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Abstract: The recent advancements in generative adversarial networks have showcased their remark-
able ability to create images that are indistinguishable from real ones. This has prompted both the
academic and industrial communities to tackle the challenge of distinguishing fake images from
genuine ones. We introduce a method to assess whether images generated by generative adversarial
networks, using a dataset of real-world Android malware applications, can be distinguished from
actual images. Our experiments involved two types of deep convolutional generative adversarial
networks, and utilize images derived from both static analysis (which does not require running the
application) and dynamic analysis (which does require running the application). After generating the
images, we trained several supervised machine learning models to determine if these classifiers can
differentiate between real and generated malicious applications. Our results indicate that, despite
being visually indistinguishable to the human eye, the generated images were correctly identified
by a classifier with an F-measure of approximately 0.8. While most generated images were accu-
rately recognized as fake, some were not, leading them to be considered as images produced by
real applications.

Keywords: malware; deep learning; GAN; Android; security

1. Introduction and Related Work

The threat posed by adversarial technologies primarily lies in their ability to bypass
alarms and access control mechanisms that have been trained using available data [1–3].
Consequently, they pose a significant threat to defensive systems. However, it is worth
noting that these very same adversarial technologies can also be used as a defensive tool.
By leveraging generative adversarial networks (GANs) and related techniques, security
experts can design anomaly-detection and authentication systems that are more resilient
against such attacks. In this context, GANs serve as a valuable asset in fortifying cybersecu-
rity measures.

GANs are a kind of convolutional neural network used in unsupervised machine
learning. They comprise two main components working in opposition: a generator, which
creates synthetic data, and a discriminator (or cost network), which distinguishes between
real and generated data. In this adversarial setup, the generator strives to produce realistic
data to fool the discriminator, while the discriminator aims to accurately identify which
data are real and which are fake.

This adversarial interplay fosters the learning of a generator, which can create remark-
ably authentic data samples. Once the GAN is trained on a specific dataset, it becomes
capable of tasks like future prediction or image generation with high fidelity. For this
reason, GANs have broader applications across various domains, including style transfer,
data augmentation, text generation, and video synthesis [4].
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Recently, there has been a growing interest in the application of GANs in the field of
cybersecurity. The rationale behind this interest is quite apparent: by generating deceptive
data that closely resemble authentic information, GANs offer a way to exploit vulnerabilities
in security systems. This process is known as “evasion”, wherein the security system fails
to detect the falsified data, leading to a successful breach. Biometric authentication systems,
among others, can be particularly susceptible to such attacks.

Lately, with the advancement of deep learning and its ability to construct models
proficient in image-related tasks [5,6], various approaches have emerged to detect malware
using deep learning techniques. These methods leverage the ability of deep learning to
achieve effective classification performance, especially when dealing with image-based
data in the context of malware detection.

Starting from these considerations, in this paper, we propose a method aimed to
understand whether GANs can represent a threat to image-based malware detection.
In particular, we considered two deep convolutional generative adversarial networks
(DCGAN) to generate a set of images starting from a dataset of images obtained from
real-world Android malware. To the best of the authors’ knowledge, the proposed method
represents the first attempt to generate images related to Android malware. As a matter
of fact, only the paper published by Nguyen et al. [7] proposes the evaluation of malware
images generated by a GAN, but related to PC malware and not to mobile ones. Moreover,
different from Nguyen et al.’s [7] paper, we considered two different kinds of images:
the first one obtained from static analysis (where it is not required to run the application
to obtain the image) and the second one generated with a dynamic analysis (where it is
required to run the application to obtain the image). Two different ways to obtain the
images were considered with the aim to generalize the obtained results: for the same reason,
two different GANs were considered; in this way, the results are more generalizable and are
not related to a specific set of images or to a specific GAN (and this aspect represents
another difference with respect to the paper published by Nguyen et al. [7]).

Thus, with the aim of evaluating the quality of the fake images, we built several
machine learning models aimed at discriminating between real and fake Android mal-
ware images.

Below, we itemize the main contributions of the paper:

• We propose to use two different DCGANs to generate malware images targeting the
Android platform. To the best of the authors’ knowledge, this paper represents the
first attempt to generate images related to Android malware. As a matter of fact, only
the paper published by Nguyen et al. [7] proposes the evaluation of malware images
generated by a GAN, but related to PC malware and not to mobile ones;

• Two different variants of the DCGAN were considered;
• Two different sets of images were considered: the first one obtained through static

analysis, while the second one generated with dynamic analysis;
• We evaluated the quality of the fake images, by building several machine learning

models aimed at discriminating between real and fake images.

Considering their effectiveness in data generation, GANs are already adopted in
cybersecurity for several purposes. In Table 1, we compare the state-of-the-art literature
related to the adoption of GANs in cybersecurity.

As shown in Table 1, GANs are exploited for many purposes in cybersecurity, from mal-
ware detection to the development of anti-phishing tools.

Furthermore, GANs have been shown to be effective in generating realistic malware
samples. GANs can be trained on a dataset of existing malware samples to learn the
underlying distribution of these samples. Once trained, the GAN can be used to generate
new malware samples that are indistinguishable from real malware samples.
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Table 1. The state of the art of GAN adoption in cybersecurity.

Research Method Results

Zhu and Han (2019) [8]

Developed a GAN-based approach to enhance
anomaly detection in network traffic data. Utilized a

combination of a GAN and a Long Short-Term
Memory (LSTM) network.

Achieved a significant improvement in
detecting rare anomalies compared to

traditional methods, with a 15% increase in
detection accuracy.

Shirazi et al. (2023) [9]

Proposed a GAN-based framework for generating
realistic phishing websites to improve the robustness

of anti-phishing tools. The framework included a
generator for website generation and a discriminator

for classification.

The model effectively generated highly
realistic phishing websites, helping to
improve the detection rate of existing

anti-phishing tools by 20%.

Wu et al. (2021) [10]

Introduced a GAN-based intrusion-detection system
(IDS) that used a semi-supervised learning approach.
The method combined a traditional IDS with a GAN

to detect unknown attacks.

Enhanced the IDS performance,
particularly in detecting zero-day attacks,

with a 12% increase in the true positive rate
and a reduction in false positives.

Chen and Liu (2022) [11]

Utilized GANs for malware detection by generating
adversarial malware samples to train a more robust

malware classifier. The approach involved adversarial
training with a focus on evasion attacks.

The robustness of the malware detection
system improved significantly, reducing

the evasion success rate by 30% compared
to conventional methods.

Chkirbene et al. (2021) [12]

Developed a GAN-based framework for data
augmentation in cybersecurity datasets, addressing
the issue of imbalanced data. The method generated

synthetic data samples to augment the
training dataset.

Improved the performance of machine
learning models in cybersecurity tasks,
with an average increase in accuracy of

10% on imbalanced datasets.

Rahman et al. (2024) [13]
Designed a GAN model to generate synthetic network

traffic data to aid in training more effective
intrusion-detection systems.

Successfully increased the accuracy of
intrusion-detection systems by 18% by
using the synthetic data for training.

Guo and Zhang (2021) [14]
Implemented a GAN-based approach to detect

Advanced Persistent Threats (APTs) by simulating
APT behaviors.

The method significantly improved the
detection rate of APTs, achieving a 25%

increase in detection accuracy compared to
conventional methods.

Mustapha et al. (2023) [15]

Proposed a GAN-based architecture to enhance the
detection of distributed denial-of-service (DDoS)

attacks by generating realistic attack traffic for
training purposes.

Enhanced the ability of DDoS-detection
systems to identify attack patterns, leading

to a 22% improvement in
detection accuracy.

Kumar et al. (2024) [16]
Utilized GANs to create adversarial examples to test
the robustness of cybersecurity systems, specifically

focusing on intrusion-detection systems (IDSs).

The study showed that the generated
adversarial examples were effective in

identifying weaknesses in IDSs, leading to
improved robustness and a 15% reduction

in false positives.

Li et al. (2024) [17]

Developed a GAN-based system for automatic
detection and classification of botnet attacks in IoT

networks. The system used a deep convolutional GAN
(DCGAN) for feature extraction and attack detection.

Achieved a high detection rate of 96% for
botnet attacks, outperforming traditional

detection systems by 20%.

One of the first papers to explore the use of GANs for malware generation was the
one by Kurakin et al. [18]. In this paper, the authors showed that a GAN could be trained
to generate realistic malware samples that were able to evade most antimalware software.

Another paper [19] investigated the use of GANs for malware generation. In this
paper, the authors showed that a GAN could be used to generate adversarial malware
samples that were able to fool deep learning-based anomaly-detection systems, similar to
the method presented in [20].

In recent years, there has been a growing body of research on the use of GANs for
malware generation. Some of the recent advances in this field include the following: the
development of new GAN architectures that are more effective at generating realistic
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malware samples; the development of new training techniques that allow GANs to be
trained on larger and more complex datasets of malware samples; the development of new
methods for evaluating the quality of generated malware samples.

As already cited in the Introduction Section, to the best of the authors’ knowledge,
the only paper close to our proposal is the one published by Nguyen et al. [7]. The main
difference between our proposal and this work is due to the context; as a matter of fact in
this paper, we focus on the Android platform (the most diffused one), while the authors
in [7] considered PC malware.

Renjith et al. [21] presented a method designed to generate feature vectors for gen-
erating evasive Android malware and subsequently modifying the malware accordingly.
Their proposal offers a twofold contribution: firstly, it can be employed to create datasets
for validating detectors of GAN-based malware, and secondly, it can augment the training
and testing datasets to enhance the robustness of malware classifiers.

The main difference between our proposal and the method shown in [21] is that
authors in [21] considered a GAN to produce a modified version of a set of features
extracted from the applications (for instance, from the manifest file related to permission),
while we propose the adoption of a GAN to produce an image related to a malware
application, i.e., we considered the entire application to generate the (fake) image.

Nagaraju et al. [22] put forth a method focused on generating counterfeit malware
images using GANs and assessing the efficacy of diverse techniques for classifying these
generated images. Their findings demonstrated that the ensuing multiclass classification
problem presents challenges, but they achieved compelling results when limiting the
problem to distinguishing between real and fake samples. The primary conclusion drawn
from the paper is that, while the GAN-generated images may closely resemble authentic
malware images, they do not attain the level of deep fake malware images from a deep
learning perspective.

The authors in [19] proposed a GAN, named MalGAN, with the objective of generating
adversarial malware applications. In this setup, a neural network-based detector was
employed to fit the black-box detector, while a generator was trained to produce adversarial
examples capable of deceiving the substitute detector.

Won et al. [23] introduced a malware-training framework called PlausMal-GAN,
which leverages generative adversarial networks to generate malware data. PlausMal-
GAN successfully generates high-quality and diverse malware images based on existing
malware data. The discriminator, acting as a detector, learns a range of malware features
from both real and generated malware images. Also, the authors in [23] considered PC
malware, different from our paper, and a set of features obtained from the application
and not an image obtained by converting all the code and the resources of the application
under analysis.

Yuan and colleagues [24] designed and developed GAPGAN, a GAN specifically
intended to generate adversarial padding bytes. In their attack framework, they converted
the input discrete malware binaries into a continuous space and then input them into the
generator of GAPGAN to generate adversarial payloads. By appending these payloads to
the original binaries, they created an adversarial sample that maintains its functionality.

Different from all the papers we discussed [7,21], which are related to PC malware,
the proposed paper is specifically focused on the Android platform.

The paper proceeds as follows: in the next section, preliminary background notions
about GANs, image-based malware detection, and convolutional neural networks are
provided; in Section 3 we outline the method we developed and implemented to determine
if the DCGAN can generate images related to Android malware applications that are
indistinguishable from real ones; the results of the experimental analysis are shown in
Section 4; a discussion about the proposed method with conclusions and future works is
presented in Section 5.
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2. Background

In this section, introductory concepts are presented to ensure the comprehensiveness of
the paper. The initial subsection covers details on the architecture of GANs. The subsequent
subsection delves into concepts related to image-based malware detection, while the third
subsection briefly outlines the architectures of convolutional neural networks.

2.1. GANs

In the fundamental architecture of a GAN, two networks play crucial roles: the
generator model and the discriminator model [25]. The term “adversarial” in GANs
is related to the concurrent training of these networks, which engage in a competition
reminiscent of a zero-sum game, similar to chess. The generator’s primary objective is to
create new images that are so authentic they can outwit the discriminator. In the simplest
GAN setup for image synthesis, the generator takes random noise as the input and produces
a generated image as its output [4].

Conversely, the discriminator functions as a binary image classifier, tasked with
distinguishing between real and fake images, thereby acting as the “adversary” to the
creative efforts of the generator. This continual back-and-forth interplay between the
generator and discriminator ultimately leads to the generator becoming more adept at
producing realistic images, while the discriminator becomes more skilled at detecting real
from generated images.

One of the main advantages of GANs is that they are able to generate high-quality
synthetic data. Because the generator and discriminator work collaboratively, the generator
can learn from the feedback from the discriminator and, thus, generate synthetic data that
are very similar to the real thing. Additionally, GANs are generally quite fast and efficient
compared to more traditional methods. Thanks to the parallelization possibilities offered,
they use parallel neural networks for the calculation.

In a nutshell, a fundamental GAN architecture comprises three main components:
the generator producing fake images, the real images from the training dataset, and the
discriminator independently evaluating the authenticity of both real and fake images.

Unlike most deep learning models that optimize to minimize a single cost function
(such as in image classification), GANs take a different approach. In GANs, the generator
and discriminator each have their own cost functions and conflicting objectives. The gener-
ator aims to create fake images that resemble real ones to deceive the discriminator, while
the discriminator’s goal is to accurately distinguish between real and fake images. This
adversarial relationship sets GANs apart from traditional optimization-based models.

As training progresses, both the generator and discriminator enhance their respective
capabilities. The generator becomes increasingly adept at producing images that closely
resemble the training data, while the discriminator becomes more proficient at accurately
discerning between real and fake images. This continuous improvement process is a key
characteristic of the GAN training dynamic.

The training of GANs revolves around achieving a delicate balance in the game.
The objective is for the generator to generate data that bear a striking resemblance to the
training data, while the discriminator reaches a point where it can no longer distinguish
between fake and real images. This equilibrium signifies the successful training of the
GAN model.

Figure 1 shows an example of a typical GAN architecture, with the generator and the
discriminator model.

As shown in Figure 1, the training process involves both the generator and discrimina-
tor models working in tandem. Initially, the generator creates a batch of samples, which are
then combined with real instances from the dataset and presented to the discriminator for
classification as either genuine or counterfeit. The discriminator is subsequently updated
to improve its ability to distinguish between real and fake samples in future iterations.
Importantly, the updates of the generator are based on its success or failure in deceiving
the discriminator with its generated samples.
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Figure 1. The GAN architecture.

During the training process of a GAN, the discriminator and the generator are trained
simultaneously in a competitive manner. The generator generates fake samples (e.g., im-
ages), while the discriminator tries to distinguish between real samples (from the dataset)
and fake samples (generated by the generator). As a matter of fact, the discriminator in a
GAN learns to discriminate between real and fake samples by extracting relevant features
from the input images and making classification decisions based on these features. Through
iterative training and competition with the generator, the discriminator becomes increas-
ingly effective at distinguishing between real and fake samples, ultimately contributing to
the generation of high-quality synthetic data.

For a GAN model to be considered effective, it should demonstrate two key qualities:

• Good image quality, ensuring the generation of sharp and realistic images that
closely resemble those in the training dataset. Blurry or distorted images should
be minimized.

• Diversity in image generation, implying that the GAN should be capable of producing
a wide variety of images that accurately capture the distribution of the training dataset.
This diversity ensures that the model can create different instances of the same concept
or object.

To evaluate GAN models, visual inspection of the generated images during training or
using the generator model for inference can be employed. Additionally, there is a popular
evaluation metric i.e., the Fréchet Inception Distance, which compares real and fake images,
rather than evaluating the generated images in isolation.

Since the original GAN paper by Ian Goodfellow et al. [4,26] in 2014, numerous
GAN variants have emerged. These variants often build upon each other to address
specific training challenges or to introduce new architectures for improved GAN control or
image quality.

There exist several GAN variants, for instance the deep convolutional generative
adversarial network (DCGAN), i.e., the first GAN based on convolutional neural networks
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(CNNs) [27], which currently represents one of the most adopted GANs. This is the reason
why we resorted to the DCGAN for image generation.

The reason why we resort to GANs for image generation is due to their ability to
produce high-quality, realistic images. Here are several reasons why GANs, and specifically
DCGANs, are preferred for image generation:

• High-quality outputs: GANs, particularly when well-trained, can generate very high-
quality images that are often indistinguishable from real images. This makes them
suitable for applications requiring realistic image synthesis;

• Versatility: GANs can be used to generate a wide range of images across different
domains, including natural images, medical images, and artwork. This versatility
makes them applicable to various fields and tasks;

• Ability to capture data distribution: GANs are capable of learning complex data
distributions, allowing them to generate diverse images that capture the variability of
the training data;

• Unsupervised learning: GANs can learn to generate images in an unsupervised
manner, meaning they do not require labeled data. This is particularly useful when
labeled data are scarce or expensive to obtain.

DCGANs are a specific type of GAN that leverage deep CNNs to enhance the image-
generation process. Here are the reasons why DCGANs are specifically chosen:

• Improved stability: DCGANs introduce architectural guidelines and practices that
improve the stability of training GANs. These include the use of strided convolutions
instead of pooling layers, batch normalization, and ReLU activations in the generator
and LeakyReLU in the discriminator;

• Enhanced image quality: The use of convolutional layers allows DCGANs to capture
spatial hierarchies in images more effectively than fully connected layers. This results
in higher quality images with better local coherence and fine details;

• Scalability: DCGANs can be scaled to larger and deeper networks, enabling them to
generate higher resolution images. This scalability is crucial for applications requiring
detailed and high-resolution outputs;

• Reduced overfitting: The architectural choices in DCGANs, such as batch normaliza-
tion, help reduce overfitting and improve generalization, leading to more diverse and
realistic generated images;

• Effective use of the GPU: DCGANs are designed to take full advantage of GPU accel-
eration, making the training process more efficient and faster compared to traditional
GAN architectures.

GANs could be used to perpetrate cyberattacks or to assist in the detection and analysis
of malware. The following is a brief overview of GAN-based malware generation:

• Malware generation using GANs: Some research efforts aimed to use GANs to gener-
ate malware samples. GANs were employed to create synthetic malware that could
evade traditional antivirus and intrusion-detection systems. These generated malware
samples could be used for testing the robustness of security systems.

• Evasion techniques: GAN-based malware generation often focuses on finding ways to
create malware that could evade detection. This could involve creating polymorphic
or metamorphic malware, which can change their code structure while preserving
malicious functionality.

• Data augmentation: GANs are used to augment datasets for training machine learn-
ing models used in malware detection. By generating additional malware samples,
researchers have sought to improve the performance of machine learning classifiers.

• Anomaly detection: GANs are used for anomaly detection in the context of malware
analysis. They could be trained on legitimate software samples, and any deviation
from the learned distribution could indicate the presence of malware.

• Adversarial attacks: GANs are also explored for launching adversarial attacks against
malware-detection models. Adversarial attacks involve generating malicious inputs
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that, while functionally similar to benign inputs, could fool machine learning models
into misclassifying them as non-malicious.

2.2. Image-Based Malware Detection

In a standard image-classification task, like identifying the depicted animal in a picture,
deep learning models can accurately classify a sample because they have been trained to
recognize specific patterns in the input image. These patterns represent distinctive features
associated with the shape of the animal. Likewise, in the context of malware detection,
the application under analysis is classified by searching for the distinct pattern indicative
of a malware application.

Malware detection based on machine learning involves training models to automat-
ically identify and classify malware based on patterns and features extracted from the
application under analysis.

Figure 2 shows how machine learning-based malware detection works.

Figure 2. A diagram related to machine learning-based malware detection.

In the following, a simplified overview is given of how this works:

• Data collection: To train a machine learning model for malware detection, a dataset
containing examples of both malicious and benign files is needed. This dataset should
include a diverse range of malware samples and legitimate files.

• Feature extraction: Features are characteristics or attributes extracted from the files in
the dataset. These features can include the file size, file type, API calls, code behavior,
byte sequences, and many others. The goal is to capture distinguishing traits that
differentiate malware from legitimate files.

• Model selection: In this phase, a machine learning algorithm or model that is well-
suited for the problem to solve is considered. Common choices include decision trees,
random forests, support vector machines, neural networks, and ensemble methods.

• Model training: The model is trained on the preprocessed dataset. During training, it
learns to recognize patterns and relationships in the features that distinguish malware
from non-malware.

• Evaluation: After training, the model is evaluated using a separate dataset (i.e., the so-
called test set), which it has never seen before. Common evaluation metrics include
precision, recall, and the F-measure.
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The effectiveness of machine learning-based malware detection depends on the quality
and diversity of the training data, the choice of features, the selection of the appropriate
model, and ongoing maintenance and updates to keep pace with evolving malware threats.
As the threat landscape evolves, machine learning models must adapt to stay effective in
identifying new and sophisticated malware variants.

Indeed, both classical image-classification and malware-detection tasks share a com-
mon objective: to identify a discerning pattern that can categorize an input sample into one
of the output classes.

Converting malware into an image is a crucial and comprehensive step in utilizing
deep learning techniques developed for image-classification tasks in the context of malware-
detection tasks [28]. The conversion method is widely adopted in the literature [28]: every
file stored on the hard disk can be represented in byte code. Each byte can be cast to an
eight-bit unsigned integer (ranging from 0 to 255), which can be viewed as a grayscale
pixel, thereby representing each application as a grayscale image. Similarly, bytes can be
grouped to form pixels in the RGB color model, creating a three-channel color image.

2.3. CNN

In the realm of image-classification tasks, CNNs and their various iterations are
extensively embraced and widely used in the existing literature. Briefly, we introduce
the main features of these models in this subsection, and we refer to the state-of-the-art
literature [29] for further information.

CNNs stand out due to their unique utilization of convolutional layers, employing
mathematical convolutional operators to extract features and gather relevant information
from input images. This sets them apart from traditional machine learning models, where
feature extraction requires manual preprocessing. In contrast, CNNs autonomously extract
significant features from the input samples, showcasing their exceptional capacity to learn
and identify meaningful patterns automatically from the data. In the literature, numerous
intricate CNN architectures exist, for instance AlexNet, VGG, GoogLeNet, and ResNet,
but they fundamentally rely on three essential operations: convolution, subsampling,
and classification. During the convolution operation, each pixel is combined with its
neighboring pixels by sliding a finite matrix (known as the kernel or filter) across the
input image. An activation function, typically the Rectified Linear Unit, is then applied to
introduce non-linearity to the results. Subsampling, also known as pooling, is a process
that decreases the size of the two-dimensional matrix produced by the convolutional layers
while preserving essential information. Moreover, subsampling improves the model’s
resilience and consistency in handling slight shape alterations and distortions found in
the input image. Lastly, classification is accomplished through a sequence of dense layers
comprising variable numbers of artificial neurons (perceptrons). This section of the model
is trainable using the standard backpropagation algorithm.

Figure 3 shows a diagram related to a CNN architecture.

Figure 3. Diagram related to a CNN architecture.
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From Figure 3, we note that the convolution operation combines each pixel with the
neighboring ones, on the basis of the weights stored in a finite matrix (i.e., the kernel or
filter), by sliding this graphic filter on the input image and applying an activation function
(usually, the Rectified Linear Unit [30]). The subsampling (or pooling) is the operation
that reduces the size of a two-dimensional matrix, usually generated by the convolutional
layers, while preserving the most relevant information.

The original matrix is split into sub-matrices of a fixed size, and only one element is
extracted from them with regard to the chosen strategy, usually the max pooling, which
extracts the highest value. Thus, the CNN is able to correctly classify samples regardless of
the relevant pattern spatial position in the input image. Finally, the classification is carried
out by a series of dense layers, which are formed by a variable number of artificial neurons
(i.e., perceptrons), each connected with all those of the next layer and forming a dense
network of connections.

3. The Method

In this section, we introduce our devised method to accomplish two objectives:
(i) generating images associated with Android malware applications and (ii) distinguishing
these synthetic images from images obtained from real-world Android malware ones.

3.1. Image Generation

As we stated in the Introduction Section, two different datasets were considered: the
first one was obtained using static analysis, while the second one was obtained through
dynamic analysis. Static analysis and dynamic analysis are two different approaches used in
software testing and code analysis. Static analysis is typically faster than dynamic analysis
since it does not involve code execution, while dynamic analysis can be slower as it involves
running the code, especially for large or complex software applications. Static analysis can
be performed on the source code or compiled as a binary without executing the application,
while dynamic analysis requires access to a running instance of the application. Moreover,
with the aim of generating images associated with Android malware applications, two
different variants of DCGAN are exploited.

In Figures 4 and 5, we, respectively, show how we generate the images belonging to
the static and dynamic datasets.

Figure 4. The static-image-generation step.

3.2. Static Analysis Generation

We first discuss how we generated the images from the applications with the static
analysis, as shown by the static-image-generation workflow in Figure 4.

To generate an image from an application by exploiting static analysis, i.e., without
running the application under analysis, we focused on extracting the byte values from a
binary executable and, subsequently, creating the corresponding image.

To transform a binary into an image, we interpreted the sequence of bytes (Bit Vectors
in Figure 4) that represents the binary as the bytes of a grayscale PNG image (Grayscale
Pixel in Figure 4). For this conversion, we adopted a predetermined width of 256 and a
variable length based on the size of the binary. To achieve this, we encoded any binary file
into a lossless PNG format, as described in [31].



Computers 2024, 13, 154 11 of 27

In essence, we considered the following steps:

• The binary file’s individual bytes are converted into numerical values (ranging from
0 to 255), which will subsequently determine the pixel color (RGB Pixel in Figure 4);

• Each byte corresponds to an RGB pixel in the resultant PNG image (Application Image
in Figure 4).

Figure 5. The dynamic-image-generation step.

3.3. Dynamic Analysis Generation

To generate the second dataset, we exploited dynamic analysis; in particular, we
executed each application with the aim of extracting the system call traces, and from the
obtained trace, we built the related image. Figure 5 depicts this process.

To generate images by exploiting dynamic analysis, we recorded and stored system
call traces generated by Android running applications in a textual format. To achieve this,
we considered the Android Package (APK) file, which represents the installation file of an
Android application (referred to as the “Mobile Application” in Figure 5). Subsequently,
we generated a series of 25 distinct operating system events at regular 10-second intervals
(referred to as “Event Injection” in Figure 5). These events are then dispatched to the
emulator to stimulate the behavior of the malicious payload within the application (referred
to as “Mobile Application” in Figure 5). As a result, we obtained the corresponding
sequence of system calls (referred to as “System Call Extraction” in Figure 5).

These 25 operating system events were selected based on prior research studies,
including those by the authors in [32,33], which demonstrate that malicious actors employ
this set of events to activate payloads within the Android environment. Specifically, we
considered the operating system event used to trigger Android malware as exploited by
the authors in [34].

The retrieval of system calls from the Android application under analysis was carried
out using a script developed by the authors (referred to as the “Shell Script” in Figure 5).
This script performs a sequence of actions as outlined below:

1. Initialization of the target Android device emulator.
2. Installation of the .apk file of the application under analysis on the Android emulator.
3. Waiting until the device reaches a stable state, typically when it is in an “epoll_wait”

state and the application under analysis is awaiting user input or a system event.
4. Commencement of the retrieval of system call traces.
5. Sending one of the 25 selected operating system events to the application.
6. Dispatching the chosen operating system event to the application under analysis.
7. Capturing system calls generated by the application until a stable state is reached.
8. Selection of a new operating system event (i.e., the next one in the sequence) and

repeating the above steps to capture system call traces for this new event.
9. Iterating through the previous step until all 25 operating system events have been

used to stimulate the Android application.
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10. Halting the capture of system calls and saving the acquired system call trace.
11. Terminating the process of the Android application under analysis.
12. Stopping the Android emulator.
13. Reverting the emulator’s disk to a clean snapshot, restoring it to its state before the

analyzed Android application was installed.

Moreover, to simulate user interaction with the Android operating system, we uti-
lized the “monkey” tool from the Android Debug Bridge (ADB) version 1.0.32. This tool
generates pseudo-random user events, including clicks, touches, and gestures. To collect
the system call traces, we employed “strace”, a tool available on Linux operating systems.
Specifically, we used the command “strace-s PID” to hook into the running Android appli-
cation process and intercept only the system calls generated by that specific application.
Once we had obtained a log of system calls, we extracted each individual call one by one,
adhering to the order provided by the log, and used this information to construct an image
(referred to as “Image Generation” in Figure 5). Each system call corresponds to a specific
RGB pixel, allowing us to create the images pixel by pixel.

In Figures 6 and 7, just as an example, we show the images obtained from both
the static and dynamic analysis, obtained starting from the same Android application,
i.e., GPS Fields Area Measure app https://play.google.com/store/apps/details?id=lt.
noframe.fieldsareameasure&hl=en_US, (accessed on 17 June 2024), an app freely avail-
able on Google Play, the official Android market https://play.google.com/ (accessed on
17 June 2024), identified by the following package name: lt.noframe.fieldsareameasure. This
app is typically exploited to measure an area, with the related details about the distance
and perimeter.

Figure 6. An example of an image obtained with static analysis.

https://play.google.com/store/apps/details?id=lt.noframe.fieldsareameasure&hl=en_US
https://play.google.com/store/apps/details?id=lt.noframe.fieldsareameasure&hl=en_US
https://play.google.com/
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Figure 7. An example of an image obtained with dynamic analysis.

In both Figures 6 and 7, we consider a pixel of a different color to represent, related to
the static analysis, a specific byte, while, related to the dynamic one, a specific system call.

3.4. DCGANs

Once having obtained the (static and dynamic) images from real-world Android
malware applications, the subsequent step in the proposed method involves employing
DCGANs to generate fake images associated with Android applications: this second step
related to the proposed method is shown in Figure 8.

Figure 8. The fake-image-generation step.

In each GAN, there exists at least one generator (generator, as depicted in Figure 8) and
one discriminator (discriminator, as shown in Figure 8). Through their adversarial interplay,
the generator improves its ability to produce images that closely resemble the distribution
of the training data, benefiting from the feedback provided by the discriminator.

In this paper, we developed and we experimented with two different DCGANs,
i.e., GAN 1 and GAN 2: in the following subsections, we discuss and go into detail about
both architectures with the aim to understand the differences between GAN 1 and GAN 2.

3.5. GAN 1

DCGAN introduced a GAN architecture that employs CNNs to define both the dis-
criminator and generator.

DCGAN provides several architectural guidelines aimed at enhancing training
stability [27]:

1. Substituting pooling layers with strided convolutions in the discriminator and frac-
tionally strided convolutions in the generator;

2. Incorporating batch normalization (i.e., batchnorm) in the generator and also
the discriminator;

3. Eliminating fully connected hidden layers in deeper architectures;
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4. Using ReLU activation for all generator layers with the exception of the output, which
employs tanh;

5. Employing LeakyReLU activation in all discriminator layers.

Strided convolutions, characterized by a stride of 2, are convolutional layers employed
for downsampling within the discriminator. Conversely, fractionally strided convolu-
tions, also known as Conv2DTranspose layers, employ a stride of 2 for upsampling in
the generator.

In the domain of DCGANs, batch normalization (batchnorm) is employed in both
the generator and the discriminator to improve the stability of GAN training. batchnorm
operates by normalizing the input layer, ensuring it maintains a mean of zero and a
variance of one. Typically, batchnorm is integrated after the hidden layer and before the
activation layer.

In both the generator and discriminator of DCGANs, four frequently employed activa-
tion functions include sigmoid, tanh, ReLU, and LeakyReLU.

The sigmoid function compresses numbers to either 0 (indicating fake) or 1 (indicating
real). Since the DCGAN discriminator performs binary classification, we employed the
sigmoid activation function in its final layer.

Tanh (Hyperbolic Tangent) is an S-shaped function similar to sigmoid, but it is scaled
and centered at 0, mapping the input values to the range of [−1, 1]. We applied tanh in the
final layer of the generator. Consequently, our training images must be preprocessed to fall
within the range of [−1, 1] to match the input requirements of the generator.

The Rectified Linear Activation (ReLU) function produces a zero output for negative
input values and preserves the input value for non-negative inputs. In the generator,
ReLU activation is utilized for all layers, except the output layer, where tanh activation
is employed.

LeakyReLU behaves similarly to ReLU, but introduces a slight slope (determined
by a constant alpha) for negative input values. We set the slope (alpha) to 0.2, as shown
in [27]. Within the discriminator, LeakyReLU activation is used in all layers, except for the
final layer.

The generator and discriminator model training occurs concurrently.
The first step involves data preparation for training. In training a DCGAN, there is

no necessity to split the dataset into training, validation, and test sets because we are not
using the generator model for classification tasks. A set of images obtained from real-world
Android malware was acquired using the procedure illustrated in Figure 8.

The generator expects input images in the format (60,000, 28, 28), representing
60,000 training grayscale images with dimensions of 28 × 28. The loaded data retain
a shape of (60,000, 28, 28) as they are in grayscale format.

To ensure compatibility with the tanh activation function used in the generator’s final
layer, the input images are normalized to fall within the range of [−1, 1].

The main objective of the generator is to generate lifelike images that can trick the
discriminator into perceiving them as genuine.

The generator receives random noise as the input and produces an image that closely
resembles the training images. To ensure compatibility with the grayscale images of
dimensions 28 × 28 being generated, the model architecture must ensure that the output of
the generator is shaped as 28 × 28 × 1.

To achieve this, the generator undergoes the following steps:

1. It transforms the 1D random noise (latent vector) into a 3D shape using the
Reshape layer.

2. The generator consistently upsamples the noise using the Keras Conv2DTranspose
layer (also known as fractionally strided convolution in the paper) to attain the
desired output image size, which, in our case, is a grayscale image with dimensions
of 28 × 28 × 1.

The generator incorporates several crucial layers as its fundamental building blocks:
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1. Fully connected layers, also known as dense layers, are primarily utilized for reshap-
ing and flattening the noise vector.

2. Conv2DTranspose is utilized to upscale the image in the generation process.
3. BatchNormalization: utilized to enhance training stability, positioned after the convo-

lutional layer and before the activation function.

In the generator, ReLU activation is employed in all layers except the output layer,
where tanh activation is utilized.

To construct the generator model, we introduced a dense layer to facilitate the reshap-
ing of the input into a 3D format. It is essential to specify the input shape within this initial
layer of the model architecture.

Subsequently, the BatchNormalization and ReLU layers were integrated into the
generator model. Next, the preceding layer was reshaped from 1D to 3D, followed by two
upsampling operations using Conv2DTranspose layers with a stride of 2. This sequential
process facilitated the transition from a 7 × 7 size to 14 × 14 and, ultimately, to 28 × 28,
achieving the desired image dimensions.

Following each Conv2DTranspose layer, a BatchNormalization layer was added,
succeeded by a ReLU layer.

Finally, a Conv2D layer with a tanh activation function was employed in the generator
model. The generator model encompasses a total of 2,343,681 parameters, with 2,318,209
being trainable and the remaining 25,472 being non-trainable parameters.

Moving on, let us delve into the design of the discriminator model.
The discriminator functions as a binary classifier tasked with determining whether an

image is real or fake. Its main objective is to precisely classify the given images.
However, there are a few distinctions between a discriminator and a typical classifier:

1. We utilized the LeakyReLU activation function in the discriminator.
2. The discriminator deals with two categories of input images: real images sourced

from the training dataset labeled as 1 and fake images generated by the generator
labeled as 0.

It is noteworthy that the discriminator network is typically smaller or simpler com-
pared to the generator. This is because the discriminator has a relatively simpler task
than the generator. In fact, if the discriminator becomes too powerful, it may impede the
progress and improvement of the generator.

In formulating the discriminator model, we will once more define a function. The dis-
criminator takes as the input either real images from the training dataset or fake images
generated by the generator. These images have dimensions of 28 × 28 × 1, and we pass the
arguments (width, height, and depth) according to the function.

In constructing the discriminator model, we incorporated the Conv2D, BatchNormal-
ization, and LeakyReLU layers twice for downsampling. Following this, we introduced
the Flatten layer and applied dropout. Finally, in the last layer, we employed the sigmoid
activation function to yield a single value for binary classification.

The discriminator model encompasses 213,633 parameters, comprising 213,249 train-
able parameters and 384 non-trainable parameters.

Within the framework of the considered DCGAN, we adopted the modified minimax loss,
involving the utilization of the binary cross-entropy (BCE) loss function, as illustrated in [27].

It is necessary to calculate two distinct losses: one for the discriminator and another
for the generator.

Regarding the discriminator loss, since the discriminator receives two sets of images
(real and fake), we computed the loss for each group independently and then merged them
to derive the overall discriminator loss.

TotalDloss = loss_ f rom_real_images + loss_ f rom_ f ake_images

Concerning the generator loss, our approach diverges from training G to minimize
log(1 − D(G(z))), aiming to improve the probability of the discriminator D correctly classify-
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ing fake images as fake. Instead, we concentrated on training the generator G to maximize
log D(G(z)), representing the probability that D incorrectly classifies the fake images as
real. This encapsulates the modified minimax loss strategy we employed. The objective is
to enhance the probability of the discriminator D accurately classifying fake images as fake
by training the generator G to maximize this probability.

3.6. GAN 2

The second GAN (i.e., GAN 2) we considered for image generation is a variant of
GAN 1, slightly modified to train color images.

With respect to GAN 1, we introduced the following modifications in GAN 2:

• Generator: we modified the approach for increasing the model architecture’s resolution
to produce a color image.

• Discriminator: we adapted the input image dimensions from 28 × 28 × 1 to 64 × 64 × 3.

In the following, we discuss the adjustments required for upsampling to achieve the
desired color image size of 64 × 64 × 3:

• We updated CHANNELS = 3 for color images instead of 1, which is for
grayscale images;

• A stride of 2 halves the width and height, so we can work backward to figure out the
initial image size dimension: in GAN 1, we upsampled as 7 − > 14 − > 28. Now,
we are working with a training image size of 64x64, so we upsampled a few times as
8 − > 16 − > 32 − > 64. This means we added one more set of Conv2DTranspose
− > BatchNormalization − > ReLU.

• Another change made to the generator is to update the kernel size from 5 to 4 to avoid
reducing checkerboard artifacts in the generated images. This is because the kernel
size of 5 is not divisible by a stride of 2. So, the solution was to use a kernel size of
4 instead of 5.

The main change in the discriminator architecture is the image input shape: we are us-
ing the shape of [64, 64, 3] instead of [28, 28, 1]. We also added one more set of Conv2D − >
BatchNormalization − > LeakyReLU to balance out the increased architecture complexity
in the generator as mentioned above. Everything else remained the same.

3.7. The Detection

Once having generated the images with GAN 1 and GAN 2, the last step of the
proposed method, shown in Figure 9, is devoted to building several supervised machine
learning models aimed at discriminating between real and fake images related to Android
malware applications.

Figure 9. The fake-image-detection step.

As shown in the third step of the proposed method in Figure 9, to build a model
aimed at discerning between generated and real images, we need two datasets: the first one
was composed by images obtained from Android malware (Real Images in Figure 9) and
the second one composed by images generated from GAN 1 and GAN 2, shown in Figure 8
(Generated Images in Figure 9). The real images are the same as those we exploited in
step 2 of the proposed method (i.e., fake image generation in Figure 8). From the two sets
of images (i.e., the static and the dynamic one), we extracted a set of numeric features
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using the Simple Color Histogram Filter. This filter is designed to compute the histogram
representing the pixel frequencies of each image. By applying this filter, we extracted
64 numeric features from each image.

Once we had extracted the feature sets from both the generated and real images,
we employed these features as the inputs to a supervised machine learning algorithm.
The objective was to develop a model capable of discerning whether an image is associated
with a fake or real application (i.e., Fake Detection in Figure 9).

Obviously, if the classifiers exhibits optimal performance, the generated images will
be significantly different from the original ones; otherwise, the machine learning models
will not be able to distinguish the original images from the generated ones.

4. Experimental Analysis

In this section, we present and analyze the results of the experimental analysis.
For this reason, after having appropriately generated a series of images through GAN 1

and GAN 2, we trained several classifiers, in order to understand if they are able to distin-
guish between malware and trusted applications. As the DCGAN generates a sequence
of images during each epoch, we assessed the classifiers’ ability to differentiate between
real and fake images. This evaluation aimed to determine whether, with increasing epochs,
as the generated images presumably become more similar to real ones, the classifier’s
performance in distinguishing between real and fake application images declines if it fails
to accurately identify real images from fake ones.

4.1. Experimental Settings

With the aim to generate images related to Android malware, we exploited a dataset
composed by 1000 real-world Android malicious applications (and, thus, we generated
1000 images related to real-world applications), among 71 malware families with the aim to
cover the current landscape of Android malware [35]. The dataset offers a representation of
the current state of Android malware, is openly shared with the broader community, and is
one of the largest publicly available Android malware datasets.

Both GAN 1 and GAN 2 were trained for 50 epochs, and each epoch required approxi-
mately 25 s in the experimental analysis (where we exploited the NVIDIA T4 Tensor Core
GPU). We set GAN 1 and GAN 2 to generate, for each epoch, 1000 fake images.

Considering that we obtained two different sets of images from the same set of real-
world Android malware applications (i.e., the first one obtained from static analysis and the
second obtained from dynamic analysis), we define a total of four different experiments:

• GAN 1 static dataset: this experiment is related to the evaluation of images generated
with GAN 1 trained with the static dataset;

• GAN 2 static dataset: this experiment is related to the evaluation of images generated
with GAN 2 trained with the static dataset;

• GAN 1 dynamic dataset: this experiment is related to the evaluation of images gener-
ated with GAN 1 trained with the dynamic dataset;

• GAN 2 dynamic dataset: this experiment is related to the evaluation of images gener-
ated with GAN 1 trained with the dynamic dataset.

To evaluate the effectiveness of the classifiers, the following metrics were considered:
precision, recall, and F-measure.

Four different widespread supervised machine learning classifiers were exploited
with the aim of enforcing conclusion validity: J48 [36], SVM [37], random forest [38],
and Bayes [39].

For each algorithm, we built a model for each epoch, for a total of
4 models × 50 epochs = 200 different models. Each model was built with the images
obtained from real-world applications and with the image generated for a certain epoch.

We repeated this process for each experiment; this is the reason why, considering
the four different experiments, a total of 200 × 4 = 800 different models were evaluated,
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by taking into account GAN 1 and GAN 2, trained with the two different sets of images,
i.e., the static and the dynamic one.

In the following, we explain how we built and evaluated the machine learning models
aimed to discriminate between real and fake images related to Android malware applications.

Related to the model learning, we considered T as a set of labels {(M, l)}, where each
M is the label that is associated with an l ∈ { real, fake}.

For the M model, we built a numeric vector of features F ∈ Ry, where y represents
the feature number exploited in the learning phase (y = 64; as a matter of fact, this is the
number of numeric features obtained, from each image, by applying the Simple Color
Histogram Filter).

In detail, with respect to the training phase, the k-fold cross-validation was exploited.
We explain this process: the instances of the dataset were split in a random way into a set
denoted as k.

Let us consider D as the dataset; in order to test the effectiveness of both models we
propose, the procedure explained below was considered.

1. Generation of a set for training, i.e., T ⊂ D;
2. Generation of an evaluation set T′ = D ÷ T;
3. Execution of the model training T;
4. Application of the model previously generated to each element of the T′ set.

To mitigate overfitting, we employed cross-validation, ensuring that all samples in
the dataset were assessed during the testing phase. In this process, the full dataset was
divided into k equal-sized parts, and in each iteration, one part served as the validation
set, while the rest was utilized as the training set. This approach allows for a more
comprehensive evaluation of the dataset while preventing overfitting. The k-fold cross-
validation procedure comprised dividing the training dataset into k-folds. In each iteration,
k −1 folds were used for training the model, while the remaining k-th fold acted as the test
set. This process was repeated, giving each fold an opportunity to serve as the holdout
test set. A total of k models were trained and evaluated, and the model’s performance was
computed as the mean of these runs. This approach provides a more realistic estimation
of model performance on small training datasets compared to a single training/test split.
In this paper, we considered a value of k = 10 for model training and testing.

This procedure was considered for all the algorithms involved in the experiment
(i.e., J48, SVM, random forest, and Bayes) for each epoch.

4.2. The Results

Table 2 shows the experimental analysis results obtained with the procedure previ-
ously explained.

In Table 2, we present the results of the experimental analysis, limiting the presentation
to data from three epochs due to space constraints: the first one (i.e., 0 in the column Epoch),
the middle one (i.e., 25 in the column Epoch), and the final one (i.e., 49 in the column
Epoch), with the aim to understand the general trend.

From the results shown in Table 2, we can observe that the performances of the
precision, recall, and F-measure were quite similar for all the epochs (as a matter of fact,
all the values were greater than 0.8): there were no substantial differences between the
performances obtained with the models trained with images obtained with the 25 epoch
exams or the 50-th.

This behavior is symptomatic of the fact that the images generated during the various
epochs were no longer similar to the real ones as the epochs increased. Furthermore,
the values of the precision, recall, and F-measure obtained in any case make it understood
that a part of the fake applications was not correctly recognized by the various classifiers,
even when they were generated in the initial epochs.
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Table 2. Experimental analysis results for the 0, 25, and 49 epochs with GAN 1 static.

Epoch Algorithm Precision Recall F-Measure

0

J48 0.877 0.876 0.876
SVM 0.870 0.869 0.869

Random Forest 0.880 0.880 0.880
Bayes 0.839 0.838 0.838

25

J48 0.892 0.892 0.892
SVM 0.880 0.879 0.879

Random Forest 0.892 0.892 0.892
Bayes 0.832 0.832 0.832

49

J48 0.835 0.833 0.833
SVM 0.836 0.835 0.835

Random Forest 0.837 0.837 0.837
Bayes 0.816 0.816 0.816

Table 3 shows the results obtained with the images generated with GAN 2 trained
with the static dataset.

Table 3. Experimental analysis results for the 0, 25, and 49 epochs with GAN 2 static.

Epoch Algorithm Precision Recall F-Measure

0

J48 0.891 0.892 0.891
SVM 0.883 0.884 0.883

Random Forest 0.890 0.890 0.890
Bayes 0.847 0.842 0.844

25

J48 0.877 0.878 0.887
SVM 0.888 0.887 0.902

Random Forest 0.901 0.904 0.845
Bayes 0.844 0.847 0.845

49

J48 0.825 0.826 0.825
SVM 0.844 0.847 0.845

Random Forest 0.841 0.847 0.843
Bayes 0.827 0.831 0.828

We can note that similar results were obtained with the images generated from GAN 1
and GAN 2 with the static dataset: as a matter of fact, the F-measure is approximately equal
to 0.8 in both cases.

Table 4 shows the results obtained with GAN 1 trained with the dynamic dataset,
i.e., the one obtained starting from the system call traces.

Table 4. Experimental analysis results for the 0, 25, and 49 epochs with GAN 1 dynamic.

Epoch Algorithm Precision Recall F-Measure

0

J48 0.871 0.882 0.876
SVM 0.873 0.874 0.873

Random Forest 0.880 0.880 0.880
Bayes 0.837 0.832 0.834

25

J48 0.877 0.878 0.877
SVM 0.878 0.877 0.877

Random Forest 0.885 0.854 0.869
Bayes 0.831 0.826 0.828

49

J48 0.825 0.826 0.825
SVM 0.834 0.835 0.834

Random Forest 0.832 0.835 0.833
Bayes 0.809 0.811 0.809
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As shown from Table 4, also in this case, the F-measure reached a similar value to the
ones obtained with the images generated from GAN 1. This is symptomatic of the obtained
results be able to be considered generalizable: as a matter of fact, they do not depend on
the typical GAN architecture (in fact, we considered two different DGCANs, with different
architectures and different input image dimensions and colors, i.e., one grayscale and
another one RGB). Moreover, the results are also not dependent on the trained images we
considered: as a matter of fact, we took into account two different sets of images: the first
one obtained from static analysis and the second one generated from the system call trace,
i.e., obtained by running the applications and, thus, by a dynamic analysis process.

Table 5 shows the results obtained with GAN 1 trained with the dynamic dataset.

Table 5. Experimental analysis results for the 0, 25, and 49 epochs with GAN 2 dynamic.

Epoch Algorithm Precision Recall F-Measure

0

J48 0.904 0.901 0.902
SVM 0.901 0.901 0.901

Random Forest 0.903 0.904 0.903
Bayes 0.868 0.877 0.872

25

J48 0.877 0.878 0.877
SVM 0.888 0.887 0.887

Random Forest 0.898 0.886 0.891
Bayes 0.854 0.859 0.856

49

J48 0.825 0.826 0.825
SVM 0.864 0.855 0.859

Random Forest 0.874 0.876 0.874
Bayes 0.844 0.841 0.842

Also from the results shown in Table 5, we can confirm a similar F-measure trend, so
confirming that the classifiers were able to discriminate between real and fake images with
the F-measure approximately equal to 0.8.

To better understand the trend of the classifiers during several of the epochs, in
Figure 10, we show the plot of the F-measure trend for the 50 epochs for the J48 model.

Figure 10. The F-measure trend, obtained with the J48 model, for the 50 epochs.
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From Figure 10, we can observe that, for all the classifiers built with J48 (i.e., GAN 1
static dataset, GAN 2 static dataset, GAN 1 dynamic dataset, and GAN 2 dynamic dataset),
similar performances were obtained: in particular, we note that also the F-measure trends
during the epochs are really similar between the four plots. As a matter of fact, it appears
to be very similar for GAN 2 (both for the static and dynamic dataset) and for GAN 1 (also
in this case, the static and dynamic dataset).

A similar consideration can be made for the results obtained from the other classifiers;
as a matter of fact, we can observe that there was no presence of a particular trend; the F-
measure, for all the models involved in the experiment, was stable to a value greater
than 0.8, and this happened regardless of the epoch. From the machine learning model
point of view, as the epochs increase, images that are more similar to the real ones are
not generated, and this aspect is noted by the F-measure values, which were extremely
similar in all epochs (both the initial and the final ones). This behavior was found in all
four models used, so we can conclude that this is a general trend and not specific to a single
classification algorithm. For this reason, it is possible to conclude that, due to the current
state of the art of GANs, they do not currently represent a threat, as a classifier is able to
discriminate between real images and fake images with quite good performances. On the
other hand, however, we highlight that a small percentage of images managed to evade the
controls and, for this reason, elude detection, and this aspect in the future could actually
pose a threat in the context of image-based malware detection.

With the aim to confirm the obtained results, in Figure 11, we represent the ROC
curves obtained with the J48 model, for the 50th epoch.

Figure 11. The ROC curves’ trend, obtained with the J48 model, for the 50 epochs.

The ROC curve is a graphical representation used in statistics and machine learning
to evaluate the performance of a binary classification model. It helps assess the model’s
ability to distinguish between two classes, typically the positive class. In an ROC curve,
the diagonal line represents the performance of a random classifier with no predictive
power. The closer the ROC curve is to the top-left corner of the plot, the better the model’s
performance is. As shown from the ROC curves in Figure 11, all the ROC curves reach
approximately a value greater than 0.8, confirming the ability of the classifier to discriminate
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between fake and original samples, even if there are several samples able to elude the
classifiers. This analysis confirms the obtained results.

In the following, with the aim of showing that, by increasing the number of samples
considered to train the GAN and the epochs, we confirmed the obtained results, and we
present the results we obtained by using 10,000 samples, where 5000 were real-world
malware and the remaining 5000 were generated by GAN 1 with the static analysis. In this
experiment, 100 epochs were considered (also, the number of epochs was increased to
understand what happens when the number of epochs and samples is increased). The idea
behind this experiment was to show that, by increasing the number of epochs and the
samples, as expected, the generated images showed better quality, and for this reason, it
was more difficult for the classifier to discriminate between real and fake images (although,
we have to note that the performance of the classifiers was slightly lower than in the
previously evaluated cases).

As shown from the results in Table 6, by using a larger number of applications and
increasing the number of epochs, we obtained fake images that were decidedly more
similar to the original. The classifiers showed slightly lower performance compared to
the previous cases, where 1000 images were used to train the GANs (and not 5000, as
in this last experiment), but despite this aspect, although having lower performance, the
classifiers were able to distinguish a fair percentage of fake images. We computed the
Fréchet Inception Distance related to this experiment, considering 5000 real and 5000 fake
images. The score provides a summary of the similarity between the two groups based
on statistical analysis of computer vision features extracted from the raw images using
the Inception V3 model for image classification. A lower score suggests greater similarity
between the two image groups, with a perfect score of 0.0 signifying that the two groups
are identical in terms of their image statistics. We obtained a Fréchet Inception Distance
value equal to 14.327; this value indicates that the generated images are very similar to real
images and are of high quality. The generator was capable of producing images that were
hard to distinguish from real ones.

Table 6. Experimental analysis results for the 99 epochs with GAN 1 static.

Epoch Algorithm Precision Recall F-Measure

99

J48 0.723 0.721 0.721
SVM 0.701 0.715 0.707

Random Forest 0.702 0.703 0.702
Bayes 0.697 0.699 0.697

To summarize, we observed that all classifiers built with J48 (i.e., GAN 1 static dataset,
GAN 2 static dataset, GAN 1 dynamic dataset, and GAN 2 dynamic dataset) exhibited
similar performance.

The F-measure trends during the epochs are remarkably similar across all four plots
shown in Figure 10.

This similarity is consistent for both GAN 2 (static and dynamic datasets) and GAN 1
(static and dynamic datasets).

From the perspective of the machine learning model, increasing epochs did not gen-
erate images more similar to real ones and the F-measure values remained extremely
consistent across all epochs, from initial to final.

This consistent behavior across all four models indicates a general trend, not specific to
a single classification algorithm. Therefore, it can be concluded that, given the current state
of GAN technology, GAN-generated images do not currently pose a significant threat and
classifiers are able to discriminate between real and fake images with good performance.
However, it is important to note that a small percentage of images managed to evade
detection, and this aspect could potentially pose a future threat in the context of image-
based malware detection.
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5. Conclusions and Future Work

Considering that GANs continue to advance, there is a growing concern about their
potential misuse for malicious purposes, such as creating undetectable malware variants.

Below are some practical scenarios where our proposed method for distinguishing
between real and fake malware-based images could be valuable:

Enhancing cybersecurity measures: By accurately identifying AI-generated malware,
cybersecurity experts can develop more effective defense mechanisms to protect against
emerging threats. This could involve refining intrusion-detection systems, antivirus soft-
ware, and other security tools to better recognize and respond to novel attack vectors.

Forensic analysis: In the event of a cyberattack, forensic malware analysts may en-
counter malware samples that have been artificially generated to evade traditional detection
methods. Our approach provides forensic analysts with an additional tool to ascertain the
authenticity of suspicious files, aiding in the attribution of attacks and the identification of
threat actors.

Training and evaluation: The proposed method for detecting malware images gen-
erated by a GAN can contribute to the development and evaluation of machine learning
models for malware detection. As a matter of fact, by generating realistic synthetic sam-
ples, we can assess the robustness and generalization capabilities of classifiers, thereby
improving their performance in real-world scenarios.

Policy and regulation: As AI technologies continue to evolve, policymakers and
regulatory bodies may need to consider the potential risks associated with AI-generated
content, including malware. Our research sheds light on these risks and underscores the
importance of proactive measures to mitigate them, such as establishing guidelines for the
responsible use of AI in cybersecurity.

Moreover, from the real-world malware analysis point of view, the proposed method
can provide some insights:

Representation for analysis: While malware is executable code, its analysis often
involves multiple facets, including static and dynamic analysis of code behavior, meta-
data extraction, and more. Our decision to represent malware as images stems from the
recognition that visual representations can offer complementary information for analysis.
For instance, visual representations can capture structural patterns, byte-level distribu-
tions, and other features that may not be immediately apparent in the raw executable
code. By leveraging techniques from computer vision and deep learning, we aim to ex-
tract meaningful insights from these visual representations to aid in malware detection
and analysis.

Adversarial attacks and evasion techniques: It is essential to recognize that the evasion
techniques employed by malware authors continue to evolve. As attackers increasingly
leverage AI and machine learning to create sophisticated malware variants, there is a
growing need for robust detection methods capable of identifying both traditional and
AI-generated threats. In this context, the proposed manuscript contributes to this broader
goal by exploring the potential of GAN-generated images as a means of representing and
analyzing malware, thereby enhancing our understanding of the evolving threat landscape.

Exploration of novel detection methods: By framing the problem of malware detection
in the context of image analysis, we aim to stimulate new approaches and perspectives
within the malware analysis research community. While traditional methods focus pri-
marily on code-level analysis, the proposed manuscript encourages researchers to explore
alternative modalities and representations for detecting and mitigating malware threats.
Through experimentation and empirical evaluation, we demonstrated the feasibility of
using machine learning models trained on image data to discriminate between real and
AI-generated malware images, thus opening up new avenues for research and innovation
in the field.

The proposed method can be useful for real-world malware analysis, for instance in a
scenario where the capability to differentiate between a real malware-based image and a
fake image is needed:
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Let us imagine, for instance, a malware analyst tasked with identifying and mitigating
a sophisticated malware campaign targeting mobile devices. The attackers have employed
advanced techniques, including the use of AI-generated malware variants designed to
evade traditional detection methods. As part of their investigation, the analyst comes
across a suspicious application that exhibits unusual behavior and raises suspicions of
being malicious.

In such a scenario, the proposed method for distinguishing between real and fake
malware-based images could be of interest. By subjecting the suspicious application to
the proposed classifier, trained on a dataset of both real-world malware samples and AI-
generated malware images, the analyst can quickly assess the likelihood of the application
being part of the ongoing attack campaign.

If the classifier identifies the application as fake, with high confidence, the analyst can
confidently conclude that it is an AI-generated malware variant and take appropriate action
to quarantine and analyze it further. On the other hand, if the application is classified as
real, the analyst can proceed with traditional forensic analysis techniques to investigate its
origins and potential impact on the targeted devices.

This scenario highlights the practical utility of our research in empowering cybersecu-
rity professionals to combat emerging threats posed by AI-generated malware. By provid-
ing a reliable means of differentiating between real and fake malware-based images, our
method enhances the effectiveness of malware detection and response efforts, ultimately
contributing to the overall security of digital ecosystems.

Thus, considering the ability of GANs to generate images that are indistinguishable
from the human eye, the need arises to understand if they can pose a threat to image-
recognition-based systems, including malware detection that analyzes suitably converted
applications through deep learning in images. We proposed a method aimed to evaluate
whether the images (related to Android malware applications) generated by two different
DCGANs can be discriminated by real ones. We obtained two different sets of images,
respectively obtained by employing static and dynamic analysis. Once we had generated
the images, we resorted to four different supervised machine learning algorithms to under-
stand whether it is possible to build a model aimed at discriminating between real images
(obtained from Android malware) and fake images. The experimental analysis showed
that all the supervised models we considered were able to discriminate real images from
fake ones with an F-measure greater than 0.80, therefore, on the one hand, demonstrating
that most of the fake images were recognized, but with the awareness that several images
related to Android malware managed to evade the fake-detection models.

From the limitations point of view, we are aware of concept drift [40], i.e., the phe-
nomenon where the statistical properties or characteristics of malware change over time.
This can make it challenging for machine learning models and classifiers to accurately
identify and categorize malware instances. As a matter of fact, concept drift occurs because
malware authors constantly evolve their techniques to evade detection. They may employ
new tactics, modify existing malware code, or create entirely new variants to bypass tradi-
tional security measures. As a result, the features and patterns that were once indicative
of malware may become less relevant or even obsolete. To address concept drift in mal-
ware classification, security researchers and data scientists need to regularly update their
models and feature sets. This involves monitoring the evolving threat landscape, collecting
new malware samples, and adapting the classification algorithms to better capture the
changing characteristics of malware. Continuous monitoring and adaptation are crucial to
maintaining the effectiveness of malware-detection systems in the face of evolving threats.
To mitigate this aspect, we considered an additional dataset, i.e., the one obtained with
dynamic analysis, with the aim to understand the effect of concept drift.

In future work, we plan to consider other kinds of images obtained, for instance
from the malware system call trace, and we will evaluate other GANs, for instance the con-
ditional generative adversarial network and the cycle-consistent generative adversarial
network, to compare the obtained results with the one shown by the two DGCANs ex-
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ploited in this paper. Moreover, we will explore whether the Autoencoder or OneClassSVM
can be helpful to obtain better performances than the supervised machine learning models
we exploited. We will also explore the possibility of utilizing a GAN to generate executable
code, meaning code that is intended to be run directly as a program once it is extracted
from the generated image. This involves creating a GAN model that not only produces
data resembling executable files, but also ensures that the generated code is functional and
capable of executing specific tasks when run. In this way, we will effectively understand if
GANs are able to automatically generate executable code.
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