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Abstract: This research presents a new method for detecting urban areas critical for the presence of
air pollutants during periods of heatwaves. The proposed method uses a geospatial model based on
the construction of Thiessen polygons and a fuzzy model based on assessing, starting from air quality
control unit measurement data, how concentrations of air pollutants are distributed in the urban study
area during periods of heatwaves and determine the most critical areas as hotspots. The proposed
method represents an optimal trade-off between the accuracy of the detection of critical areas and the
computational speed; the use of fuzzy techniques for assessing the intensity of concentrations of air
pollutants allows evaluators to model the assessments of critical areas more naturally. The method is
implemented in a GIS-based platform and has been tested in the city of Bologna, Italy. The resulting
criticality maps of PM10, NO2, and PM2.5 pollutants during a heatwave period that occurred from
10 to 14 July 2023 revealed highly critical hotspots with high pollutant concentrations in densely
populated areas. This framework provides a portable and easily interpretable decision support tool
which allows you to evaluate which urban areas are most affected by air pollution during heatwaves,
potentially posing health risks to the exposed population.

Keywords: air pollutant; heatwave scenario; GIS; Thiessen polygons; APAS; fuzzy sets; fuzzy partitions

1. Introduction

Urban air pollution is a leading cause of cardiorespiratory issues in citizens. Re-
cent research estimates that the average air pollution in European cities has reduced life
expectancy by about 2.2 years [1].

Recent studies aimed at evaluating which urban areas were most critical due to
air pollution. In [2], a model was implemented on a GIS platform for the analysis of
the types of urban patterns with lower ventilation potential that are, therefore, more
critical in the presence of high concentrations of pollutants in the atmosphere. Urban
patterns were detected considering an approach proposed in [3] for the determination of
precinct ventilation zones based on three characteristics: urban form compactness, height
of buildings, and patterns of streets. The model was tested for the cities of Antwerp in
Belgium and Gdansk in Poland to detect which subzones were less ventilated and more
exposed to polluting atmospheric agents.

A study of the most exposed urban patterns to air pollution based on land use clas-
sification is performed in [4]. Measures of ambient air quality parameters were obtained
with portable digital air pollution detection devices, and spatial modeling methods were
used to obtain maps of the distribution of each parameter in the metropolitan area of Kano,
Nigeria. The results show that industrial and commercial areas are the most exposed to
air pollution.
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The existence of a close correlation between the growth of allergic respiratory diseases,
such as rhinitis and bronchial asthma, air pollution, and the growth of average temperatures
caused by global warming has been highlighted in [5].

An analysis of the impacts of global warming on health in urban settlements is carried
out in [6]. The authors show that the main factors affecting citizens’ respiratory problems
are rising temperatures and air pollution.

It is very complex to try to determine a possible relationship between the presence of
heatwaves and the increase in the concentration of air pollutants in cities due to the high
number of variables to consider. For example, in the summer months in the presence of
heatwaves, an increase in fire cases can generate an increase in the presence of harmful dust
in the air; likewise, the excessive use of air conditioners in homes can lead to an increase
in greenhouse gas emissions. Furthermore, during periods of intense heat, the increase in
respiratory frequency in citizens, due to the body’s adaptation to temperatures, can make
people more exposed to air pollutants, creating serious health problems for individuals
with previous respiratory problems.

This work aims to provide decision-makers and urban planners with a tool for evaluat-
ing urban areas in which the population is more exposed to health risks due to the presence
of air pollutants during periods of heatwaves. These urban areas are identified as hotspots,
where, in spatial analysis, a hotspot is an area of greater intensification of phenomena and
exposure to risks. Recently, many studies focused on the detection of hotspots in urban
analysis problems inherent to different problems in which the population is exposed to
risks, such as soil pollution [7], earthquake disasters [8], crime analysis during pandemic
periods [9], and traffic incident analysis [10].

To guarantee the portability of the proposed framework in different urban settle-
ments, the model was built starting from generally available data, avoiding resorting to
information on a more detailed scale, which is often not available from various sources.

For this purpose, the urban study area is initially divided into subzones made up of
the census areas; as highlighted in [11], they are homogeneous zones in terms of urban
characteristics and represent the atomic zones in which the census data on the resident
population are acquired.

Furthermore, since the available data relating to the concentrations of pollutants in
the area are generally acquired from fixed control units for monitoring the quality of the
area managed by institutional environmental protection bodies, a process for estimating
the spatial distribution of the concentration has been developed in the model of a pollutant
by partitioning the study area into Thiessen polygons created using mass points made up
of the positions of the monitoring units.

Various well-known spatial interpolation methods, as inverse distance weighting,
nearest neighbor, kriging and land use regression models [12], can be executed to assess
the spatial distribution of pollutants. Reviews of these methods applied for urban air
pollution monitoring are given in [13,14]. However, spatial interpolation methods are
unsuitable if the monitoring units positioned in the urban study area are fixed, as the
number of measurement points input to the interpolation process is small. In fact, many
municipal public bodies are not equipped with mobile monitoring units, such as, for
example, drone-based air quality systems, which allow for the periodic measurement
of pollutant concentrations in different points of a city, and the pollutant measures are
registered only from fixed monitoring units.

In [15], an air quality prediction model to study the distribution of air pollution
parameters measured by wireless fixed monitoring units is proposed. Thiessen polygons
are constructed based on the location of the monitoring units by assigning to each point
included in a Thiessen polygon the values measured by the corresponding monitoring
units. The authors tested this model in Shanghai, China, producing thematic maps of
the distribution of an air quality index. A similar model is applied in [16] to assess the
distribution of the PM2.3 air pollutant in the city of Delhi, India.
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Recently, many deep learning forecasting methods based on long short-term memory
(LSTM) networks are applied to forecast air pollutant concentrations and their spatial
distribution [17–20]. These models have the advantage of learning long-term dependencies
on air pollution data. The results show increases in accuracy compared to two traditional
approaches. However, these models are computationally expensive, and metaheuristic
methods are often used to find the best hyperparameters for LSTM [21].

A problem of using these approaches for predicting the trend of pollutants in urban
areas of study during periods of heatwaves is the determination of the training set, since,
due to recent climate changes, the historical data of the concentrations of air pollutants in
urban settlements during periods of intense heatwaves are only recent.

We propose a GIS-based fuzzy model to analyze the spatial distribution of air pollu-
tants in urban areas during heatwaves. In our model, we consider an atomic subzone of
the area of study given by the intersection between a census zone and a Thiessen polygon.
This atomic subzone, called the Air Pollution Atomic Subzone (APAS), will be attributed
estimates of the concentrations of pollutants determined, starting from the values measured
by the corresponding monitoring station during a heatwave period, and an estimate of the
resident population, determined by considering the population data in the census zone in
which the APAS is included.

Estimates of pollutant concentrations are made by assigning a fuzzy linguistic label
to the pollutant concentration. The use of fuzzification processes of air pollution mea-
surements has the advantage of facilitating the use of the expert’s approximate reasoning
in the monitoring and evaluation of air quality in urban settlements. Fuzzifications of
air pollutant data are used in a fuzzy inference model in [22] to assess the air quality in
the urban area around Mexico City, Mexico, and in a fuzzy time series predictive model
proposed in [23] to assess the air quality distribution in the city of Klang in Malaysia.

In the proposed method, the fuzzification of the air pollutant measures is accomplished
through the creation by the decision-maker of a fuzzy partition of the measurement domain
of the pollutant concentration in three fuzzy sets, termed, respectively, Low, Medium, and
High, built using triangular fuzzy numbers. The APASs will be classified into three classes
corresponding to the labels of the three fuzzy sets.

This approach of the fuzzification of the value of the concentration of the pollutant
facilitates, on the one hand, the analysis of the decision-maker because it makes the in-
terpretation of the distribution of the pollutant along the study area more effective and
closer to their way of reasoning, and on the another, it simplifies the use of the framework,
natively allowing the decision-maker to construct the fuzzy partitions using triangular
fuzzy sets.

After dissolving adjacent APASs belonging to the same class, classified as hotspots for
the analyzed air pollution, the dissolved subzones are classified as High. A criticality map
of the hotspots is created by the decision-maker based on the population at risk residing in
the hotspot.

By analyzing the criticality maps of each air pollutant, the decision-maker can evaluate
which subzones of the urban study area must be given priority attention to safeguard the
population that resides there.

The main strengths of the proposed framework are as follows:

- It provides the decision-maker with decision support for evaluating the most critical
urban areas due to air pollution in periods of heatwaves and the resident population
whose health is most at risk;

- It guarantees the portability of the model to different urban settlements requiring only
census and monitoring data from monitoring stations provided by the relevant bodies;

- It has a high usability determined by the use of a fuzzification approach of the pollutant
concentration values, which allows the decision-maker to make an interpretation of
the distribution of the pollutant concentration closer to their way of reasoning.
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In the following section, a detailed description of the proposed framework is provided,
and the case study used for testing is presented. The results of the experimental tests are
presented and discussed in Section 3, followed by a concluding discussion in Section 4.

2. Materials and Methods

The aim of the proposed GIS-based framework is to detect urban hotspots based on the
high concentration of air pollutants during periods of heatwaves and to create a criticality
map in which the critical hotspots are highlighted, i.e., the hotspots in which residents live
in numbers exceeding a critical threshold. The user of the framework is a decision-maker
who intends to evaluate in which urban areas in a specific heatwave period high values of
air pollutants were detected, enough to put the health of residents at risk.

The method is schematized in Figure 1, where the variable corresponding to the
concentration of an air pollution is labeled as a parameter. The method is composed of
three phases.
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Below the phases of the process are described.

Phase 1—Partitioning the area of study in Air Pollution Atomic Subzones

Initially, the urban area of study is divided into subzones, corresponding to the
population census areas. The reason for this partitioning is that a census area represents a
homogeneous area in terms of urban and morphological characteristics and represents the
surface unit for collecting census data [24,25].

The air quality measurement data are recorded by monitoring stations located along
the study area, called Monitor Control Units (MCUs); they are georeferenced as points on
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the map. The search for the heatwave period is carried out by analyzing the data acquired
from weather stations located in or near the study area.

Then, the area of study is partitioned into Thiessen polygons, where the ith Thiessen
polygon is given by the surface within which the closest MCU is the ith MCU. The spa-
tial intersection of a Thiessen polygon with a subzone forms an atomic homogeneous
area in terms of population data and air pollutant measures, called Air Pollution Atomic
Subzones (APASs).

Based on the type of analysis they intend to carry out, the decision-maker chooses a
population to consider in the analysis which is at risk (for example, all residents, or elderly
people over 74, who may be more exposed to risks to their health).

To assess the population living in an APAS, it is supposed that the population is
equally distributed in the corresponding subzone; in this way, the population resident in
the APAS is approximated as a whole value equal to the product of the population of the
subzone by the ratio between the area of the APAS and that of the subzone.

Finally, the population density of each APAS is classified. Based on the variation in
and spatial distribution of residents, the decision-maker can categorize the population
density as Low, Medium, and High.

Phase 2—Fuzzification of measurement values of air pollutant parameters for each MCU
during a heatwave period

From the MCU data streams, the values of the parameters associated with the presence
of pollutants are extracted and measured during the heatwave period. Then, the mean
peak value of each parameter is calculated.

Formally, let {d1, . . ., dn} be the days of heatwave detected and let {mj
i(t1dh

), . . . ,

mj
ih(tNdh

)} be the set of N measures of the ith parameters performed from the jth MCU in

the day dh, where h = 1, . . ., n. With pj
i(d h

)
is denoted the max value of these N measures,

i.e., the peak value measured for the ith parameter in the day dh. The mean peak value of
the ith parameter obtained in the period from the jth MCU is given by the following:

vj
i =

1
n∑n

k=1 pj
i(dh) (1)

This value is fuzzified by creating a fuzzy partition of the numerical domain of the
ith parameter. The fuzzy partition on the domain of a parameter is built considering
three fuzzy sets, labeled Low, Medium, and High, given, respectively, by an R-function, a
triangular, and L-function fuzzy numbers given by the following membership functions:

µLow(x) =


1 x < aL
(bL−x)
bL−aL

aL ≤ x ≤ bL

0 x > bL

(2)

µMedium(x) =


1 x < aM
(x−aM)
bM−aM

aM ≤ x ≤ bM
(cM−x)
cM−bM

bM ≤ x ≤ cM

0 x > cM

(3)

µHigh(x) =


0 x < aH
(x−aH)
bH−aH

aH ≤ x ≤ bH

1 x > bH

(4)

The numbers aL, bL, aM, bM, cM, aH, bH of the three fuzzy sets are fixed by the decision-
maker for each primary pollutant by considering the recommended maximum values in
the last World Health Organization (WHO) air quality guidelines (AQGs) published in the
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year 2021 [26], which are the levels recommended to reduce risks to people’s health. They
are shown in Table 1.

Table 1. Recommended maximum values of the primary pollutants in the WHO AQGs (µg/m3).

Pollutant Averaging Period AQG Level

PM2.5 1 day 15 1

Calendar year 5
PM10 1 day 45 1

Calendar year 15
O3 Maximum daily 8 h mean 100 1

Peak season 60
NO2 1 h 200

1 day 25 1

Calendar year 10
SO2 10 min 500

1 day 40 1

CO 1 h 30
Maximum daily 8 h mean 10

1 day 4 1

1 99th percentile (3–4 exceedance days per year).

The numbers of the three fuzzy sets are linked to the Ruspini constraint [27] for the
fuzzy partition, which imposes that for each x, the sum of the membership degrees to the
three fuzzy sets µLow(x) + µMedium(x) + µHigh(x) is equal to 1, and that at least a member-
ship degree is not equal to zero. The mean pick value of a parameter is fuzzified, assigning
to it the label of the fuzzy set to which it belongs with the highest membership degree.

As an example, Figure 2 shows a Ruspini fuzzy partition of the parameter CO, in
which the following are set: aL= 1, bL = 2.5, aM = 1, bM = 2.5, cM = 4, aH = 2.5, bH = 4.
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Let the value vj
CO = 3.65µg/m3 be the mean peak value of CO obtained from the jth MCU.

We obtain the following: µLow

(
vj

CO

)
= 0.00, µMedium

(
vj

CO

)
= 0.23,µHigh

(
vj

CO

)
= 0.77.

Since the highest membership degree value is 0.77, this mean peak value is fuzzified, and
the parameter measured by the MCU is classified as High.

Phase 3—Parameter hotspot detection and creation of the criticality map
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In this phase, the decision-maker analyzes the distribution of a parameter in the study
area and the detected hotspots. Each APAS is classified as Low, Medium, and High, both
based on the resident population and the concentration of the air pollutant analyzed.

The APAS is assigned the concentration class of the parameter assigned to the corre-
sponding MCU.

Then, adjoint APASs belonging to the same population class and the same parameter
class are dissolved to form polygons; the polygons classified with the High parameter
concentration are labeled as hotspots, that is, areas where during the heatwave period, the
concentrations of the air pollutant analyzed are worrying for the health of residents.

To determine the most critical hotspots, the decision-maker categorizes them into
different criticality levels based on the population density in each hotspot. The higher the
criticality level, the higher the population density and the greater the need for attention and
priority for intervention. Subsequently, a final criticality thematic map is created, classifying
the APASs in the hotspot regions according to their criticality level. This classification
considers the four criticality levels outlined in Table 2.

Table 2. Classification of the criticality level.

Criticality Level Description

Low Not hotspot zones
Medium Hotspots in which the population density is Low

High Hotspots in which the population density is Medium
Very High Hotspots in which the population density is High

The zones not labeled as hotspots will be classified with criticality level Low. In these
areas, there is no particular risk to the health of the inhabitants due to the concentration
of the pollutant, regardless of the population density. The hotspots will be classified as
Medium if the mean population density is Low, High if the mean population density in it is
Medium, and Very High if it is High.

Algorithm 1 schematizes phase 1 in pseudocode, in which the area of study is parti-
tioned in APASs.

Algorithm 1 APASs spatial data creation.
Input: Area of study

Census zone of the area of study
Population census data
Localization of the MCUs

Output: Spatial dataset containing the APASs

1. Partition the urban area of study in subzones given by the census zones
2. For each subzone s
3. Assign to z the corresponding population census data
4. Next subzone
5. Partition the area of study in Thiessen polygons starting from the localizations of the MCUs
6. Intersect the subzones with the Thiessen polygons to obtain the APASs
7. For each APAS ap
8. Assess the population living in ap
9. Calculate the population density living in ap
10. Classify the population density living in ap
11. Next APAS
12. Return the spatial dataset containing the APASs

Below, phase 2 is schematized in pseudocode, corresponding to the preprocessing
activity needed to create the dataset containing the classification of the parameters for each
MCU (Algorithm 2).
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Algorithm 2 MCU parameters classification in a heatwave period.
Input: Wheater data stream for the area of study

MCUs data stream
Fuzzy partitions of the parameters

Output: MCUs dataset with the classification of the parameters

1. Set the heatwave period
2. For j = 1 to number of MCUs
3. For i = 1 to number of parameters

4. Compute the mean peak value of the ith parameter for the jth MCU vj
i by (1)

5. Fuzzify vj
i based on the fuzzy partition of the ith parameter

6. Classify the ith parameter for the jth MCU
7. Next i
8. Next j
9. Return the MCUs dataset with the classification of each parameter

Algorithm 3 schematizes in pseudocode phase 3, in which, for assigned parameter
p, the hotspots are determined and the criticality map is created. Algorithm 3 is executed
every time the decision-maker intends to detect hotspots and create a criticality map for an
air pollutant.

Algorithm 3 Parameter criticality map creation.
Input: Parameter p

Spatial dataset containing the APASs
MCUs dataset with the classification of the parameters

Output: Criticality map

1. Extract the class assigned to the parameter p for each MCU
2. For each APAS ap
3. Assign to ap the class to which belongs the parameter p, set for the corresponding MCU
4. Next
5. Dissolve adjoint APASs belonging to the same class
6. For each dissolved APAS apd
7. If ad is classified as High
8. Annotate apd as a hotspot
9. Compute the population living in the hotspot apd
10. End if
11. Next ad
12. Create the criticality map based on the density of residents living in the hotspots
13. Return the criticality map

The Case Study

The case study focuses on the city of Bologna, Italy. As shown in Figure 3, Bologna is
divided into six districts: Borgo Panigale–Reno, Navile, Porto–Zaragoza, San Donato–San
Vitale, Santo Stefano, and Savena.

There are three Monitor Control Units; they take the same name as the address where
they are located: one is located in Via Chiarini in the district of Borgo Panigale–Reno, one
is located in Porta San Felice in the district of Porto–Zaragoza, and one is located at the
Margherita Gardens in the district of Santo Stefano.

In Table 3, all the pollution parameters measured for each MCU are grouped.
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Table 3. All of the pollutant parameters categorized for each MCU.

MCU Parameter Measurement Unit

Giardini Margherita

NO2 µg/m3

O3 µg/m3

PM2.5 µg/m3

PM10 µg/m3

Porta San Felice

C6H6 µg/m3

CO µg/m3

NO µg/m3

NO2 µg/m3

NOX µg/m3

PM2.5 µg/m3

PM10 µg/m3

Via Chiarini
NO2 µg/m3

O3 µg/m3

PM10 µg/m3

3. Results

The tests were carried out taking into account the period from 10 to 14 July 2023, in
which a heatwave was detected, by checking the measured meteorological data.

The framework was implemented in the GIS platform ESRI ArcGIS Pro; the code
was generated in the Python environment using the Spyder IDE for Python and the ESRI
Python library. The air quality monitoring data were extracted from the repository of the
Arpae—Regional Agency for Prevention, Environment and Energy of Emilia-Romagna
(Italy), accessible on the website: https://dati.arpae.it/dataset/qualita-dell-aria-rete-di-
monitoraggio, accessed on 1 May 2024.

The framework was tested to obtain the criticality maps of the parameters PM2.5, PM10,
and NO2. PM10 and NO2 are measured by all three MCUs, while PM2.5 is recorded only by
the two control units Giardini Margherita and Porta San Felice.

The graphs in Figures 4 and 5 show, respectively, the daily trends of the PM2.5,
PM10, and NO2 parameters measured in the month of July 2023 from the MCUs Giar-

https://dati.arpae.it/dataset/qualita-dell-aria-rete-di-monitoraggio
https://dati.arpae.it/dataset/qualita-dell-aria-rete-di-monitoraggio
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dini Margherita and Porta San Felice. Figure 6 shows the trend of PM10 and NO2 measured
in the month of July 2023 from the MCUs Via Chiarini. The period in which the heatwave
was detected is highlighted in red.
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During the heatwave period, the daily values of PM10 measured in the MCUs Giardini
Margherita and Via Chiarini show peaks; on the contrary, these peaks are not present in the
trends of the parameters measured by the MCU Porta San Felice. PM2.5 also shows a peak
in the trend of measurements made by the MCU Giardini Margherita, but it is less evident
than the peak of PM10. On the contrary, in the trend of the values measured by all three
MCUs in the heatwave period, NO2 does not show any significant variation. Furthermore,
the daily NO2 values measured by the MCU Porta San Felice are much higher than those
measured by the other two MCUs.

Table 4 highlights the peak values above the WHO AQG thresholds recorded in the
period by the MCUs. The alarm values are highlighted in bold.

Table 4. Maximum values recorded above the alarm thresholds in the heatwave period.

Parameter WHO AQGs. MCU Maximum Value

PM10 45.00
Via Chiarini 53.00

Giardini Margherita 47.00
NO2 25.00 Porta San Felice 52.00

PM2.5 15.00 Giardini Margherita 21.00

To obtain the criticality maps of PM10 and NO2, Thiessen polygons determined con-
cerning three points made up of three MCUs are generated. Instead, to obtain the criticality
maps of PM2.5, it was necessary to regenerate Thiessen polygons, considering only two
points corresponding to the two MCUs of Giardini Margherita and Porta San Felice. The
APASs are obtained in the two cases as spatial intersections of the census zones with the
Thiessen polygons. The map in Figure 7a shows the APASs built to obtain the criticality
maps of PM10 and NO2, while the map in Figure 7b shows the APASs built to obtain the
criticality map of PM2.5.
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To classify the density of residents living in the APAS, a fuzzy partition was created
consisting of three fuzzy sets, labeled Low, Medium, and High. This classification considers
a range from the minimum to the maximum population density values in the census areas.
The minimum value is 0, representing census areas without inhabitants, and the maximum
value is 49,254 inhabitants per square kilometer.

The population density in an APAS is categorized as Low, Medium, or High based on
the fuzzy set with the highest membership degree. The population density fuzzy partition
is illustrated in Figure 8.



Computers 2024, 13, 143 12 of 18

Computers 2024, 13, x FOR PEER REVIEW 12 of 19 

To obtain the criticality maps of PM10 and NO2, Thiessen polygons determined 
concerning three points made up of three MCUs are generated. Instead, to obtain the 
criticality maps of PM2.5, it was necessary to regenerate Thiessen polygons, considering 
only two points corresponding to the two MCUs of Giardini Margherita and Porta San 
Felice. The APASs are obtained in the two cases as spatial intersections of the census zones 
with the Thiessen polygons. The map in Figure 7a shows the APASs built to obtain the 
criticality maps of PM10 and NO2, while the map in Figure 7b shows the APASs built to 
obtain the criticality map of PM2.5.  

(a) (b) 

Figure 7. (a) APASs generated to evaluate the spatial distribution of PM10 and NO2; (b) APASs 
generated to evaluate the spatial distribution of PM2.5. 

To classify the density of residents living in the APAS, a fuzzy partition was created 
consisting of three fuzzy sets, labeled Low, Medium, and High. This classification considers 
a range from the minimum to the maximum population density values in the census areas. 
The minimum value is 0, representing census areas without inhabitants, and the 
maximum value is 49,254 inhabitants per square kilometer. 

The population density in an APAS is categorized as Low, Medium, or High based on 
the fuzzy set with the highest membership degree. The population density fuzzy partition 
is illustrated in Figure 8. 

Figure 8. Fuzzy partition of the population density.

Figure 9a,b show the spatial distributions of the population density for the APASs
generated to analyze, respectively, PM10 and NO2 (Figure 9a) and PM2.5 (Figure 9b).
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The two population density maps are similar. They show a greater presence of APASs
with High population density in the central area of the city, while in all APASs located in
the southern area of the city, the population density is Low.

For each MCU, the average values of the parameters are calculated in the heatwave
period recorded in the city of Bologna. Then, these values are classified, and the processes
needed to determine the criticality maps of each parameter are executed. They are described
for each parameter in the following subparagraphs.

3.1. PM10 Criticality Map Creation

The fuzzification process is started by building a fuzzy partition into three fuzzy sets
of PM10, where the fuzzy sets are given, respectively, by an R-function, a triangular, and
an L-function fuzzy number. It was created with the help of a domain expert, taking into
consideration the recommended maximum values indicated in the WHO AQGs.

Figure 10 shows the fuzzy partition of PM10.
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After the fuzzification process, each of the three MCUs is classified with the label of
the fuzzy set to which it belongs with the highest membership degree. Then, the APASs are
classified by the class assigned to the correspondent MCU.

After dissolving bordering APASs belonging to the same PM10 concentration class,
the zones classified with a PM10 concentration of High are detected as hotspots.

Finally, the PM10 criticality map is created considering the criticality levels described
in Table 2. Figure 11 shows the criticality map of PM10.

Computers 2024, 13, x FOR PEER REVIEW 14 of 19 
 

Finally, the PM10 criticality map is created considering the criticality levels described 
in Table 2. Figure 11 shows the criticality map of PM10.  

 

Figure 11. Criticality map of PM10. 

Only the areas included in the Thiessen polygon associated with the Porta San Felice 
MCU are not hotspots and are classified as having a Low criticality level. The areas to the 
south of the city, where the population density is Low, are classified as having a Medium 
criticality level, as in these areas the concentration of PM10 is High. The other areas, located 
mainly in the central area of the city, are hotspots classified as having a High criticality 
level, where the population density is Medium, and as having a Very High level, where the 
population density is High. These represent the most critical areas in which interventions 
to protect the population are a priority. 

3.2. NO2 Criticality Map Creation 
The NO2 parameter is also measured by all three MCUs. The corresponding fuzzy 

partition is given by the three fuzzy sets Low, Medium, and High shown in Figure 12, 
considering the maximum values indicated in the WHO AQGs. 

 

Figure 11. Criticality map of PM10.

Only the areas included in the Thiessen polygon associated with the Porta San Felice
MCU are not hotspots and are classified as having a Low criticality level. The areas to the
south of the city, where the population density is Low, are classified as having a Medium
criticality level, as in these areas the concentration of PM10 is High. The other areas, located
mainly in the central area of the city, are hotspots classified as having a High criticality
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level, where the population density is Medium, and as having a Very High level, where the
population density is High. These represent the most critical areas in which interventions
to protect the population are a priority.

3.2. NO2 Criticality Map Creation

The NO2 parameter is also measured by all three MCUs. The corresponding fuzzy
partition is given by the three fuzzy sets Low, Medium, and High shown in Figure 12,
considering the maximum values indicated in the WHO AQGs.
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The spatial distribution of the criticality level appears to be the opposite of that of
PM10. The areas included in the Thiessen polygons associated with the MCUs Via Chiarini
and Giardini Margherita are not hotspots and are classified with the Low criticality level.
On the contrary, the areas included in the Thiessen polygon associated with the MCU Porta
San Felice are hotspots, mainly classified with criticality level Medium. Some of these areas,
located mainly in the central area of the city, are classified with criticality level High or Very
High, as the population density in them is Medium or High.

This spatial distribution of the criticality map of NO2, inverse to that of PM10, is proba-
bly due to the presence of anthropic elements, such as, for example, excessively used air con-
ditioners, which causes the intensification of the NO2 concentration in heatwave periods.

3.3. PM2.5 Criticality Map Creation

The PM2.5 pollutant is measured only by the two MCUs Porta San Felice and Giardini
Margherita. The fuzzy partition of the parameter is given by the three fuzzy sets Low,
Medium, and High, shown in Figure 14, considering the maximum values indicated in the
WHO AQGs.
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Figure 14. Fuzzy partition of PM2.5.

Figure 14 shows the fuzzy partition of PM2.5.
Executing the process described previously, the zones classified with PM2.5 concentra-

tion High are detected as hotspots.
Finally, the PM2.5 criticality map is created considering the criticality levels described

in Table 2. Figure 15 shows this criticality map.
In this case, the hotspot areas extend to the entire city, and there are no areas with

criticality level Low. Most of the areas are classified with criticality level Medium, while
only some areas in the central area of the city, where the population density is Medium or
High, are classified, respectively, with criticality level High and Very High.

Probably, the fact that the entire city constitutes a hotspot for the concentration of
PM2.5 is because this pollutant can remain suspended in the farmyard for a non-negligible
period. Furthermore, since it consists of atmospheric particulate matter made up of particles
with a smaller aerodynamic diameter than PM10, it is even more dangerous for the health
of inhabitants, as it manages to penetrate the lungs and, in some cases, reach the circulatory
system. Therefore, the areas classified with High or Very High PM2.5 criticality levels should
be those of maximum alert for decision-makers.
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The results obtained for the three air pollutants highlight the usefulness of the frame-
work as a decision support tool to determine which urban areas are most critical due to
high concentrations of pollutants during periods of heatwaves. In particular, the criticality
maps of the three pollutants show that central urban areas of the city of Bologna, with a
high population density, are particularly critical. In the criticality map of PM2.5, a very
dangerous pollutant due to the respiratory and cardiovascular damage it can cause to the
population, this central area of the city is very large; in it, the criticality due to the presence
of the pollutant and the population density is High or Very High, suggesting the need for
priority interventions to protect the health of citizens.

The obtained results align with peak values recorded by individual MCUs that exceed
the WHO AQGs thresholds, as shown in Table 4. Furthermore, these results highlight
that, compared to a traditional approach, which only reports alarm situations with values
higher than the thresholds recorded by the MCU, the proposed framework approximates
the spatial distribution of the parameter in the urban area of study. This allows for the
detection of hotspots and the identification of the most critical urban areas.

4. Conclusions

The proposed framework allows for determining the most critical urban areas due
to the concentration of pollutants in the air during periods of heatwaves. To ensure
the portability of the framework also in urban settlements in which the monitoring of
the area is carried out by fixed monitoring units, the urban study area is divided into
Thiessen polygons built based on the positions of the monitoring units and is subsequently
segmented into APASs, consisting of the spatial intersection between the census areas and
the Thiessen polygons.

Each APAS is classified based on the exposed population density and the hazard of
the pollutant concentration during the analyzed heatwave period, which is evaluated using
a fuzzy-based approach. After having identified the urban areas most at risk due to the
high concentration of the pollutant (hotspots), a map of the criticality of the pollutant is
constructed in which the hotspots are classified by level of criticality assigned based on the
density of the population at risk.
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The framework was tested in the city of Bologna (Italy), analyzing the spatial distribu-
tion of PM10, NO2, and PM2.5 concentrations during a heatwave period.

The criticality maps of the three air pollutants highlight that the central areas of the
city, where the population density is high, are those where the health of citizens is most
at risk.

This method has the advantage of being portable and flexible; it can be managed
and customized very easily by local decision-makers for the analysis of the major critical
issues generated by high concentrations of types of pollutants in the presence of heatwaves,
providing decision analysis support in determining the main urban areas of intervention to
protect the population at risk.

The limitation of the framework is represented by the fact that it is unsuitable in the
presence of measurements with greater spatial resolution, for example, measurements
carried out by mobile control units or using drones. In these cases, in fact, the segmentation
of the study area into Thiessen polygons must be replaced by more sophisticated spatial
modeling algorithms. For this reason, in future research, the framework will be tested
on urban areas monitored with the use of mobile or drone-mounted control units, using
more sophisticated spatial modeling methods to increase the spatial accuracy of the results.
Furthermore, in the future, we intend to integrate our framework with hybrid deep learning
and metaheuristic forecasting models to obtain more accurate predictions of the distribution
of air pollutants in urban areas during heatwave periods, testing this framework on different
urban settlements.
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