A Contextual Model for Visual Information Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Contextual Model Overview
2.2. Structures Diagram of the Model
2.3. Context Learning Algorithm
2.4. Context Interpretation Algorithm
3. Results
3.1. XY Transformations
3.2. XY and 4α Transformations for the Galaxy Images
3.3. XY and 8α Transformations for Horizontal Bar
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wlodarczak, P. Machine Learning Applications. In Machine Learning and Its Applications, 1st ed.; Wlodarczak, P., Ed.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2020; pp. 163–173. [Google Scholar]
- Shane, J. What is AI? In You Look Like a Thing and I Love You; OCLC: Dublin, OH, USA, 2019; 1128058352; p. 41. [Google Scholar]
- Goertzel, B. Artificial General Intelligence; Gabbay, D.M., Siekmann, J., Bundy, A., Carbonell, J.G., Pinkal, M., Uszkoreit, H., Veloso, M., Wahlster, W., Wooldridge, M.J., Eds.; Cognitive Technologies; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Gupta, A.; Seal, A.; Prasad, M.; Khanna, P. Salient Object Detection Techniques in Computer Vision. A Survey. Entropy 2020, 22, 1174. [Google Scholar] [CrossRef] [PubMed]
- Menant, C. Information and Meaning. Entropy 2003, 5, 193–204. [Google Scholar] [CrossRef]
- Mosunova, L. Theoretical approaches to defining the concept of the perception of the meaning of information. Sci. Tech. Inf. Process. 2017, 44, 175–183. [Google Scholar] [CrossRef]
- Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.; Yamato, I. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology. Found. Phys. 2015, 45, 1362–1378. [Google Scholar] [CrossRef]
- Redozubov, A.; Klepikov, D. The Meaning of Things as a Concept in a Strong AI Architecture. In Artificial General Intelligence; Lecture Notes in Computer Science; Goertzel, B., Panov, A.I., Potapov, A., Yampolskiy, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 12177, pp. 290–300. [Google Scholar]
- Singh, S. Cracking the enigma. In The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography; OCLC: 150673425; Anchor Booksp: New York, NY, USA, 2000; p. 174. [Google Scholar]
- Bucaria, C. Lexical and syntactic ambiguity as a source of humor: The case of newspaper headlines. Humor—Int. J. Humor Res. 2004, 17, 279–309. [Google Scholar] [CrossRef]
- Attardo, S. Linguistic Theories of Humor; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 2009. [Google Scholar]
- Riesenhuber, M.; Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 1999, 2, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Serre, T.; Wolf, L.; Bileschi, S.; Riesenhuber, M.; Poggio, T. Robust Object Recognition with Cortex-Like Mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Wallis, G.; Rolls, E.; Foldiak, P. Learning invariant responses to the natural transformations of objects. In Proceedings of the 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), Nagoya, Japan, 25–29 October 1993; Volume 2, pp. 1087–1090. [Google Scholar]
- Robinson, L.; Rolls, E. Invariant visual object recognition: Biologically plausible approaches. Biol. Cybern. 2015, 109, 505–535. [Google Scholar] [CrossRef] [PubMed]
- Egmont-Petersen, M.; de Ridder, D.; Handels, H. Image processing with neural networks—A review. Pattern Recognit. 2002, 35, 2279–2301. [Google Scholar] [CrossRef]
- Rao, L.K.; Rahman, M.Z.U.; Rohini, P. Features Used for Image Retrieval Systems. In Image Pattern Recognition: Fundamentals and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 9–23. [Google Scholar]
- Laird, J. The Soar Cognitive Architecture; The MIT Press: Cambridge, MA, USA, 2012; pp. 1–26. [Google Scholar]
- Ritter, F.; Tehranchi, F.; Oury, J. ACT-R: A cognitive architecture for modeling cognition. WIREs Cogn. Sci. 2019, 10, e1488. [Google Scholar] [CrossRef]
- Franklin, S.; Madl, T.; D’Mello, S.; Snaider, J. LIDA: A Systems-level Architecture for Cognition, Emotion, and Learning. IEEE Trans. Auton. Ment. Dev. 2014, 6, 19–41. [Google Scholar] [CrossRef]
- Vernon, D.; Hofsten, C.; Fadiga, L. The iCub Cognitive Architecture. In A Roadmap for Cognitive Development in Humanoid Robots; 31 Cognitive Systems Monographs; Dillmann, R., Vernon, D., Nakamura, Y., Schaal, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 11, pp. 121–153. [Google Scholar]
- Xu, Y.; Li, Y.; Shin, B. Medical image processing with contextual style transfer. Hum.-Centric Comput. Inf. Sci. 2020, 10, 46. [Google Scholar] [CrossRef]
- Contextual learning is nearly all you need. Nat. Biomed. Eng. 2022, 6, 1319–1320. [CrossRef]
- Rentschler, T.; Bartelheim, M.; Behrens, T.; Bonilla, M.; Teuber, S.; Scholten, T.; Schmidt, K. Contextual spatial modelling in the horizontal and vertical domains. Nat. Sci. Rep. 2022, 12, 9496. [Google Scholar] [CrossRef]
- Graph deep learning detects contextual prognostic biomarkers from whole-slide images. Nat. Biomed. Eng. 2022, 6, 1326–1327. [CrossRef] [PubMed]
- Biederman, I. On the semantics of a glance at a scene. In Perceptual Organization; Kubovy, M., Pomerantz, J., Eds.; Lawrence Erlbaum: London, UK, 1981; Chapter 8; pp. 213–253. [Google Scholar]
- De Graef, P.; Christiaens, D.; d’Ydewalle, G. Perceptual effects of scene context on object identification. Psychol. Res. 1990, 52, 317–329. [Google Scholar] [CrossRef]
- Torralba, A.; Oliva, A.; Castelhano, M.; Henderson, J. Contextual guidance of attention in natural scenes: The role of global features on object search. Psychol. Rev. 2006, 113, 766–786. [Google Scholar] [CrossRef] [PubMed]
- Hoiem, D.; Efros, A.; Hebert, M. Putting objects into perspective. IEEE Conf. Comput. Vis. Pattern Recognit. 2006, 2, 2137–2144. [Google Scholar]
- Torralba, A. Contextual priming for object detection. Int. J. Comput. Vis. 2003, 53, 169–191. [Google Scholar] [CrossRef]
- Grauman, K.; Leibe, B. Context-based recognition. In Visual Object Recognition; Morgan & Claypool Publishers: Rapperswil, Switzerland, 2010; pp. 122–123. [Google Scholar]
- Redozubov, A. Holographic Memory: A Novel Model of Information Processing by Neuronal Microcircuits. In The Physics of the Mind and Brain Disorders; Springer Series in Cognitive and Neural, Systems; Opris, I., Casanova, M.F., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 11, pp. 271–295. [Google Scholar]
- Leigh, J.; Zee, D. A Survey of Eye Movements: Characteristics and Teleology. In The Neurology of Eye Movements, 5th ed.; University Press: Oxford, UK, 2015; pp. 10–25. [Google Scholar]
- Bosking, W.; Zhang, Y.; Schofield, B.; Fitzpatrick, D. Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex. J. Neurosci. 1997, 17, 2112–2127. [Google Scholar] [CrossRef]
- Mergenthaler, K.; Engbert, R. Microsaccades are different from saccades in scene perception. Exp. Brain Res. 2010, 203, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Engbert, R. Microsaccades: A microcosm for research on oculomotor control, attention, and visual perception. Prog. Brain Res. 2006, 154, 177–192. [Google Scholar] [PubMed]
- Bishop, C. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Blasdel, G.; Salama, G. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 1986, 321, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Bonhoeffer, T.; Grinvald, A. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 1991, 353, 429–431. [Google Scholar] [CrossRef] [PubMed]
Image | # of Transformations | Correctly Recognized Transformations | Average Interpretation Coherence | Image | # of Transformations | Correctly Recognized Transformations | Average Interpretation Coherence |
---|---|---|---|---|---|---|---|
289 | 1.0 | 0.94520545 | 289 | 1.0 | 0.9917355 | ||
289 | 1.0 | 1.0 | 289 | 1.0 | 1.0 | ||
289 | 1.0 | 1.0 | 289 | 1.0 | 0.92086333 | ||
289 | 1.0 | 0.9917355 | 289 | 1.0 | 0.8955224 | ||
289 | 1.0 | 0.99224806 | 289 | 1.0 | 1.0 | ||
289 | 1.0 | 0.99310344 | 289 | 1.0 | 1.0 | ||
289 | 1.0 | 1.0 | 289 | 1.0 | 1.0 | ||
289 | 1.0 | 0.9382716 | 289 | 1.0 | 0.99224806 |
Image | Image Recognition Errors | Transformation Recognition Errors | Image and Transformation Recognition Errors | Image | Image Recognition Errors | Transformation Recognition Errors | Image and Transformation Recognition Errors |
---|---|---|---|---|---|---|---|
5.10% | 8.54% | 5.10% | 3.42% | 11.59% | 3.42% | ||
5.81% | 8.75% | 5.81% | 14.03% | 14.26% | 14.03% | ||
12.35% | 14.10% | 12.35% | 8.03% | 13.59% | 8.03% | ||
1.29% | 6.34% | 1.29% | 5.60% | 12.70% | 5.60% | ||
1.33% | 7.60% | 1.33% | 11.55% | 11.75% | 11.55% | ||
11.46% | 13.57% | 11.46% | 33.26% | 25.30% | 33.26% | ||
3.51% | 5.69% | 3.51% | 2.80% | 5.26% | 2.80% | ||
8.61% | 10.42% | 8.61% | 7.81% | 11.36% | 7.81% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khurtin, I.; Prasad, M. A Contextual Model for Visual Information Processing. Computers 2024, 13, 155. https://doi.org/10.3390/computers13060155
Khurtin I, Prasad M. A Contextual Model for Visual Information Processing. Computers. 2024; 13(6):155. https://doi.org/10.3390/computers13060155
Chicago/Turabian StyleKhurtin, Illia, and Mukesh Prasad. 2024. "A Contextual Model for Visual Information Processing" Computers 13, no. 6: 155. https://doi.org/10.3390/computers13060155
APA StyleKhurtin, I., & Prasad, M. (2024). A Contextual Model for Visual Information Processing. Computers, 13(6), 155. https://doi.org/10.3390/computers13060155