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Abstract: This article emphasises the urgent need for appropriate communication tools for communi-
ties of people who are deaf or hard-of-hearing, with a specific emphasis on Arabic Sign Language
(ArSL). In this study, we use long short-term memory (LSTM) models in conjunction with MediaPipe
to reduce the barriers to effective communication and social integration for deaf communities. The
model design incorporates LSTM units and an attention mechanism to handle the input sequences of
extracted keypoints from recorded gestures. The attention layer selectively directs its focus toward
relevant segments of the input sequence, whereas the LSTM layer handles temporal relationships
and encodes the sequential data. A comprehensive dataset comprised of fifty frequently used words
and numbers in ArSL was collected for developing the recognition model. This dataset comprises
many instances of gestures recorded by five volunteers. The results of the experiment support the
effectiveness of the proposed approach, as the model achieved accuracies of more than 85% (individ-
ual volunteers) and 83% (combined data). The high level of precision emphasises the potential of
artificial intelligence-powered translation software to improve effective communication for people
with hearing impairments and to enable them to interact with the larger community more easily.

Keywords: deaf communication; sign language recognition; dynamic hand gestures; deep learning; LSTM
networks; attention mechanism; MediaPipe framework; human–computer interaction; multimodal
integration; assistive technology

1. Introduction

People with hearing loss and speech impairments are deprived of effective contact
with the rest of the community. According to the statistics of the International Federation
of the Deaf and the World Health Organisation (WHO), more than 5% of people around
the world are deaf and have severe difficulties communicating with those without hearing
impairments, which means approximately 360 million people. Deaf individuals use another
method to communicate instead of speech called sign language (SL) [1]. SL facilitates com-
munication between the deaf community and people who are either deaf or nondisabled.
SL is a visual communication system that encompasses both manual elements, such as
hand gestures, and nonmanual elements, such as facial emotions and body movements [2].
SL is a complicated style of communication based mostly on hand gestures. These gestures
are formed by different components, such as hand shape, hand motion, hand location, palm
orientation, the movement of the lips, facial expressions, and points of contact between
the hands or between the hands and other parts of the body, to express words, letters,
and numbers.

Many sign languages exist in the deaf community, roughly one per country, which
vary as much as spoken languages [3], e.g., Arabic Sign Language (ArSL), American Sign
Language (ASL), British Sign Language (BSL), Australian Sign Language (Auslan), French
Sign Language (LSF), Japanese Sign Language (JSL), Chinese Sign Language (CSL), German
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Sign Language (DGS), Spanish Sign Language (LSE), Italian Sign Language (LIS), Brazilian
Sign Language (LIBRAS), and Indian Sign Language, among others. Sign languages vary in
lexicon, grammar, phonology, gesture form, and nonmanual elements, as do alphabets and
words. Each language has its own unique features and regional variations, which reflect the
diverse cultural and linguistic backgrounds of deaf communities worldwide. This diversity
adds another difficulty, which is the lack of a unified sign language that serves universally
as a vital means of communication and cultural expression for deaf individuals. Therefore,
translating SL is indeed a necessary solution to bridge communication gaps between deaf
and hearing individuals [4,5]. The development of automatic sign language translation
systems reduces the reliance on human interpreters, lowers communication barriers, and
promotes social inclusion in the deaf community. Hand gesture recognition is essential for
automatic sign language translation systems. Researchers are increasingly interested in
hand gesture recognition to solve communication challenges for deaf individuals, along
with advances in gesture-controlled gadgets, gaming, and assistive technology [6].

Sign language recognition (SLR) systems focus on recognising and understanding
sign language gestures and translating them into text or speech [7,8]. SLR systems typically
involve artificial intelligence techniques to recognise and interpret the movements and
forms of hands, fingers, and other relevant body parts used in SL. Several studies on sign
language recognition (SLR) have attempted to bridge the communication gap between
deaf and hearing individuals by eliminating the need for interpreters. However, sign
language recognition systems have several obstacles, including a low accuracy, complex
movements, a lack of large and full datasets containing various signals, and the models’
inability to analyse them appropriately. Additionally, there are distinct indicators for each
language [4,9,10].

This study proposes a deep learning (DL)-based model that leverages MediaPipe
alongside RNN models to address the issues of dynamic sign language recognition. Medi-
aPipe generates keypoints from hands and faces to detect position, form, and orientation,
while LSTM models recognise dynamic gesture movements. Additionally, we introduce a
new Arabic Sign Language dataset that focuses on dynamic gestures, as existing datasets
predominantly feature static gestures in ArSL. In contrast, sensor-based solutions such as
glove usage are expensive and impractical for everyday use due to power requirements and
user annoyance. As a result, we abandoned this approach in favour of a more cost-effective
approach involving the use of smartphone cameras to acquire data. The contributions of
this study can be summarised as follows:

1. The DArSL50 dataset is a large-scale dataset comprised of 50 dynamic gestures in
Arabic Sign Language (ArSL), including words and numbers, resulting in a total of
7500 video samples. This extensive dataset addresses the lack of sufficient data for
dynamic gestures in ArSL and supports the development and evaluation of robust
sign language recognition systems.

2. The proposed model leverages long short-term memory (LSTM) units with an atten-
tion mechanism combined with MediaPipe for keypoint extraction. This architecture
effectively handles the temporal dynamics of gestures and focuses on relevant seg-
ments of input sequences.

3. The model’s performance was evaluated in the following two scenarios: individual
volunteer data and combined data from multiple volunteers. This dual evaluation
approach ensures that the model is tested for its ability to generalise across different
individuals and in different signing styles.

4. The proposed framework is validated for real-time performance.

The rest of this paper is organised as follows. Section 2 describes the methodology of
the proposed ArSL recognition system and includes details about the DArSL 50 dataset. The
experimental results are reported in Section 3, while an explanation of the results is presented
in Section 4. Section 6 concludes the discussion and outlines future research directions.
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The following two categories of sign language recognition systems can be distin-
guished according to the method used for data collection in the academic literature: sensor-
based and vision-based [11], as shown in Figure 1.
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Figure 1. Sign language recognition approaches.

In the sensor-based method, sensors and equipment are used to collect the position,
hand motion, wrist orientation, and velocity. Flex sensors, for instance, are used to measure
finger movements. The inertial measurement unit (IMU) measures the acceleration of
the fingers using a gyroscope and an accelerometer. The IMU is also used to detect wrist
orientation. Wi-Fi and radar detect variations in the intensity of communications in the
air using electromagnetic indicators. Electromyography (EMG) identifies finger mobility
by measuring the electrical pulse in human muscles and then decreasing the biosignal.
Other devices include haptic, mechanical, electromagnetic, ultrasonic, and flex sensors [12].
Sensor-based systems have an important advantage over vision-based systems, since gloves
can rapidly communicate data to computers [13]. The device-based sensors (Microsoft
Kinect sensor, Leap Motion Controller, and electronic gloves) can directly extract features
without preprocessing, which means that the device-based sensors can minimise the time
needed to prepare sign language datasets, data can be obtained directly, and a good
accuracy rate can be achieved in comparison with vision-based devices [14]. Figure 2
demonstrates the primary phases of the SL gesture data collection and detection utilising
the sensor-based system. The sensor-based approach has the issue of requiring the end-user
to have a physical connection to the computer, making it unsuitable. Furthermore, it is
expensive due to the use of sensitive gloves [13]. Despite the accuracy of the data that may
be obtained from these devices, whether they wear gloves or are coupled to a computer,
gadgets such as a Leap Motion or Microsoft Kinect device remain unpleasant [14].

Another option is the vision-based approach, which involves using a video camera to
capture hand gestures. This gesture-detection solution combines appearance information
with a 3D hand model. Key gesture capture technology in a vision-based technique was
developed in Ref. [13]. Body markers such as colourful gloves, wristbands, and LED lights
were used in this study, as well as active light projection systems that make use of the Kinect:
Manufactured by Microsoft Corporation, Redmond, WA, USA. and Leap Motion Controller
(LMC): Manufactured by Ultraleap Inc., San Francisco, CA, USA). A single camera might
be employed with a smartphone camera, a webcam, or a video camera, as well as stereo
cameras, which deliver rich information by using numerous monocular cameras. The
primary benefit of employing a camera is that it removes the need for sensors in sensory
gloves, lowering the system’s manufacturing costs. Cameras are fairly inexpensive, and
most laptops employ a high-specification camera due to the blurring effect of a webcam [13].
A simplified representation of the camera vision-based method for extracting and detecting
hand movements is shown in Figure 3.
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In the literature, many SLR systems use traditional machine learning algorithms to clas-
sify the features of images to recognise SL gestures. In addition, the former uses traditional
image segmentation algorithms to segment hand shapes from sign language images or the
video frames of sign language video and then uses a machine-learning approach (such
as SVM, HMM, or the k-NN algorithm). Using traditional machine learning algorithms
has disadvantages related to handicraft features, which have a limited representational
capability. It is difficult to extract representative semantic information from complex mate-
rial, and step-by-step gesture recognition performs poorly in real-time. Other researchers
have used deep neural networks to detect and recognise the gestures of SL. Deep neural
network models such as CNNs, RNNs, GRUs, long short-term memory (LSTM), and bidi-
rectional long short-term memory (LSTM) networks are used to address the issue of frame
dependency in sign movement. These models employ an object-detection neural network
to learn the video frame’s features, allowing it to find the hand while also classifying the
movements. Compared to traditional image processing and machine learning algorithms,
deep neural network-based target detection networks frequently achieve a higher accuracy
and recognition speed, as well as better real-time performance, and have become the main-
stream method of dynamic target detection. The advantage of deep learning is its ability to
automatically learn data representations directly from raw inputs. Deep learning models
can autonomously extract features and patterns from complex datasets without the need
for manual feature engineering [15].
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SLR studies can also be divided into static sign language recognition and dynamic
sign language recognition. The former performs gesture recognition by judging the hand
posture, and it does not contain dynamic information. The latter contains hand movements
and performs gesture recognition based on the video sequence, which is essentially a
classification problem. Dynamic sign language recognition is much more difficult to
implement than static sign language recognition, but it is more meaningful and valuable.

The following presents a review of SLR studies, including methods and datasets. In
Ref. [16], a recognition system was utilised as a communication tool between those who
are hearing-challenged and others who are not. This work describes the first automatic
Arabic Sign Language (ArSL) recognition system using hidden Markov models (HMMs).
A vast number of samples were utilised to identify 30 isolated terms from the standard
Arabic Sign Language. The recognition accuracy of the system was between 90.6 and
98.1%. In Ref. [17], ArSL was based on the hidden Markov model (HMM). They collected
a large dataset to detect 20 isolated phrases from the genuine recordings of deaf persons
in various clothing and skin hues, and they obtained a recognition rate of approximately
82.22%. In Ref. [18], the authors presented an ArSL recognition system. The scope of this
study includes the identification of static and dynamic word gestures. This study provides
an innovative approach for dealing with posture fluctuations in 3D object identification.
This approach generates picture features using a pulse-coupled neural network (PCNN)
from two separate viewing angles. The proposed approach achieved a 96% recognition
accuracy. Ref. [19] provided an automated visual SLRS that converted solitary Arabic word
signals to text. The proposed system consisted of the following four basic stages: hand
segmentation, tracking, feature extraction, and classification. A dataset of 30 isolated words
used in the everyday school lives of hearing-challenged students was created to evaluate
the proposed method, with 83% of the words having varied occlusion conditions. The
experimental findings showed that the proposed system had a 97% identification rate in
the signer-independent mode. Ref. [20] presented a framework for the field of Arabic Sign
Language recognition. A feature extractor with deep behaviour was utilised to address the
tiny intricacies of Arabic Sign Language. A 3D convolutional neural network (CNN) was
utilised to detect 25 motions from the Arabic Sign Language vocabulary. The recognition
system was used to obtain data from depth maps using two cameras. The system obtained
a 98% accuracy for the observed data, but the for fresh data, the average accuracy was 85%.
The results might be enhanced by including more data from various signers. In Ref. [21], a
computational mechanism was described that allowed an intelligent translator to recognise
the separate dynamic motions of ArSL. The authors utilised ArSL’s 100-sign vocabulary and
1500 video clips to represent these signs. These signs included static signs such as alphabets,
numbers ranging from 1 to 10, and dynamic words. Experiments were carried out on
our own ArSL dataset, and the matching between ArSL and Arabic text was evaluated
using Euclidian distance. The suggested way to automatically find and translate single
dynamic ArSL gestures was tested and found to work well and correctly. The test findings
revealed that the proposed system can detect signs with a 95.8% accuracy. In Ref. [4], the
authors generated a video-based Arabic Sign Language dataset with 20 signs generated by
72 signers and suggested a deep learning architecture based on CNN and RNN models.
The authors separated the data preprocessing into three stages. In the first stage, the
proportions of each frame decreased to reach a lower total complexity. In the second stage,
they sent the result to a code that subtracted every two consecutive frames to determine the
motion between them. Finally, in the third stage, the attributes of each class were merged to
produce 30 frames, with each unified frame combining 3 frames. The goal of stage three was
to decrease the duplication while not losing any information. The primary idea behind the
proposed architecture was to train two distinct CNNs independently for feature extraction,
then concatenate the output into a single vector and transmit it to an RNN for classification.
The proposed model scored 98% and 92% on the validation and testing subsets of the
specified dataset, respectively. Furthermore, they attained promising accuracies of 93.40%
and 98.80% on the top one and top five rankings of the UFC-101 dataset, respectively. The
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study by Ref. [22] provides a computer application for translating Iraqi Sign Language into
Arabic (text). The translation process began with the capture of videos to create the dataset
(41 words). The proposed system then employed a convolutional neural network (CNN)
to categorise the sign language based on its attributes to infer the meaning of the signs.
The proposed system’s section that translates the sign language into Arabic text had an
accuracy rate of 99% for the sign words.

Research on Arabic Sign Language recognition lacks common datasets available for
researchers. Despite the publication of two volumes of “A Unified Arabic Sign Language
Dictionary” in 2008, researchers in this field continue to face a lack of large-scale datasets.
As such, each researcher needed to create a sufficiently large dataset to develop the ArSL
recognition systems. Therefore, this study endeavoured to create a comprehensive dataset
that was explicitly tailored for Arabic Sign Language recognition. Subsequently, this
dataset serves as the foundation for the development of an accurate Arabic Sign Language
recognition system capable of recognising the dynamic gestures inherent in ArSL.

2. Materials and Methods

The suggested system for recognising dynamic hand gestures uses keypoints that
have been extracted. It is a neural network model that is constructed for learning from one
sequence to another. Figure 4 depicts the primary phases of the proposed framework for
recognising the dynamic gestures of Arab Sign Language.
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The model architecture incorporates both long short-term memory (LSTM) units and
an attention mechanism. The model received a series of extracted keypoints from recorded
gestures that indicate hand spatial configurations in a frame. The LSTM layer is responsible
for processing the input sequence, identifying the temporal dependencies, and encoding the
sequential information in its output sequence. The LSTM output sequence was also improved
with an attention layer that allows the model to focus on different parts of the input sequence
based on how relevant they are to the task at hand. The incorporation of this attention
mechanism enhanced the ability of the model to recognise significant temporal patterns and
spatial configurations within the sequences of gestures. Ultimately, the output layer generates
a probability distribution over the potential classes of hand gestures, enabling the model to
categorise the input sequences into predetermined gesture categories.

Anaconda Navigator (Anaconda3) and the free Jupyter Notebook Version 6.4.3 en-
vironment service were used to create the framework software package for the selected
models. By utilising the Open-Source Computer Vision Library (OpenCV) Version 4.5.3, a
specialised photo and video processing library that enables a wide range of tasks, including
image analysis, facial recognition, and the identification of sign language gestures, along
with the Mediapipe library, which extracts information from multimedia and which is the
main tool for tracking motion and video analysis, the MP-holistic model was put into action
along with some drawing functions. A dataset was recorded and gathered in which the
volunteer represented all of the gestures by recording 30 videos of 30 frames each. The next
stage was the conversion of frameworks from BGR to RGB colour coordination, because
MediaPipe prefers RGB and Open CV coordination prefers BGR colour coordination. For
the application of an activated model in each framework and the extraction of keypoint val-
ues, we created subvolumes under a major folder to store video clips for each class, where
a separate folder was created for each class and each video under this volume, and these
data were the data used to train the learning model to classify these classes. The dataset
was collected and recorded using a webcam, and analysed using the MediaPipe model.
The volunteer had to follow the criteria, which will be mentioned later, and then perform
them. The key values discovered from the multimedia library’s total model were extracted
and stored for training. Then, we started the pretreatment phase, which involved labelling
each class. A label was used to convert the correct name into a binary representation. For
example, in our search for 50 classes of (0–49), Class 1 will become [0, 1, 0] and Class 2
will become [1, 0, 0]. A sequential neural network model comprising LSTM layers and
fully linked layers was constructed for the classification. The training approach involved
utilising data and the “Adam” algorithm to optimise the weight parameters, while the
“categorical_crossentropy” function was employed to compute the loss during training.
The term “categorical accuracy” refers to the correctness of the categorisation and served
as a metric for evaluating the model’s performance. The subsequent step involved saving
the model, which could then be employed to recover the model and make predictions or to
conduct the training. The last phase involved evaluating and using the confusion matrix,
accuracy, and classification energy.

2.1. Dataset

In recent years, there has been tremendous development in the field of deep learning
algorithms in artificial intelligence (AI). The success of AI applications depends on the qual-
ity and quantity of training and testing data. To improve AI systems, vast datasets must be
collected and used. As far as we are aware, there is a lack of sufficient datasets for dynamic
signals in Arabic Sign Language, which impedes the progress of recognition systems. Thus,
it is crucial to create a large-scale dataset for dynamic signals in Arabic Sign Language.
Accordingly, we created a DArSL50 dataset with a wide range of Arabic Sign Language
dynamic motions. The DArSL50 dataset is comprised of 50 Arabic gestures representing
44 words and 6 digits. Each gesture was recorded by five participants. We selected signs
from two dictionaries, “Õæ�Ë@ ÈA 	®£CË �

èPA
�
�B@

�
é
	
ªË �ñÓA

�
¯” (Sign Language Dictionary for Deaf

Children) and “ú


G
.
QªË@ ø



PA

�
�B@ �ñÓA

�
¯” (The Arabic Sign Language Dictionary for the Deaf).
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Figure 5 displays a segment of the sign language database, which includes 50 dynamic
signals in the Arabic Sign Language (ArSL) database. Five volunteers recorded each sign,
with each participant performing each sign 30 times. Hence, the aggregate number of
videos reached 7500, which was calculated by multiplying 50 by 5 and then by 30. The
Video Capture function in OpenCV enabled the collection of data, which were then saved
in NumPy format for further analysis.
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To collect the dataset, a series of processes were carried out. Initially, a collaboration
was formed with the Deaf Centre, ensuring access to resources and specialised knowledge
in Arabic Sign Language. Two dictionaries were examined to understand the signs. This
study focused on 50 frequently used words and numbers, with a particular emphasis on
those that may be expressed using only the right hand for the sake of simplicity. A group
of volunteers was enlisted to imitate the signs, with each sign being replicated 30 times to
capture variations. Data collection involved recording videos using a laptop camera, while
the OpenCV program analysed the video clips by extracting important characteristics and
preparing the data for additional analysis. This meticulous approach resulted in the creation
of a complete and representative dataset for the study of ArSL signs. Volunteers of diverse
demographics participated without limitations, ensuring inclusivity and diversity within the
dataset. In addition, it is important to guarantee that the volunteer’s body and all of their
movements fit within the camera frame. A consistent and unchanging background setting
should be ensured, with a particular emphasis on capturing volunteers’ hands and faces.
A robust camera tripod was used to generate crisp and dependable video recordings. In
addition, it is advisable to establish the duration and frame count of the clip before recording,
and to strive for a resolution of 640 × 480 or greater to achieve the best possible quality.

2.2. Feature Extraction Using MediaPipe

Google created MediaPipe, an open-source framework that allows developers to build
multimodal (video, audio, and time-series data) cross-platform applied ML pipelines.
MediaPipe contains a wide range of human body identification and tracking algorithms
that were trained using Google’s massive and diverse dataset. As the skeleton of the
nodes and edges, or landmarks, they track keypoints on different parts of the body. All
of the coordinated points are three-dimensionally normalised. Models built by Google
developers using TensorFlow lite facilitate the flow of information that is easily adaptable
and modifiable via graphs [23]. Sign language is based on hand gestures and stance
estimation, yet the recognition of dynamic gestures and faces presents several challenges
as a result of the continual movement. The challenges involved recognising the hands and
establishing their form and orientation. MediaPipe was used to address these issues. It
extracts the keypoints for the three dimensions of X, Y, and Z for both hands and estimates
the postures for each frame. The pose estimation approach was used to forecast and track
the hand’s position relative to the body. The output of the MediaPipe architecture was a
list of keypoints for hand and posture estimation. MediaPipe extracted 21 keypoints for
each hand [24], as shown in Figure 6. The keypoints were determined in three dimensions,
X, Y, and Z, for each hand. Therefore, the number of extracted keypoints for the hands is
determined as follows [25]:

keypoints in hand × Three dimensions × No. of hands = (21 × 3 × 2) = 126 keypoints.

For the pose estimation, MediaPipe extracted 33 keypoints [26], as shown in Figure 7.
They were calculated in three dimensions (X, Y, and Z), in addition to the visibility. The
visibility value indicates whether a point is visible or concealed (occluded by another
body component) in a frame. Thus, the total number of keypoints extracted from the pose
estimate is computed as follows [27]:

keypoints in pose × (Three dimensions + Visibility) = (33 × (3 + 1)) = 132 keypoints.

For the face, MediaPipe extracted 468 keypoints [28], as shown in Figure 8. Lines
linking landmarks define the contours around the face, eyes, lips, and brows, while dots
symbolise the 468 landmarks. They were computed in three dimensions (X, Y, and Z). Thus,
the number of retrieved keypoints from the face is computed as follows:

Key points in face × Three dimensions = (468 × 3) = 1404 keypoints.



Computers 2024, 13, 153 10 of 24

Computers 2024, 13, x FOR PEER REVIEW 10 of 24 
 

those that may be expressed using only the right hand for the sake of simplicity. A group 

of volunteers was enlisted to imitate the signs, with each sign being replicated 30 times to 

capture variations. Data collection involved recording videos using a laptop camera, while 

the OpenCV program analysed the video clips by extracting important characteristics and 

preparing the data for additional analysis. This meticulous approach resulted in the crea-

tion of a complete and representative dataset for the study of ArSL signs. Volunteers of 

diverse demographics participated without limitations, ensuring inclusivity and diversity 

within the dataset. In addition, it is important to guarantee that the volunteer’s body and 

all of their movements fit within the camera frame. A consistent and unchanging back-

ground setting should be ensured, with a particular emphasis on capturing volunteers’ 

hands and faces. A robust camera tripod was used to generate crisp and dependable video 

recordings. In addition, it is advisable to establish the duration and frame count of the clip 

before recording, and to strive for a resolution of 640 × 480 or greater to achieve the best 

possible quality. 

2.2. Feature Extraction Using MediaPipe 

Google created MediaPipe, an open-source framework that allows developers to 

build multimodal (video, audio, and time-series data) cross-platform applied ML pipe-

lines. MediaPipe contains a wide range of human body identification and tracking algo-

rithms that were trained using Google’s massive and diverse dataset. As the skeleton of 

the nodes and edges, or landmarks, they track keypoints on different parts of the body. 

All of the coordinated points are three-dimensionally normalised. Models built by Google 

developers using TensorFlow lite facilitate the flow of information that is easily adaptable 

and modifiable via graphs [23]. Sign language is based on hand gestures and stance esti-

mation, yet the recognition of dynamic gestures and faces presents several challenges as 

a result of the continual movement. The challenges involved recognising the hands and 

establishing their form and orientation. MediaPipe was used to address these issues. It 

extracts the keypoints for the three dimensions of X, Y, and Z for both hands and estimates 

the postures for each frame. The pose estimation approach was used to forecast and track 

the hand’s position relative to the body. The output of the MediaPipe architecture was a 

list of keypoints for hand and posture estimation. MediaPipe extracted 21 keypoints for 

each hand [24], as shown in Figure 6. The keypoints were determined in three dimensions, 

X, Y, and Z, for each hand. Therefore, the number of extracted keypoints for the hands is 

determined as follows [25]: 

keypoints in hand × Three dimensions × No. of hands = (21 × 3 × 2) = 126 keypoints.  

 

Figure 6. A total of 21 keypoints for the hand. 

0. WRIST 

1. THUMB_CMC 

2. THUMB_MCP 

3. THUMB_IP 

4. THUMB_TIP 

5. INDEX_FINGER_MCP 

6. INDEX_FINGER_PIP 

7. INDEX FINGER_DIP 

8. INDEX_FINGER_TIP 

9. MIDDLE_FINGER_MCP 

10. MIDDLE_FINGER_PIP 

11. MIDDLE_FINGER_DIP 

12. MIDDLE_FINGER_TIP 

13. RING_FINGER_MCP 

14. RING_FINGER_PIP 

15. RING_FINGER_DIP 

16. RING FINGER_TIP 

17. PINKY_MCP 

18. PINKY PIP 

19. PINKY_DIP 

20. PINKY_TIP 

Figure 6. A total of 21 keypoints for the hand.

Computers 2024, 13, x FOR PEER REVIEW 11 of 24 
 

For the pose estimation, MediaPipe extracted 33 keypoints [26], as shown in Figure 

7. They were calculated in three dimensions (X, Y, and Z), in addition to the visibility. The 

visibility value indicates whether a point is visible or concealed (occluded by another body 

component) in a frame. Thus, the total number of keypoints extracted from the pose esti-

mate is computed as follows [27]: 

keypoints in pose × (Three dimensions + Visibility) = (33 × (3 + 1)) = 132 keypoints.  

 

Figure 7. A total of 33 keypoints for the pose. 

For the face, MediaPipe extracted 468 keypoints [28], as shown in Figure 8. Lines 

linking landmarks define the contours around the face, eyes, lips, and brows, while dots 

symbolise the 468 landmarks. They were computed in three dimensions (X, Y, and Z). 

Thus, the number of retrieved keypoints from the face is computed as follows: 

Key points in face × Three dimensions = (468 × 3) = 1404 keypoints.  

 

Figure 8. A total of 468 keypoints for the face. 

The total number of keypoints for each frame was determined by summing the num-

ber of keypoints in the hands, the pose, and the face. This calculation resulted in a total of 

1662 keypoints. Figure 9 displays the keypoints retrieved from a sample of frames. 

Figure 7. A total of 33 keypoints for the pose.

Computers 2024, 13, x FOR PEER REVIEW 11 of 24 
 

For the pose estimation, MediaPipe extracted 33 keypoints [26], as shown in Figure 

7. They were calculated in three dimensions (X, Y, and Z), in addition to the visibility. The 

visibility value indicates whether a point is visible or concealed (occluded by another body 

component) in a frame. Thus, the total number of keypoints extracted from the pose esti-

mate is computed as follows [27]: 

keypoints in pose × (Three dimensions + Visibility) = (33 × (3 + 1)) = 132 keypoints.  

 

Figure 7. A total of 33 keypoints for the pose. 

For the face, MediaPipe extracted 468 keypoints [28], as shown in Figure 8. Lines 

linking landmarks define the contours around the face, eyes, lips, and brows, while dots 

symbolise the 468 landmarks. They were computed in three dimensions (X, Y, and Z). 

Thus, the number of retrieved keypoints from the face is computed as follows: 

Key points in face × Three dimensions = (468 × 3) = 1404 keypoints.  

 

Figure 8. A total of 468 keypoints for the face. 

The total number of keypoints for each frame was determined by summing the num-

ber of keypoints in the hands, the pose, and the face. This calculation resulted in a total of 

1662 keypoints. Figure 9 displays the keypoints retrieved from a sample of frames. 

Figure 8. A total of 468 keypoints for the face.

The total number of keypoints for each frame was determined by summing the number
of keypoints in the hands, the pose, and the face. This calculation resulted in a total of
1662 keypoints. Figure 9 displays the keypoints retrieved from a sample of frames.
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2.3. Model

To process the dynamic gestures, data were represented as a series of frames, with each
frame containing a collection of values representing the features of the hand posture in that
frame. A recurrent neural network, specifically long short-term memory (LSTM), was used
to process the resulting set of frames. LSTM is a well-known tool for encoding time series
by extracting latent sign language expressions [29]. The model used in this study combines
LSTM units with an attention mechanism. The model structure comprises the following
three primary layers: an LSTM layer, an attention mechanism layer, and an output layer.
The LSTM layer consists of 64 units, which contribute the most parameters to the model
because of its recurring nature and the related parameters for each unit. The attention
mechanism layer introduces a limited number of parameters, consisting of 10 units that
govern the attention weights. The output layer, which is responsible for predicting the
hand gesture classes, has a set of parameters that are dictated by the size of the context
vector generated by the attention mechanism and the number of classes that need to be
predicted. In total, the model consists of 89,771 parameters, with the LSTM layer accounting
for the largest proportion. This architecture was specifically designed to efficiently handle
sequential data, exploit temporal relationships, and dynamically prioritise essential sections
of the input sequence, ultimately facilitating precise hand motion detection. The choice of
the optimal parameter was pivotal for building these layers. Table 1 displays the utilised
model parameters. During the use of the model, the parameters of each layer can be
modified by picking values from Table 1 in preparation for the training phase.

Table 1. Model layer parameters.

Parameters Value

Model LSTM

Number of Nodes 64

Input Shape (timesteps, 1662)

Attention Units 10

Activation ‘softmax’

Optimiser ‘adam’

Epochs 40

The choice of 64 hidden units and the specific activation function (ReLU) was based
on preliminary experiments and established practices in similar research domains. An
LSTM model with 64 hidden nodes was used to balance the model complexity and compu-
tational performance. We wanted a model that could learn complex data patterns without
overfitting, which may occur with large networks. Experiments showed that 10 attention
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units offered enough attentional concentration without too much of a processing bur-
den. We used ‘SoftMax’ for the activation function because it is common for classification
tasks, especially multiclass problems. The LSTM model underwent training for a total of
40 epochs, with early stopping based on validation loss to prevent overfitting. The models’
inputs include the sequence length and total number of keypoints. The sequence length
is the number of frames contained in each clip. The total number of keypoints was 1662.
At this point, the model is ready to accept the dataset and begin the training phase using
the sequence of keypoints collected. Thus, the sign movement was examined and a hand
gesture label could be used. As a result, DArSL-50 could be accurately detected.

2.4. Experiments

This research collected data from five participants, resulting in two separate scenar-
ios. The first scenario involved creating the model by using the data from each volunteer
separately. In the second scenario, the data gathered from the volunteers were combined,
and then the suggested model was implemented. In Scenario 1, the dataset comprised
data from five volunteers, with each volunteer contributing 1500 data points. For the
training set, 1125 data points were selected, representing 75% of the total data, ensur-
ing a comprehensive representation of the variability within the dataset. The remaining
375 data points were allocated to the testing set, representing 25% of the total data. This
subset was reserved for evaluating the performance and generalizability of the trained
models, as shown in Table 2.

Table 2. Data size, training set, and test set for each volunteer.

Number of Volunteers Dataset Size Train Test Size Test

One volunteer 1500 1125 375 0.25

In Scenario 2, four datasets were generated by combining the volunteer data. Data-
I was composed of data collected from two volunteers, resulting in 3000 data points.
Subsequently, Data-II, Data-III, and Data-V were formed by merging the data from three,
four, and five volunteers, resulting in dataset sizes of 4500, 6000, and 7500 data points,
respectively. To evaluate the proposed model, the dataset was partitioned into training
and testing sets using a split ratio of 75–25 respectively. As a result, the training set
consisted of 3375, 4500, and 5625 data points, while the testing set contained 1125, 1500, and
1875 data points for the datasets with three, four, and five volunteers, respectively, as shown
in Table 3.

Table 3. Data size, training set, and test set for Scenario 2.

Dataset Number of Volunteers Dataset Size Train Size Test Size

Data-I Two volunteers 3000 2250 750

Data-II Three volunteers 4500 3375 1125

Data-III Four volunteers 6000 4500 1500

Data-IV Five volunteers 7500 5625 1875

The objective of integrating the dataset with data from numerous individuals was
to improve the reliability and applicability of the trained models across a wide variety of
signers and signing styles. By integrating the data from several individuals, the models
were enhanced to effectively manage variances in gestures and signing styles, resulting in
enhanced performance in real-world applications. This training and testing technique al-
lowed for a thorough assessment and validation of the models, ensuring their dependability
and efficacy in different settings and populations.
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2.5. Evaluation Metrics

Evaluation metrics, such as the accuracy, precision, recall, and F1 score, are commonly
used to evaluate the performance of classification models. These metrics provide crucial
information about how well the model is doing and where it may require improvement.

Accuracy is the most commonly used simple metric for classification. It represents the
ratio of the number of correctly classified predictions to the total number of predictions. A
high level of accuracy indicates that the model is making correct predictions overall. The
accuracy was calculated using Equation (1), as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision measures the proportion of true positive predictions among all positive
predictions.

Interpretation: A high precision indicates that, when the model predicts a positive
class, it is likely to be correct. The precision is calculated using Equation (2), as follows:

Precision =
TP

TP + FP
(2)

Recall measures the proportion of true positive predictions among all actual posi-
tive instances.

Interpretation: A high recall indicates that the model can identify most of the positive
instances. The recall is calculated using Equation (3), as follows:

Recall =
TP

TP + FN
(3)

The F1 score is the harmonic mean of the precision and recall, providing a balanced
measure between the two metrics. The F1 score considers both the precision and recall,
making it suitable for imbalanced datasets where one class dominates. The F1 score is
calculated using Equation (4), as follows:

F1− Score =
(2× Precision × Recall )
( Precision + Recall )

(4)

where:
The number of true positives (TPs) is the number of positive class samples correctly

classified by a model. True negatives (TNs) are the number of negative class samples correctly
classified by a model. False positives (FPs) are the number of negative class samples that were
predicted (incorrectly) to be of the positive class by the model. False negatives (FNs) are the
number of positive class samples that were predicted (incorrectly) to be of the negative class
by the model. The classification report provides the accuracy, recall, and F1 score for each
class, as well as the overall metrics. The assessment measures were used to determine how
well the trained models performed on the testing datasets. This showed how well, accurately,
and consistently they could recognise Arabic Sign Language gestures.

3. Results

The studies were carried out on a PC with an Intel(R) Core (TM) i7-10750H CPU
operating at a base frequency of 2.60 GHz, which has 12 cores and 16,384 MB of RAM. The
framework was developed using the Python programming language. The source code
for this study may be accessed at the following URL: https://drive.google.com/file/d/
1FcXudNQqXb_IzehsdMWb0tSBplcq-8LJ/view?usp=sharing (accessed on 10 June 2024).
The dataset was gathered by a team of five volunteers, including a total of
50 distinct categories. Every participant captured recordings for the dataset consisting of
50 classes, and the outcomes were examined using the DArSL50 dataset. The DArSL50
dataset was divided randomly, with 75% used for training and 25% used for testing in the

https://drive.google.com/file/d/1FcXudNQqXb_IzehsdMWb0tSBplcq-8LJ/view?usp=sharing
https://drive.google.com/file/d/1FcXudNQqXb_IzehsdMWb0tSBplcq-8LJ/view?usp=sharing
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experiment. The performance criteria, such as the accuracy, precision, recall, and F1 score,
were assessed under different situations to evaluate the functioning of the suggested system.
In the first scenario, we evaluated the classification model with a dataset that included five
participants’ recordings; each participant provided 1500 data points. A training set was
created from 1125 data points (representing 75% of the total), and a testing set was created
from 375 data points (representing 25% of the total). Table 4 indicates the performance
metrics obtained for each volunteer in Scenario 1.

Table 4. Results for Scenario 1.

Volunteer Accuracy Precision Recall F1 Score

Volunteer1 0.82 0.84 0.81 0.80

Volunteer2 0.83 0.83 0.83 0.82

Volunteer3 0.85 0.86 0.85 0.83

Volunteer4 0.83 0.84 0.85 0.83

Volunteer5 0.84 0.84 0.83 0.82

The data presented in Table 4 indicate that the third volunteer achieved the highest
accuracy, approximately 85%, while the first volunteer achieved the lowest accuracy, ap-
proximately 82%. Nevertheless, the dataset’s accuracy ratio for all volunteers was highly
similar, indicating a highly effective discrimination mechanism for each individual. The
results of Scenario 1 provide valuable insights into the model’s efficacy in categorising
hand movements using the given dataset. Through the evaluation of parameters such
as accuracy, precision, recall, and the F1 score, we can determine the model’s ability to
generalise across various volunteers and accurately recognise gestures. The model’s high
accuracy, precision, recall, and F1 score demonstrate its effectiveness in recognising hand
gestures from varied recordings. This indicates that the model is resilient and generalisable
across multiple volunteers and signing styles. Table 5 shows the findings of Scenario 2,
which included experiments to recognise dynamic hand gestures for four datasets. These
datasets represent a combination of volunteer data.

Table 5. The proposed framework results for Scenario 2.

Dataset Accuracy Precision Recall F1 Score

Data-I 0.83 0.83 0.83 0.82

Data-II 0.82 0.83 0.83 0.82

Data-III 0.80 0.82 0.80 0.80

Data-IV 0.80 0.82 0.80 0.80

The results presented in Table 5 indicate that the highest level of accuracy, reaching
83%, was achieved by Data-I, which represents the combined data of two participants.
However, Data-III and Data-IV achieved the minimum accuracy, which was approximately
80%. The accuracy of the four experiments varied between 83% and 80%, which is near
and relevant in terms of the precision and recall. The F1 score, a metric that combines
precision and recall using the harmonic mean, provides a well-balanced evaluation of the
models’ overall performance, with scores ranging from 0.82 to 0.80. By analysing Table 5,
it is clear that the best accuracy ever achieved after the merger of volunteers is almost
very close to the accuracy of the merger of the five volunteers, which suggests that the
system is good with discrimination and has a strong impact, depending on the multiple
people and the magnitude of the dataset. Overall, the models had good precision and
recall scores, indicating that they could make accurate predictions and successfully detect
positive events. These results show that the trained models are effective at recognising
Arabic Sign Language. Compared to Data-IV, Table 6 shows the performance metrics
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(precision, recall, and the F1 score) for recognising 50 different types of ArSL gestures.
Every row represents a particular class, and the metrics indicate the model’s performance
in accurately differentiating between gestures of that class.

Table 6. Results for the scenarios with classification reports for each class of Scenario 5.

Class Label Dynamic Arabic Gesture English
Meaning Precision Recall F1 Score

0 ÈAª� Cough 0.71 0.75 0.73

1 ÐA¿ 	P
Common
cold 0.84 0.82 0.83

2 �
éJ.�k Measles 0.88 0.93 0.90

3 øQK
 Be seen 0.73 0.84 0.78

4 ùÔ«@ Blind 0.83 0.67 0.74

5 �

@QË@ Head 0.97 0.92 0.94

6 Ñj
�
J��


Takes a
shower 1.00 0.97 0.99

7 	
àA
	
J�@

�
èA
�
�Q

	
¯

Cleaning
teeth 0.79 0.98 0.87

8 Õæ
�
��
 Smell 0.86 0.65 0.68

9 É¿

AK


Eat 0.69 0.81 0.75

10 H. Qå
�
��
 Drink 0.76 0.77 0.76

11 	
àAJ.

	
�

	
« Anger 0.97 0.92 0.95

12 	
àA«ñk. Hungry 0.97 0.85 0.90

13 ñK. @ The father 0.97 0.88 0.92

14 Ð@ The mother 0.90 0.72 0.80

15 Yg.
The
grandfather 0.86 1.00 0.92

16 �
èYg.

The
grandmother 0.91 0.94 0.93

17 �
éËA

	
g The uncle 0.96 0.72 0.83

18 A
	
K @ I 0.87 0.84 0.85

19 Ñë They 0.92 0.77 0.84

20 A
	
JºÊÓ Our 0.92 0.87 0.89

21 Õ
�
P̄10 Ten number 0.71 0.75 0.73

22 Õ
�
P̄11

Eleven
number 0.81 0.65 0.65

23 Õ
�
P̄12

Twelve
number 0.65 0.65 0.67

24 Õ
�
P̄13

Thirteen
number 0.65 0.67 0.65

25 Õ
�
P̄14

Fourteen
number 0.65 0.68 0.65
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Table 6. Cont.

Class Label Dynamic Arabic Gesture English
Meaning Precision Recall F1 Score

26 Õ
�
P̄15

Fifteen
number 0.65 0.65 0.66

27 ÈAÒ
�
�Ë@

�
éêk.

North
direction 0.68 0.94 0.79

28 �
�Qå

�
�Ë @

�
éêk. East direction 0.94 0.72 0.82

29 H. ñ
	
Jm.
Ì'@

�
éêk.

South
direction 0.84 0.65 0.71

30 H. Q
	
ªË@

�
éêk.

West
direction 0.79 0.89 0.84

31 Ñª
	
K Yes 0.68 0.83 0.75

32 B No 0.74 0.89 0.81

33 Ñê
	
®K
 Understand 0.67 0.88 0.74

34 ú


æ
.

	
« Stupid 0.83 0.88 0.85

35 	
àñ

	
Jm.
× Crazy 0.90 0.74 0.81

36 �
éÓC�Ë@ ©Ó Goodbye 0.94 1.00 0.97

37 ÑêÓ Important 0.79 0.76 0.77

38 ñÖ
	
ß To grow 1.00 0.98 0.99

39 �
Iº�@( �

IÖÞ�)
Shut up
(silence) 0.88 0.88 0.88

40 BAg( 	àB@)
Immediately
(now) 0.71 0.89 0.79

41 	áK

	Qk( �éªÓX) Sad (tear) 0.97 0.91 0.94

42 Pñ
	
�k

Presence
(coming) 0.95 0.97 0.96

43 H. Aë
	
X To go 1.00 0.91 0.95

44 Cë@
Hello (con-
gratulations) 0.96 0.69 0.80

45 	


�
¯ñ
�
K To stop 0.88 0.94 0.91

46 �
é
	
K AÓ@ Honesty 0.92 0.70 0.71

47 ù¢«@ To give 0.74 0.94 0.83

48 ½Êë@(úÎ« úæ
	
�
�
¯) To destroy 0.69 0.88 0.77

49 	áÓ �Ê
	
m�
�
' To get rid of 0.91 0.91 0.91

Table 6 presents a comprehensive analysis of the performance metrics of the model for
each class in the classification report. Some classes demonstrate exceptional performance,
as seen by their high precision, recall, and F1 score levels. For instance, the classes “Takes a
shower”, “Our”, “The grandfather”, and “Understand” exhibit high scores in all measures,
indicating that the model accurately recognises these actions. However, specific classes ex-
hibit disparities in performance indicators. For example, the “Blind” class exhibits relatively
high precision but lower recall and F1 scores, suggesting that the model can accurately
detect certain instances of this gesture but may fail to detect certain actual occurrences.
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Classes such as “Common cold”, “Measles”, and “Stupid” consistently and effectively
display strong recognition abilities across all parameters, indicating their robustness in
gesture recognition. Conversely, classes such as “North direction”, “East direction”, and
“To grow” display different performance metrics, with higher precision but lower recall
values. This suggests that the model might have difficulty in accurately identifying all
occurrences of these gestures. Based on the categorisation report results, we discovered that
classes 11, 12, 13, and 14 (equivalent to classes 23, 24, 25, and 26, respectively) performed
relatively poorly compared to the other classes. This is due to the nature of the movement
in these classes, where the distinction between individual movements may be unclear. For
example, the movement could be a slight hand gesture with no substantial variations in
motion, or the difference between one movement and another may not be obvious enough,
making classification more difficult for these classes. High values of accuracy, precision,
recall, and the F1 score indicate successful model performance, while lower values may
signify areas for improvement in the model’s predictive capabilities.

To evaluate the system performance in real-time sign language detection, measurements
were made concerning the reading error rate at the first stage. Algorithm 1 presents the
approach used to measure the system performance metrics. Each letter was tested individually
with five participants, and 40 iterations were applied to each letter to determine the frequency
of the recognition. Consequently, the performance of the proposed system can be assessed
by calculating the recognition accuracy of each gesture, followed by the total accuracy of the
entire system, as shown in Algorithm 1. Errors in the results may be categorised as either
“misclassification” (incorrect recognition) or “gesture not recognised” (not detection). The
accuracy and error rates are determined using the equations provided below:

Accuracy% =
detected right

Num.of itration
× 100 (5)

Wrong recognise% =
detected wrong
Num.of itration

× 100 (6)

Not detected% =
not detected

Num.of itration
× 100 (7)

Algorithm 1 Inference procedures for real-time sign language detection.

Input: D—new data {perform dynamic gesture}
Output: M real-time sign language detection model performance metrics
1: Initialise I← 0, D← 0, Z← 0, E← 0 {Initialise counts}
2: while I < 40 do
3: gesture← CaptureGesture() {Capture the gesture}
4: if RecogniseGesture(gesture) == DesiredGesture then
5: D← D + 1 {Increment correct detection count}
6: Display(“Gesture is found”)
7: else
8: if gesture == “No detection”, then
9: Z← Z + 1 {Increment no detection count}
10: Display(“Gesture is not recognised”)
11: else
12: E← E + 1 {Increment misclassification count}
13: Display(“Misclassification: Wrong recognition”)
14: end if
15: end if
16: I← I + 1 {Increment iteration count}
17: end while
18: Display(“Total Correct Detections: ” + D)
19: Display(“Total Misclassifications: ” + E)
20: Display(“Total Nondetections: ” + Z)
21: Display(“Total Iterations: ” + I)
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The real-time results are summarised in Table 7, which shows the accuracy, error of
incorrect recognition, and error of not detecting each sign. The real-time performance
analysis of dynamic Arabic gesture recognition reveals high accuracy for gestures such
as “ �

éÓC�Ë@ ©Ó” (Goodbye) and “ 	
àA
	
J�@

�
èA
�
�Q

	
¯” (Cleaning teeth), indicating the model’s profi-

ciency with distinct patterns. However, lower accuracy and higher error rates in gestures
such as “ùÔ«@” (Blind) and “Õæ���
” (Smell) suggest difficulties in distinguishing these gestures,
highlighting areas for improvement.

Table 7. The Real-Time Performance Result.

Class Label
Dynamic
Arabic
Gesture

English
Meaning Accuracy (%) Err of Wrong

Detected (%)
Err of Not
Detected (%)

0 ÈAª� Cough 75 17 8

1 ÐA¿ 	P
Common
cold 82 11 7

2 �
éJ.�k Measles 93 7 0

3 øQK
 Be seen 84 0 16

4 ùÔ«@ Blind 72 12 16

5 �

@QË@ Head 92 2 6

6 Ñj
�
J��


Takes a
shower 97 0 3

7 	
àA
	
J�@

�
èA
�
�Q

	
¯

Cleaning
teeth 98 0 2

8 Õæ
�
��
 Smell 75 5 20

9 É¿

AK


Eat 81 10 9

10 H. Qå
�
��
 Drink 77 16 7

11 	
àAJ.

	
�

	
« Anger 92 3 5

12 	
àA«ñk. Hungry 85 3 12

13 ñK. @ The father 88 3 9

14 Ð@ The mother 72 10 18

15 Yg.
The
grandfather 100 0 0

16 �
èYg.

The
grandmother 94 0 6

17 �
éËA

	
g The uncle 72 8 20

18 A
	
K @ I 84 13 3

19 Ñë They 77 8 15

20 A
	
JºÊÓ Our 87 0 13

21 Õ
�
P̄10 Ten number 75 20 5

22 Õ
�
P̄11

Eleven
number 65 22 13
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Table 7. Cont.

Class Label
Dynamic
Arabic
Gesture

English
Meaning Accuracy (%) Err of Wrong

Detected (%)
Err of Not
Detected (%)

23 Õ
�
P̄12

Twelve
number 65 25 10

24 Õ
�
P̄13

Thirteen
number 67 26 7

25 Õ
�
P̄14

Fourteen
number 68 28 4

26 Õ
�
P̄15

Fifteen
number 65 15 20

27 ÈAÒ
�
�Ë@

�
éêk.

North
direction 94 3 3

28 �
�Qå

�
�Ë @

�
éêk. East direction 72 6 22

29 H. ñ
	
Jm.
Ì'@

�
éêk.

South
direction 75 6 19

30 H. Q
	
ªË@

�
éêk.

West
direction 89 2 9

31 Ñª
	
K Yes 83 8 9

32 B No 89 4 7

33 Ñê
	
®K
 Understand 88 0 12

34 ú


æ
.

	
« Stupid 88 3 9

35 	
àñ

	
Jm.
× Crazy 74 0 26

36 �
éÓC�Ë@ ©Ó Goodbye 100 0 0

37 ÑêÓ Important 76 11 13

38 ñÖ
	
ß To grow 98 0 2

39 �
Iº�@( �

IÖÞ�)
Shut up
(silence) 88 6 6

40 BAg( 	àB@)
Immediately
(now) 89 0 11

41 	áK

	Qk( �éªÓX) Sad (tear) 91 3 6

42 Pñ
	
�k

Presence
(coming) 97 0 3

43 H. Aë
	
X To go 91 0 9

44 Cë@
Hello (con-
gratulations) 85 11 4

The results presented in Table 7 evaluate the real-time recognition proficiency of dynamic
Arabic gestures, which achieved an overall accuracy rate of 83.5%. The accuracy of dynamic
Arabic gestures indicates a generally high performance for many gestures, such as “ �éÓC�Ë@ ©Ó”

(Goodbye) and “ 	
àA
	
J�@

�
èA
�
�Q

	
¯” (Cleaning teeth), with a 100% and 98% accuracy, respectively,

and minimal errors. This reflects the model’s effectiveness in recognising distinct gestures.
Conversely, gestures such as “Õæ���
” (Smell) and “ùÔ«@” (Blind) achieved a moderate accuracy,

with significant errors not detected (20% and 16%). Numeric gestures, particularly “Õ�P̄11”
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(Eleven number) and “Õ�P̄12” (Twelve number), provide lower accuracy and higher error rates,
suggesting challenges in distinguishing similar visual patterns. Figure 10 shows examples of
complex signs that achieved low accuracy due to similarity problems.
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4. Discussion

The evaluation of the model performance through the comparison of “macro-” and
“weighted” averages offers useful insights into how the distribution of classes affects
the accuracy of categorisation. While “macro-averages" provide a simple average over
all classes, “weighted” averages take into consideration class imbalance by assigning
weights to the average based on the number of instances in each class. Our investigation
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revealed that both types of averages showed similar patterns across different circumstances,
indicating the continuous impact of class distribution on the model results. Analysing
the outcomes of every scenario clarifies the connection between the model performance,
volunteer contributions, and dataset size. The best accuracy and F1 score were obtained in
Scenario 1, when each volunteer provided 1500 data points, demonstrating the potency of
the individual volunteer datasets. We observed a modest decline in the accuracy and F1
score in Scenario 2, as the dataset size rose with the merged data from several participants.
Larger datasets may have advantages, but adding a variety of volunteer contributions
could complicate things and impair the model performance according to this tendency.
Additional analysis of the classification report offers valuable information about the specific
difficulties faced by the model in distinct categories. Classes 10, 11, 12, and 13 demonstrated
worse precision, recall, and F1 scores than did the other classes, suggesting challenges
in successfully recognising these gestures. This difference highlights the significance of
analysing metrics relevant to each class to discover areas where the model may need more
refinement or training data augmentation to enhance its performance.

Several factors contribute to these classes’ inferior performance. First, the nature of the
movements within these classes may provide complexity that is difficult to fully determine.
For example, these movements may include subtle gestures or minor differences between
different signs, making it difficult for the model to distinguish between them efficiently.
Furthermore, the classification model may have problems catching the intricacies of these
movements, particularly if they include small fluctuations or sophisticated hand movements
that are difficult to identify precisely. Moreover, the minimal size and diversity of the dataset
for these classes may have contributed to the poor performance. A larger and more diversified
dataset would give the model a broader set of instances, improving its capacity to generalise
and identify these complex movements. To summarise, while the model’s overall performance
is acceptable, further modification and augmentation of the dataset, as well as the model
architecture, are required to enhance the classification accuracy for these hard classes. This
highlights the need for ongoing research and development efforts in the field of sign language
recognition to solve these unique issues while also improving the accessibility and effectiveness
of sign language recognition technology. The observed influence of an increasing dataset size
emphasises the need for data augmentation and the establishment of larger, more diverse
datasets in sign language recognition research. As part of the study’s objectives, the goal
was to create a comprehensive dataset exclusively for Arabic Sign Language recognition.
By expanding the dataset, the model can be trained on a broader collection of instances,
boosting its capacity to generalise and reliably identify sign language movements, especially
in difficult categories. This is consistent with the overall goal of improving the accessibility and
effectiveness of sign language recognition systems, ultimately leading to greater inclusivity
and accessibility for people with hearing impairments.

5. A Comparison with Previous Studies

This study focused on the recognition of dynamic gestures performed with a single
hand captured using a single camera setup. The primary goal was to recognise isolated
dynamic words and dynamic numbers expressed through sign language gestures. The
data collection process involved recording sessions where individuals performed these
gestures in front of the camera, ensuring that the dataset captured a diverse range of hand
movements and expressions, and by limiting the scope to dynamic gestures performed with
one hand. Table 8 provides a comparison with prior studies that align with our objectives.
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Table 8. Comparison with similar ArSL recognition systems.

Aspect Proposed Work Study [4] Study [23] Study [17]

Model Used

Long short-term
memory (LSTM) with
an attention
mechanism

Convolutional neural
network (CNN)

Convolutional neural
network (CNN)

Hidden Markov
models (HMMs)

Dataset Size 7500 7200 390 4045

Number of gestures 50 (30 simple,
20 complex) 20 (simple signs) 30 (simple signs) 30 (simple signs)

Gestures Words and numbers Words Words Words

Balanced data YES NO NO NO

Preprocessing No need to convert the
frames into greyscale

Convert the frames into
greyscale

Convert the frames into
greyscale

Convert the frames into
greyscale

Feature Extraction
Method

MediaPipe framework
for hand and body
keypoints

An adaptive threshold
and adding a unique
factor to each class

Two convolution layers
with 32 and
64 parameters

Discrete cosine
transform
(DCT)

Best Accuracy
85% (individual
volunteers), 83%
(combined data)

92% 99.7% 90.6%

Real-World
Applicability Verified Not verified Not verified Not verified

The dataset size in the proposed work is also significantly larger, at 7500 samples,
compared to 7200 in Ref. [4], 390 in Ref. [23], and 4045 in Ref. [17]. A larger dataset con-
tributes to better model generalizability and robustness, ensuring that the model performs
well on diverse and unseen data. Moreover, the proposed framework handles 50 gestures,
including both simple and complex signs, whereas the other studies focus primarily on
simple signs (20 in Ref. [4], 30 in Ref. [23] and Ref. [17]). This broader range of gestures,
which includes words and numbers, demonstrates the versatility and applicability of the
proposed model for more comprehensive sign language recognition tasks. The data used
in the proposed framework are balanced, ensuring that the model is trained on an equal
representation of all gesture classes, reducing bias and improving the overall performance.
In contrast, the datasets in Refs. [4,17,23] are not balanced, which could lead to skewed
results favouring more frequent classes. For data collection, the proposed framework uses
recorded videos with keypoint extraction using MediaPipe, a state-of-the-art framework
for extracting hand and body keypoints. This method captures more detailed motion data
than do the simpler approaches used in other studies, such as the smartphone videos in
Ref. [4] and OpenPose version 1.4 in Ref. [17]. In terms of preprocessing, the proposed
framework simplifies the process by not converting frames to greyscale, preserving more
information from the original videos.

The MediaPipe feature extraction method used in the proposed framework is more
advanced than methods, such as adaptive thresholding, convolution layers, and discrete
cosine transform (DCT), which have been used in other studies. The proposed framework
might not be as accurate as those used in other studies, but it is a strong and flexible solution
for sign language recognition because it can better handle complex gestures, has a larger
and more balanced dataset, uses advanced data collection and preprocessing methods, and
can evaluate performance in real-time.

6. Conclusions

In this study, we attempted to meet the pressing need for effective communication
tools for the deaf community by developing a model that can recognise dynamic hand
gestures from video recordings. This was accomplished by combining the attention mecha-
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nism with LSTM units developed on a new ArSL dataset, namely, the DArSL50_Dataset.
Keypoints were extracted from videos in the DArSL50 dataset using the MediaPipe frame-
work. Subsequently, the features were fed into the proposed LSTM model to detect gestures.
The results of our method were encouraging, with an average performance of 80–85%. The
proposed model architecture demonstrated robustness in classifying hand motions despite
variances in signing styles and recording conditions. The attention mechanism enhanced
the framework’s ability to recognise spatial arrangements and temporal relationships in
sign language gestures by selectively focusing on key parts of the input sequences. Our
research indicates that our method has considerable promise in enabling smooth commu-
nication between deaf and hearing populations. Future research could investigate other
model architectures, such as Bi-LSTM, one-dimensional convolutional neural networks,
convolutional recurrent neural networks, and transformer models. Additionally, there is
potential for the creation of a large-scale dataset encompassing a variety of sign language
gestures. Augmentation techniques could also be investigated to further enrich the dataset
and improve the model’s ability to generalise across various signing styles.
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