vd and Vq are the voltages of the d and q axes, respec-
tively. Rs is the stator resistance. Lq and Ld are, respectively, the inductances of the winding
on the q and d axes. λ f and ωr are the magnetic flux of the permanent magnet and the
mechanical speed of the motor, respectively. θ and J are the angular position of the rotor
and the moment of inertia. B is the coefficient of friction. Np is the number of poles, and TL
is the load torque. Table 1 presents the values of the engine parameters according to [35].
The pseudo-linearised representation of the PMSM is obtained as follows:

A(x) =


− Rs

Ld
x3 0

−x3 − Rs
Lq

−λ f

0 3
2

Np
J λ f − B

J

, B(x) =

[
1

Ld
0

0 1
Lq

]
, C(x) =

[
1 0 0
0 1 0

]
(36)
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where x =
[
id iq ωr

]T is the state vector, u =
[
Vd Vq

]
is the input vector, and

y =
[
id iq

]T is the output vector. The advantage of this presentation is that it is both
controllable and observable.

Table 1. The PMSM’s parameters [35].

Parameter Value

Number of poles
(

Np
)

4
Stator resistance (Rs) 0.0875 Ω

Permanent magnetic flux
(

λ f

)
1 Wb

Inductance
(

Ld = Lq
)

0.2155 H
Moment of inertia (J) 0.0151 kgm2

Friction coefficient (B) 0.0378 kgm2s−1

An overview of the control, speed estimation, and identification of the synchronous
motor’s parameters is shown in Figure 1. In this block diagram, the voltage in the d–q plane
is applied to the motor, and the currents are captured as the response. These current values
are not necessarily available at each sample point, but to reduce the cost of measurements,
they are assumed to be available only for a few time stamps. The impulse observer receives
the current and voltage values and estimates the motor speed for all of the time stamps.
This speed is then used as an input to the SDRE controller for tracking purposes. Here
signals with * reference to the setpoint of the system.
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Figure 1. Block control diagram of the proposed method.

6. Simulation Results and Discussions
6.1. The Main Simulation Results

The design parameters are considered as follows:

R(x) = diag(1, 1), Q(x) = diag
(

103 + x2
1, 103 + 10x2

2, 102 + x2
3

)
, α = 10, γ = 1.001, σ = 0.95.

The initial conditions of the states and their estimations are as follows:

x(0) = [0, 0, 1]T , x̂(0) = [10, 10, 50]T .

Also, the desired values of the speed and current on the d-axis are assumed to be zero.
According to the values of the design parameters, the maximum distance between impulses
is calculated as ∆kmax = − ln(1.001 × 0.95)/10 = 0.005 s. The sampling time Ts = 10−4 s,
and the interval between impulses is also assumed to be ∆ = 5 × 10−3 s, which means that
an output is available every five sampling times. The tracking error is defined as xre f − x̂
and the estimation error is called as x − x̂.

The results were simulated by MATLAB 2023b software with an ASUS laptop (Ausu
Laptop Model: K556CPU COREi7/7500u, RAM DDR4, Graphic GFORCE 940MX). These
results are displayed in Figure 2 for the speed tracking error, the speed estimation error, and



Computers 2024, 13, 142 10 of 17

the estimated speed jumps (speed impulses). The figures on the top row are the tracking
performance and its zoomed-in version. It is very clear that the reference speed was
successfully tracked after only the first 0.02 s. The figures in the second row demonstrate
the tracking errors, which are very small after convergence happens. According to the
results, it is clear that the proposed observer can estimate the motor speed very well. The
proposed controller also tracks reference paths with appropriate accuracy. At first, it is seen
that, despite the error between the actual and estimated values, these jumps have a greater
amplitude, which gradually decreases.
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Figure 2. Speed profiles of the PMSM, the state estimation, the tracking error, and the speed impulses,
together with the zoomed-in areas.

Further results are plotted in Figure 3 to show the d-current estimation, the d-current tracking
error, the d-current estimation error, and the estimated d-current jumps (d-current impulses).

Figure 4 illustrates the q-current estimation, the q-current estimation error, and the
estimated q-current jumps (q-current impulses). Eventually, as the signal converges to the
true value, the jump amplitude also becomes zero.

The control inputs are shown in Figure 5. As can be seen, all inputs and their changes
are smooth and slow. The allowed range for the input control signals was between −250
and +250, so it is clear that the signals are within the prescribed range. Therefore, these
inputs can be implemented in practice. Generally, in the proposed method, the control
signals can be forced to stay within a range by tuning the controller’s parameters. Also, by
making a trade-off between the performance and the control input variations, a design that
can be implemented in real applications can be achieved.

The observer gains are also plotted in Figure 6, which are obtained at any time by solving
the LMIs of Theorem 2. Obviously, the gains remain unchanged after the conversion.
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6.2. The Effect of Impulse Intervals

To show the effects of impulse intervals on the estimation error of the states by the
proposed observer, the two criteria of the normalised mean square error (NMSE) and the
correlation coefficient (CC) were used. These two criteria can be calculated as follows:

NMSE =
1
N

N

∑
j=1

3

∑
i=1

 e(i, j)
max

j
|e(i, j)|

2

(37)

cci =
∑N

j=1 x(i, j)x̂(i, j)√
∑N

j=1 x2(i, j)
√

∑N
j=1 x̂2(i, j)

(38)

where e(i, j) is the error of the ith state. The NMSE metric shows the strength of the
estimation and the correlation coefficient of the similarity of the real and estimated states.
If the two signals are completely similar, the correlation coefficient is 1, and if they are
completely different, the correlation coefficient is −1.

Table 2 shows that the accuracy of the estimation decreases with increasing impulse
intervals, although the values are still acceptable up to the maximum impulse intervals
determined by the proposed Theorem 2. In the last column, where the impulse interval is
selected above the maximum value, a high error is witnessed, and the similarity between
the actual and estimated signals is reduced.

Table 2. Summary of the impulse interval effect.

Metrices Impulse Intervals (∆(s))

10−4 5 × 10−4 10−3 5 × 10−3 6 × 10−3

NMSE 45.6892 128.6873 177.1134 301.8423 2521.4897
CC1 0.9992 0.9968 0.9925 0.9725 0.6850
CC2 1 0.9999 0.9998 0.9994 0.7982
CC3 1 1 0.9999 0.9812 0.8241
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6.3. The Effect of Load Torque

In this section, to investigate the effect of the load torque as a disturbance to the
performance of the closed-loop system, a load torque of 5 Nm at an equilibrium point from
0.25 to 0.35 per second is applied to the motor. The load torque impulsive observer gains,
speed tracking and estimation with load torque, speed tracking error with load torque, and
speed estimation error with load torque are plotted in Figure 7.
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According to the results, it is clear that despite the load torque acting on the system as a
disturbance, the performance of the proposed controller and observer in tracking reference
paths and estimating the states is satisfactory. The tracking error is directly related to
increasing or decreasing load torque amplitude. It is worth noting that the load torque
was considered such that a change in the speed or current response is visible. Robust
approaches should be used if there is more disturbance or higher accuracy is required.

6.4. Comparisons

In this section, a comparison between the SDRE and LQR optimal controllers is
provided. In this comparison, the SDRE controller examines the system nonlinearly, and
the LQR, which is a linearised version, examines the system linearly. This comparison
shows the better performance of the SDRE method. In the SDRE approach, a pseudo-
linearisation matrix and SDC are generated, which will preserve the nonlinear properties of
the system, whereas in the LQR version, the system is first linearised around the equilibrium
point. So, this linearisation cannot include nonlinear features of the system and eliminates
them. Hence, the system does not have a nonlinear nature and will have the same system
matrices at all times. Meanwhile, the system matrices in the SDRE controller update their
state-dependent system matrices at each sampling time. This solves the state-dependent
Riccati equation for each time sample. But in LQRs, the Riccati equation is checked only
once. The linearisation of the motor equations around the equilibrium point is performed
using the Jacobian method as follows:
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A(x) =


∂(

.
x1)

∂u1
. . .

∂(
.
x1)

∂u3
...

. . .
...

∂(
.
x3)

∂u1
· · · ∂(

.
x3)

∂u3

 =


− Rs

Ld
xe3 xe2

−xe3 − Rs
Lq

−λ f − xe1

0 3
2

Np
J λ f − B

J

,

B =


∂(

.
x1)

∂u1
. . .

∂(
.
x1)

∂u3
...

. . .
...

∂(
.
x3)

∂u1
· · · ∂(

.
x3)

∂u3


x=xe

=


1

Ld
0

0 1
Lq

0 0

.

(39)

The weighting coefficients R and Q are considered to be the same in both the LQR and
SDRE methods, and the calculation of these coefficients is arbitrary. The response of the
algebraic Riccati equation for the matrices (39) and the LQR state feedback gain is obtained
as follows:

P =

 2.1259 0.0012 −0.5347
0.0012 1.5945 0.0693
−0.5347 0.0693 0.5487

, K =

[
9.8650 0.0055 −2.4810
0.0055 7.3993 0.3217

]
.

The following figures show the outputs and states of the SDRE and LQR controllers.
Both controllers assume that all states are available, and they track both paths optimally.
Figure 8 displays the speed estimation, currents (d-axis and q-axis), and voltages (d-axis and
q-axis). It is clear that the SDRE controller performs much better than the LQR, especially
when changing the equilibrium point. Because the LQR controller is linearised around
the equilibrium point, by changing the equilibrium point, the linearisation accuracy is
significantly reduced. Furthermore, Table 3 shows a numerical comparison between the
proposed method and the LQR. The numerical results verified the efficiency of the proposed
framework compared to the LQR technique in varying the reference speed.
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Figure 8. Comparison of PMSM parameters between the SDRE and the LQR.
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Table 3. Summary of the comparison between the proposed method and the LQR.

∆(s) = 5 × 10−3 The Proposed Method LQR

NMSE 301.8423 3128.2159
CC1 0.9725 0.6014
CC2 0.9994 0.7102
CC3 0.9812 0.7371

As Table 3 shows, for both cases, the distance between the impulses (where the output
signals become available) is 0.005 s. In both cases, a similar impulse observer was designed.
However, the LQR performs more weakly compared to the SRDE controller. All the
performance measures of the NMSE, c c1, c c2, and c c3, which are the normalised mean
squared errors and correlation coefficients across both the d and q axes, are lower for the
LQR compared to the SDRE. Based on the performance metrics, this superiority is due to
the SDRE being able to take care of the system’s intrinsic nonlinearities, especially when
the working point changes during tracking.

7. Conclusions

In this article, an observer-based suboptimal controller for the PMSM according to the
SDRE controller and impulsive observer approaches was applied, and a pseudo-linearised
representation and SDRE strategy procedure were presented. Moreover, a mathematical
formulation of the impulsive state observer was presented. The proposed SDRE technique
guarantees the tracking of reference paths with acceptable accuracy and speed. Despite the
change in the reference speed, the performance of the closed-loop system was maintained,
and the reference paths were well tracked. The results illustrate that despite the load
torque, the performance of the system decreases to some extent, but it is still acceptable.
A comparison was applied between the SDRE method and an LQR, which was designed
based on the Jacobian linearisation approach. According to the results obtained, it is
clear that when changing the reference speed, the LQR controller cannot guarantee the
performance of the system in tracking the reference path. In the future, suggestions can be
made for robust and adaptive SDRE controllers to handle disturbances and uncertainty in
system models.
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