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Abstract: Replacement policies have an important role in the functioning of the cache memory of
processor cores. The implementation of a successful policy allows us to increase the performance
of the processor core and the computer system as a whole. Replacement policies are most often
evaluated by the percentage of cache hits during the cycles of the processor bus when accessing the
cache memory. The policies that focus on replacing the Least Recently Used (LRU) or Least Frequently
Used (LFU) elements, whether instructions or data, are relevant for use. It should be noted that in the
paging cache buffer, the above replacement policies can also be used to replace address information.
The pseudo LRU (PLRU) policy introduces replacing based on approximate information about the
age of the elements in the cache memory. The hardware implementation of any replacement policy
algorithm is the circuit. This hardware part of the processor core has certain characteristics: the
latency of the search process for a candidate element for replacement, the gate complexity, and the
reliability. The characteristics of the PLRUt and PLRUm replacement policies are synthesized and
investigated. Both are the varieties of the PLRU replacement policy, which is close to the LRU policy
in terms of the percentage of cache hits. In the current study, the hardware implementation of these
policies is evaluated, and the possibility of adaptation to each of the policies in the processor core
according to a selected priority characteristic is analyzed. The dependency of the rise in the delay
and gate complexity in the case of an increase in the associativity of the cache memory is shown. The
advantage of the hardware implementation of the PLRUt algorithm in comparison with the PLRUm

algorithm for higher values of associativity is shown.

Keywords: digital automata; processor cores; cache memory; replacement policies; algorithms for data
replacement; algorithms; LRU; PLRU; indicators of complexity; delays; reliability; adaptive algorithms

1. Introduction

The cache memory of data or instructions is an essential component of the processor
cores of computer systems. It is known that the loading of data from the cache that
contains data or instructions into the processor core is faster than the loading from the
corresponding segments or pages of the working memory of the computer system. It
should be added that the event of a miss in the cache memory activates the corresponding
policy of replacing the data or instructions. This is an effective algorithm for selecting
an element for replacement. Among known replacement policies, the PLRU algorithm
can be highlighted. It is implemented in the cache memory microarchitectures of i486 [1]
and Pentium [2] processors. It is also implemented in Intel Core i7 processor cores of the
following microarchitectures: Nehalem, Sandy Bridge, Ivy Bridge, Haswell, Broadwell, and
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Skylake [3]. The synthesized circuits of the PLRU replacement policy, based on accepted
research results, can be implemented with the use of FPGA.

1.1. Motivation

The main three parameters of the cache memory of the processor core are the informa-
tional size, the associativity (number of ways), and the size of the row element in bytes. The
associativity (number of ways) of the cache memory of modern processor cores is 4, 8, and
16. But this is not the limit of this sequence, because there is a tendency to increase the size
of the cache memory of modern processor cores that will lead to an increase in the number
of ways of selecting data elements as replacement candidates. Also, this trend would affect
the hardware characteristics of the PLRU policy circuits, which are divided into the policies
PLRUt and PLRUm. It should be noted that the characteristics of the circuits are the delay
in the selection of a data element candidate for replacement, the hardware complexity
measured in gates, and the reliability. However, most of the existing publications are not
devoted to the study of these characteristics.

The description of the automata model and the further synthesis of the hardware
implementation of the data replacement algorithm will allow us to determine the exact
values of the mentioned characteristics and to investigate their dependence on the growth
of associativity. It should also be added that the synthesized and researched PLRUt and
PLRUm policy circuits provide an opportunity to conclude that there is adaptation of the
cache memory of the processor core to each of the policies depending on the selected
priority characteristic.

1.2. State of the Art

Replacement policies in the cache memory of the processor core are mainly char-
acterized by the intensity of hits or misses. To understand the possible solutions, it is
necessary to perform the analysis of known implementations and applications of the
replacement policies.

The performed analysis of references shows that publications with this topic are
focused on the following:

• The study of replacement policies during the caching of instructions and data in the
cache memory of the CPU;

• The study of replacement policies during the caching in the device with FPGA;
• Research on the adaptive associativity of a reconfigurable cache scheme;
• The study of replacement policies in content-oriented computer networks;
• Research on data caching schemes for wireless networks;
• The study of the efficiency of different methods of caching of key-value storage for

Blockchain in FPGA;
• The study of a cache-based matrix technique using the Hadoop Distributed File System

(HDFS), where the EC volume consists of a Reed–Solomon code with parameters of
(6, 3).

An analysis of existing solutions shows that there are FPGA-based implementations
of configuration memory controllers with LRU and LFU replacement policies [4]. But the
results of reconfiguration are known only for hit rates in sequences for cache sizes of 8, 16,
and 32 blocks of a non-adaptive mechanism with the following policies: LRU, Random,
and LFU.

Other VHDL implementations of LRU and PLRU policies with the use of two different
methods for a reconfigurable cache memory show a 100% hit rate for an associative set of
an eight-way cache memory [5].

The use of a multi-stage LRU cache replacement algorithm allows us to reduce the
indirect costs during execution and to achieve greater accuracy both in the memory and
in the CPU due to an increase in the ratio of cache hits compared to the LRU policy [6].
The investigation of the use of the PLRU policy with dependency on the parameters of the
cache memory shows the reduction in the cache miss rate and instruction cache cycles [7].
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Randomization greatly simplifies the integration of PLRU logic [8]. The performance of
Rand-PLRU is comparable to that of the PLRU policy [9]. But there is no detailed investiga-
tion of the dependency of latency, complexity, and reliability for different parameters of the
implementation of modifications of this policy.

The simulation of high-performance cache implementations in FPGA shows that the
two-way multi-associative cache, PLRUt, is the best choice because it requires a smaller
number of stored bits but offers the same performance. The considered options include
the number of ways, lines, and words per line. The PLRUm policy shows the highest
performance in all three cache levels, while the LRU policy gives the worst performance [10].

The PAC-PLRU replacement policy not only uses but also intelligently aggregates the
prediction information. The use of PAC-PLRU with a prefetch block reduces the average
L2 cache miss rate compared to an ordinary PLRU policy [11]. Most important is that
PAC-PLRU requires only minor changes in the existing cache architecture to achieve these
benefits. At the same, the simulation of the LRU policy shows the lowest cache miss rate for
a private L1 data cache for the various benchmarks, regardless of the number of cores [12].

While the FSM model of the replacement logic of the PLRU policy of the four-way
cache memory is well described [13], the synthesis of the hardware implementation with
the estimation for a wide list of the parameter values of delay, complexity, and reliability is
still an unsolved problem. But the values for conceptual models of the PLRU replacement
policy for the cache memory of the processor core with four ways and eight ways are
available for comparison [14]. Known variants of minimization of the PLRU algorithm for
a q-way associative cache memory allow us to increase the characteristics of the speed and
reliability of the logic circuit of the LRU block [15].

Implementations of the automata model of the pair of compatible adaptive algorithms
with discrete functions and structural block diagrams are also known [16]. The results of
the implementation of an adaptive associative reconfigurable cache scheme based on the
decision tree in the GEM5 show in a simulation the dependency of the values of frequency
and associativity for cache memories with a different number of ways [17].

The modifications of existing and new replacement policies find an application in
network caching, like the policy Immature Used [18], and in wireless networks [19]. The
simulation of the replacement policy taking into account the heterogeneity allows us to
consider the improvement in the access speed and overall performance of asymmetric
multicore systems with a separated Last Level cache memory of systems with different
numbers of processor codes [20].

Research on data caching on the FPGA accelerator card from Xilinx programmed
with Vitis 2020 is a possible way of experimentally investigating the performance of the
implementation of replacement policies [21]. The use of FPGA also allows us to imple-
ment methods of caching for network purposes of key-value storage [22], as well as for
distributed file systems [23]. But even for minimal hardware implementation of the PLRU
algorithm, only a small number of ways are available for comparison [24].

Thus, a review of replacement policies shows the relevance of their study and use
not only in the cache memory of computer systems with CPU and FPGA modules but
also in network caching. Modern FPGAs are powerful enough for the implementation of
the processor [25], with the possibility of evaluating the parameters [26]. The considered
studies of replacement policies in the cache memory of computer systems are focused on
the dependence of cache hit or miss ratios on the reconfiguration periods of adaptation,
the associativity (number of ways), and cache memory volumes. Research on replacement
policies in content-oriented computer networks focuses on performance evaluation (cache
hit ratio, path length, delay, and link load). With regard to complexity evaluation studies,
the complexity of PLRUt and PLRUm replacement policies is estimated as additional logic
(LUT) in addressing lines in the cache and the total number of FF bits (PIM module) [7],
and the cache circuit reconfiguration control logic is estimated [14]. Research on the delay
during the search for a candidate element for replacement in a cache line, gate complexity,
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and reliability in a review of modern sources of studies on replacement policies also needs
more clear and detailed explanation.

The summarized directions of the research on caching in each considered reference
are presented in Table 1.

Table 1. A comparative analysis of the research directions in the considered studies.

The Direction of Research in the Reference
Number of Considered References

[6–9,11–
16,20,24] [4,5,10,21] [17] [18] [19,27] [22,25,26] [23]

Study of replacement policies during the caching of
instructions and data in the cache memory of the CPU •

Study of replacement policies during the caching in the
device based on FPGA •

Research on the adaptive associativity of a
reconfigurable cache scheme of the CPU •

Study of replacement policies in content-oriented
computer networks •

Study scheme for wireless networks for growing data
traffic and preventing overload •

Study of the efficiency of different methods of caching
of key-value storage for Blockchain in FPGA •

Study of a cache-based matrix technique using the
HDFS, where the EC volume consists of a
Reed–Solomon code with the parameters of (6, 3)

•

1.3. Objectives and Structure

The goal of this article is to investigate and develop hardware solutions for implement-
ing algorithms for data replacement in the cache memory of processor cores to improve the
key characteristics of time delays, complexity, and reliability.

The main objectives are as follows:

• To analyze the structures of synchronous digital automata for further synthesis of the
minimal hardware implementations of PLRUt and PLRUm replacement policies;

• To develop a minimal logic model for further research in a simulation environment;
• To evaluate the parameters of hardware implementations from the point of view of

the delay of the transient process with the use of logical elements of NAND basis;
• To evaluate the complexity measured in logical elements and the reliability of hard-

ware implementations;
• To analyze the possibility of the adaptation of the processor core cache memory to each

of the PLRUt and PLRUm policies depending on the selected priority characteristic.

According to the research results, it will be possible to ascertain the possibility of
adapting the cache memory of the processor core to each of the PLRUt or PLRUm policies
depending on the selected priority characteristics, such as delay, gate complexity, and
reliability. Further research on hardware solutions will contribute to the development
of a method of adapting replacement policy mechanisms to change various algorithms
depending on the parameters of the computing process.

The structure of this article is as follows: the methodology of the investigation is
described in Section 2; Section 3 is dedicated to developing automata models and the
technique of hardware implementation of PLRUt and PLRUm algorithms; the summarized
results of the research on algorithm hardware implementation are presented in Section 4
for ways of q = 8, q = 16, and q = 32; Sections 5 and 6 discuss the results and conclude this
study correspondingly.
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2. Methodology and Stages of This Study

The research methodology consists of the following:

• A formal description of the structure of the synchronous digital automata followed
by the synthesis of logical models of the circuits of PLRUt and PLRUm replacement
algorithms, which are based on the theory of digital automata;

• The minimization of defined switching functions;
• An evaluation of gate complexity and the reliability of the circuits;
• The experimental implementation of the model in FPGA and an investigation of

the parameters.

The methodology is implemented in the following stages:
Stage 1—a formal description of the structure of the synchronous digital automata

implementation of the replacement algorithms PLRUt and PLRUm.
Stage 2—the synthesis of logical models for these replacement algorithms.
Stage 3—the study of computer models for simulating automata and checking the

correctness of the implementation of PLRUt and PLRUm replacement algorithms.
Stage 4—the study of the characteristics of the means of implementation of these

replacement algorithms.
Stage 5—an analysis of the results of the comparison of the characteristics of means

implementing the PLRUt and PLRUm algorithms and determining the possibility of the
adaptation of the cache memory of the processor core by choosing one of the algorithms
depending on the characteristics of the circuits.

3. Hardware Implementation of PLRUt and PLRUm

The PLRUt and PLRUm replacement policies are variants of the PLRU replacement
policy, which is close to the LRU policy in terms of cache hit percentage. The replacement
policy PLRUt has the index t that indicates that the Least Recently Used element for
replacement is determined based on the binary tree algorithm. The PLRUm replacement
policy has the index m that indicates that the Least Recently Used element to replace is
determined based on the age bit.

3.1. Automata Model of Algorithm PLRUt

The automata model of the hardware implementation of the PLRUt replacement
algorithm [15] (Figure 1) consists of a combination circuit of the CSdec-way decoder and
memory elements of the synchronous JK flip-flop type. The operation of the automata is
described by the following transition and output functions ((1) and (2)):

Q+
i = f(Φi(Q), Ψi(Q), H, R), (1)

Lr = Λr(Q) (2)

where Q = {Q0, Q1, . . . , Qm′−1} is the set of the internal states of the automaton at

the current moment of time t; Q+ =
{

Q+
0 , Q+

1 , . . . , Q+
m′−1

}
is the set of internal states

of the automaton at the next moment t+; Φ = {Φ0(Q), Φ1(Q), . . . , Φm′−1(Q)} is the
set of simple switching functions for the excitation of the information inputs J of syn-
chronous flip-flops; Ψ = {Ψ0(Q), Ψ1(Q), . . . , Ψm′−1(Q)} is the set of simple switch-
ing functions for the excitation of the information inputs K of synchronous flip-flops;
Λ =

{
Λ0(Q), Λ1(Q), . . . , Λq−1(Q)

}
is the set of simple switching functions for the se-

lection of q-ways in the set of lines with the data element L; Φi(Q), Ψi(Q), Λr(Q), Qi,
Q+

i ∈ {0, 1}; Lr represents the selected data item in the cache memory at the current direc-
tion r; i ∈ {0, 1, 2, . . . , m′ − 1}; r ∈ {0, 1, 2, . . . , q − 1}; H is the signal of a cache hit/miss;
R is the reset signal; m′ is the number of memory elements of the synchronous JK flip-flop
type; q = 2m′

is the number of ways in the cache memory; m′, q ∈ {N0}.
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Figure 1. Automata model of hardware implementation of PLRUt algorithm.

3.2. Synthesis of Hardware Implementation of PLRUt

The synthesized computer models of the PLRUt data replacement algorithm with q = 4
and q = 8 are described in [15] and [24]. These models provided the possibility to observe
the corresponding sequences of changes in the q-indexes L0 L2 L1 L3 and L0 L4 L2 L6 L1 L5
L3 L7 of the data element L for replacement in the case of a cache hit event.

The observed sequence of changes in q-indexes allowed to synthesis of a general
algorithm (Figure 2), changes in q-indexes, according to which it is possible to synthesize
the computer models of the PLRUt data replacement algorithm with q = 16 and q = 32.
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Synthesized computer models of the PLRUt data replacement algorithm with q = 16
and q = 32 are described by logical equations, (3)–(6) and (7)–(11), where JK-type syn-
chronous flip-flops are used as memory elements. The synthesized model is shown in
Figure 3, taking into account the truth tables of the ways q of the decoders.
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When studying computer models, the following sequences of q-index changes were
observed:

q = 16: L0 L8 L2 L10 L4 L12 L6 L14 L1 L9 L3 L11 L5 L13 L7 L15
q = 32: L0 L16 L2 L18 L4 L20 L6 L22 L8 L24 L10 L26 L12 L28 L14 L30

L1 L17 L3 L19 L5 L21 L7 L23 L9 L25 L11 L27 L13 L29 L15 L31
The observed corresponding sequences of changes in the q-index correspond to the

general algorithm shown in Figure 2.
The logical equations of the computer model of the hardware implementation of the

PLRUt algorithm for q = 16:
J0 = K0 = Q3&Q2&Q1 (3)

J1 = K1 = Q3 (4)

J2 = K2 = Q3&Q1 (5)

J3 = K3 = 1 (6)

The logical equations of the computer model of the hardware implementation of the
PLRUt algorithm for q = 32:

J0 = K0 = Q4Q3Q2Q1 = J3&Q3 (7)

J1 = K1 = Q4 (8)

J2 = K2 = Q4&Q1 (9)

J3 = K3 = Q4&Q2&Q1 = J2&Q2 (10)

J4 = K4 = 1 (11)
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3.3. Research of Hardware Implementation for Algorithm PLRUt

The synthesized computer models (including Figure 3) [15,24] allow us to create
Table 2.

Table 2. The complexity of the hardware implementation of the PLRUt algorithm.

Num. of q Components Number
(Logical Elements per Line)

q = 4 Logical elements AND-OR-NOT 4
q = 4 Logical elements NAND 4
q = 4 Logical elements AND 4

Total (q = 4): 12

q = 8 Logical elements AND-OR-NOT 6
q = 8 Logical elements NAND 6
q = 8 Logical elements AND 9

Total (q = 8): 21

q = 16 Logical elements AND-OR-NOT 8
q = 16 Logical elements NAND 8
q = 16 Logical elements AND 18

Total (q = 16): 34

q = 32 Logical elements AND-OR-NOT 10
q = 32 Logical elements NAND 10
q = 32 Logical elements AND 35

Total (q = 32): 55

The probability of fault-free operation is determined by Equation (12) and allows us to
calculate the corresponding probabilities of fault-free operation:

P(t) = e−λ×t, (12)

where e is a non-prime number; λ is the probability of failure-free operation of one gate or
logical element; t is the working time before failure measured in hours.

The complexity values given in Table 2 and the calculated corresponding probabilities
of failure-free operation allow us to create appropriate graphs of the dependence of the
complexity of the hardware implementations of the PLRUt algorithm on the ways q = 4,
q = 8, q = 16, and q = 32 (Figure 4) and the probabilities of failure-free operation in the time
sections t = 100, t = 1000, t = 10,000, and t = 100,000 (Figure 5).
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The total delay in the transient processes of hardware implementations of PLRUt and
PLRUm algorithms with the way q = 4 is determined by Expression (13):

τtotal = τmem + τdec, (13)

where τ is the delay in the transient process of the logical element NAND; τmem is the delay
in the transients of the synchronous flip-flop of JK type; τdec is the delays in the transient
processes of the combinational logic of the CSdec-way decoder; τtotal is the total delay in
the transient processes of the hardware implementation of PLRUt and PLRUm algorithms
with ways q.

The value of the complexity of these hardware implementations can be calculated
using Formulas (14)–(16), including for the hardware implementations of the PLRUt and
PLRUm algorithms:

Ctotal = Cmem + Cdec + Cadd_log, (14)

where Cmem is the complexity measured in the logical elements or gates of the memory
elements; Cdec is the complexity measured in the logical elements or gates of the way
decoder; Cadd_log is the synthesized or predicted additional gate complexity.

Cmem = N × k, (15)

where N is the number of memory elements; k is the complexity measured in the logical
elements or the gates for one memory element (k = 4 for a memory element implemented
based on the synchronous flip-flop of JK type).

Cdec = q × v, (16)
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where q is the number of ways of the cache memory; v is the complexity measured in the
logical elements or the gates for the qi-way decoder.

The partial complexity v measured in the logical elements or the gates for the way
decoder qi is provided in Table 3. The columns v2and, v3and, and v4and are the logic elements
of AND with 2, 3, and 4 inputs, respectively.

Table 3. The complexity v measured in the logical elements or the gates for the way decoder q.

Num. of Ways, q Lines,
N v2and v3and v4and v τdec

4 2 1 0 0 1 τ

8 3 0 1 0 1 τ

16 4 0 0 1 1 τ

32 5 1 0 1 2 2τ
64 6 2 0 1 3 2τ
128 7 1 1 1 3 2τ
256 8 1 0 2 3 2τ
512 9 0 1 2 3 2τ

1024 10 1 1 2 4 2τ
2048 11 0 2 2 4 2τ

The value of additional gate complexity Cadd_log is provided in Table 4. The synthesis
of hardware implementations of the PLRUt algorithm for q = 4, q = 8, q = 16, and q = 32
shows that when the number of ways is doubled, the value of the additional gate com-
plexity Cadd_log increases by 1. Therefore, it allows us to predict the additional complexity
measured in logical elements or the gates for q ≥ 64 (Table 4).

Table 4. The complexity of the hardware implementations of the PLRUt algorithm for q = 4, q = 8,
q = 16, q = 32, q = 64, q = 128, q = 256, q = 512, q = 1024, and q = 2048.

Num. of
Ways, q

Total Complexity
in Gates per Line,

CPLRUt

Complexity of
Memory
Elements

Complexity of
Decoder of Ways

of Memory

Synthesized and
Predicted Additional

Gate Complexity

Cmem τmem Cdec τdec Cadd_log CPLRUt (%)

4 12 8 3τ 4 τ 0 0.00
8 21 12 3τ 8 τ 1 4.76

16 34 16 3τ 16 τ 2 5.88
32 55 20 3τ 64 2τ 3 5.46
64 220 24 3τ 192 2τ 4 1.82
128 417 28 3τ 384 2τ 5 1.20
256 806 32 3τ 768 2τ 6 0.74
512 1579 36 3τ 1536 2τ 7 0.05

1024 4144 40 3τ 4096 2τ 8 0.19
2048 8245 44 3τ 8192 2τ 9 0.11

Thus, a more complete picture of the dependence of the complexity of hardware
implementations of the PLRUt algorithm on the number of ways q in the associative cache
memory of the processor allows us to represent it in the form of a curve (Figure 6).

Thus, it is possible to reproduce the indicators of delay, complexity, and reliability
of circuits of the PLRUt algorithm’s implementation for the range from q = 4 to q = 2048
(Table 5).

However, it is necessary to take into account that the total delay in the hardware
implementation of the PLRUt algorithm consists of the sum of two components, the delay
of the flip-flop of JK type and the delay of the way decoder, that are provided in Table 4.
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Table 5. The indicators of delay, complexity, and reliability of hardware implementations of the
PLRUt algorithm for the range of 4 ≤ q ≤ 2048.

Num. of Ways, q Complexity in Gates per Line,
CPLRUt

Reliability,
P (t = 10,000)

Delay,
τ

4 12 0.9981 4τ
8 21 0.9792 4τ
16 34 0.9665 4τ
32 55 0.9465 5τ
64 220 0.8025 5τ

128 417 0.6590 5τ
256 806 0.4467 5τ
512 1579 0.2062 5τ

1024 4144 0.0159 5τ
2048 8245 0.0003 5τ

Table 5 allows us to represent the dependence of probabilities of failure-free operation
of implementations of the PLRUt algorithm for the range from q = 4 to q = 2048 (Figure 7).
The way selection delay in Figure 8 shows the step-like rise between q = 16 and q = 32.
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3.4. Automata Model of Hardware Implementation of PLRUm Algorithm

The automata model of the hardware implementation of the PLRUm replacement
algorithm (Figure 9) consists of a combinational circuit of the CSdec-way decoder and the
memory elements of the synchronous flip-flop of JK type. The operation of the automaton
is described by the following transition and output functions ((17) and (18)):

A+
i = f(Φi(A), Ψi(A), H, R), (17)

Lr = Λr(A), (18)

where A =
{

A0, A1, . . . , Aq−1
}

is the set of internal automata states at the current mo-
ment of time t; A+ = {A+

0 , A+
1 , . . . , A+

q−1} is the set of internal states at the next moment t+;
Φ =

{
Φ0(A), Φ1(A), . . . , Φq−1(A)

}
is a set of simple switching functions for the excitation

of information inputs J of the synchronous flip-flops; Ψ =
{

Ψ0(A), Ψ1(A), . . . , Ψq−1(A)
}

is a set of simple switching functions for the excitation of information inputs K of flip-flops;
Λ =

{
Λ0(A), Λ1(A), . . . , Λq−1(A)

}
is a set of q-way selection for simple switching func-

tions with elements of the recently used data L; Φi(A), Ψi(A), Λr(A), Ai, A+
i ∈ {0, 1}; Lr

is the selected data element in the cache memory by the current way r; i ∈ {0, 1, 2, . . . , q− 1};
r ∈ {0, 1, 2, . . . , q − 1}; q is the number of memory elements; H is a cache hit/miss signal;
R is a reset signal; q is the number of ways in the cache memory; q ∈ {N0}.
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3.5. Synthesis of Hardware Implementation of PLRUm Algorithm with Ways of q = 4

The synthesis of the hardware implementation is based on the idea of using the FIFO
queue (Figure 10) to fill by using a logical value of 1 the additional bits of Ai in the case
of an event of a cache hit (H = 1) (Figure 10). In the case of an event of a cache miss, the
hardware implementation should automatically choose the way i + 1, according to which
the recently used data element L with the corresponding bit Ai+1 = 0 will be selected.
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The computer model of the hardware implementation of the PLRUm algorithm with
ways q = 4 is provided in Figure 11.
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This model of the hardware implementation of the PLRUm algorithm with the param-
eter of ways q = 4 is represented by the following logical Equations (19)–(24):

J0 = K3 = 1, K0 = K1 = K2 = A3, (19)

J1 = A0, (20)

J2 = A1&A0, (21)

J3 = A2, (22)

L0 = A0, (23)

Ln+1 = An+1

n∧
i=0

Ai, (24)
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The study of the computer model of the PLRUm algorithm for q = 4 shows the
compliance of their work with the theoretical expectations determined by the idea of
the PLRUm replacement algorithm.

3.6. Research of Hardware Implementation of PLRUm Algorithm with Ways q = 4
3.6.1. Evaluation of Latency and Complexity

According to Expression (13), in the case of an event of a cache hit (H = 1), the total
delay in the hardware implementation of the PLRUm algorithm with ways of q = 4 will be
as follows:

τtotal = 3τ+ τ = 4τ

Figure 12 shows the functional circuit of a JK flip-flop with static synchronization with
a gate complexity of k = 4.
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Expressions (14)–(16) allow us to summarize the gate complexity of the hardware
implementation of the PLRUm algorithm for a number of ways of q = 4 (Table 6).

Table 6. The gate complexity of the hardware implementation of the PLRUm algorithm with the
parameter of ways of q = 4.

Num. of q Symbol Components Number of Gates (V)
per Line

q = 4
Cmem

Logical elements NAND with 3 inputs 8

q = 4 Logical elements AND with 4 inputs 8

q = 4 Cadd_log Logical elements AND with 2 inputs 1

q = 4

Cdec

Logical elements AND with 2 inputs 1

q = 4 Logical elements AND with 3 inputs 1

q = 4 Logical elements AND with 4 inputs 1

Ctotal (q = 4) V = 20

3.6.2. Evaluation of Reliability

Based on Expression (12) and taking into account Table 6, it is possible to represent the
evaluation of the fault-free operation of the PLRUm algorithm hardware implementation
with ways q = 4 in the form of a graph (Figure 13).
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4. Summarized Results of Study of Hardware Implementation of PLRUm Algorithm
with Ways of q = 8, q = 16, and q = 32

The synthesis of hardware implementations of the PLRUm algorithm with ways of
q = 8, q = 16, and q = 32 is based on the synthesis of the hardware implementation of the
PLRUm algorithm with ways of q = 4.

The computer model of the hardware implementation of the PLRUm algorithm with
ways of q = 8 (Figure 14) is based on the following logical Equations (23)–(26):

J0 = K7 = 1, K0 = K1 = K2 = K3 = K4 = K5 = K6 = A7, (25)

Jm+1 = Am, (26)
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During the study of the computer models of the PLRUm algorithm for q = 8 and q = 16,
the compliance of the results with the theoretical expectations determined by the idea of
the PLRUm replacement algorithm is observed.

4.1. Research of Hardware Implementations of PLRUm Algorithm with Ways of q = 8, q = 16, and
q = 32
4.1.1. Evaluation of Complexity and Reliability

Based on Expressions (14)–(16), it is possible to summarize the complexity measured
in logical elements or the gates of hardware implementations of the PLRUm algorithm with
ways of q = 8 and q = 16 (Table 7).
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Table 7. The gate complexity of the hardware version of the PLRUm algorithm with ways of q = 8
and q = 16.

Num. of q Symbol Components Number of Gates (V)
per Line

q = 8
Cmem

Logical elements NAND with 3 inputs 16

q = 8 Logical elements AND with 4 inputs 16

q = 8

Cdec

Logical elements AND with 2 inputs 6

q = 8 Logical elements AND with 3 inputs 2

q = 8 Logical elements AND with 4 inputs 3

Ctotal (q = 8) V = 43

q = 16
Cmem

Logical elements NAND with 3 inputs 32

q = 16 Logical elements AND with 4 inputs 32

q = 16

Cdec

Logical elements AND with 2 inputs 8

q = 16 Logical elements AND with 3 inputs 8

q = 16 Logical elements AND with 4 inputs 11

Ctotal (q = 16) V = 91

The computer model of the hardware implementation of the PLRUm algorithm with
ways of q = 16 allows us to perform an accurate estimation of the complexity of the CSdec
combinational circuit and hardware implementation of the PLRUm algorithm with ways
of q = 32 without the process of synthesis. It should be noted that at the same time, the
complexity of memory elements Cmem will increase by exactly two times compared to the
hardware implementation of the PLRUm algorithm with ways of q = 16.

With the use of Expressions (14)–(16), it is possible to summarize the gate complexity
of the hardware implementation of the PLRUm algorithm with ways of q = 32 (Table 8).

Table 8. The gate complexity of the hardware implementation of the PLRUm algorithm with the
parameter of ways of q = 32.

Num. of q Symbol Components Number of Gates (V)
per Line

q = 32
Cmem

Logical elements NAND with 3 inputs 64

q = 32 Logical elements AND with 4 inputs 64

q = 32

Cdec

Logical elements AND with 2 inputs 13

q = 32 Logical elements AND with 3 inputs 18

q = 32 Logical elements AND with 4 inputs 44

Ctotal (q = 32) V = 203

4.1.2. Evaluation of Delay

Based on Expression (13), in the case of an event of a cache hit (H = 1), the total delay in
PLRUm hardware implementation with ways of q = 8, q = 16, and q = 32 will be as follows:

τtotal q=8 = 3τ+ 2τ = 5τ

τtotal q=16 = 3τ+ 2τ = 5τ

τtotal q=32 = 3τ+ 3τ = 6τ

Based on Tables 6–8, it is possible to estimate the complexity and reliability of the
hardware implementations of the PLRUm algorithm with ways of q = 4, q = 8, q = 16, and
q = 32 and represent them in the form of the graphs (Figure 15).
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4.2. Possible Limitations and Challenges of Hardware Implementation of Both Algorithms

The current study is primarily targeted toward performing the investigation of pa-
rameters of the hardware implementation of both PLRUt and PLRUm algorithms. This
understanding allows us to estimate the characteristics for different values of ways of
parameter q without physical implementation and to determinate the dependency on this
q parameter.

The performed investigation allows us to highlight the possible limitations or problems
during the implementation of the hardware of the PLRUt algorithm. In this study, the
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investigation of probabilities of failure-free operation of the hardware implementation of
the PLRUt algorithm is shown in Figure 7. It illustrates the probabilities of failure-free
operation of the hardware implementation of the PLRUt algorithm for q = 4, q = 8, q = 16,
q = 32, q = 64, q = 128, q = 256, q = 512, q = 1024, and q = 2048. Here, it can be seen that
the reliability of the hardware implementation of the algorithm for q = 64, q = 128, q = 256,
q = 512, q = 1024, and q = 2048 rapidly decreases from 0.8 to almost 0.

This is also valid for the hardware implementation of the PLRUm algorithm. The
investigation results for this algorithm are provided in Figure 15.

Therefore, the implementation of the hardware of these algorithms is reasonable for
the parameters of ways of q = 4, q = 8, q = 16, and q = 32 (Figure 16).
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5. Discussion
5.1. Comparative Analysis

The results of the performed investigation of the synthesized hardware implementa-
tions of the PLRUt and PLRUm algorithms of one cache memory line and the results of
Table 3 of the replacement policy resource utilization from [10] are summarized in Table 9.

Table 9. The results of the performed investigation into the replacement policy resources.

Policy Ways Single Cache
Line LUT

LUT
(Table 3)

[10]
FF

FF
(Table 3)

[10]

PLRUm 4 1 8 8 4 4
PLRUt 4 1 6 6 2 3
PLRUm 8 1 16 22 8 8
PLRUt 8 1 11 13 3 7
PLRUm 16 1 32 – 16 –
PLRUt 16 1 20 – 4 –
PLRUm 32 1 64 – 32 –
PLRUt 32 1 37 – 5 –

The results of the performed investigation in Table 9 are provided for ways of q = 4
and q = 8, where a smaller number of LUTs and a smaller or equal number of FFs are
observed for both algorithms compared to the results of Table 3. The replacement policy
resources [10] or research data for ways of q = 16 and q = 32 are not available.

The proposed method of synthesizing the hardware implementation of the PLRUt
algorithm allows us to obtain results for a higher number of ways (Table 10).

Table 10. The results of the performed investigation into the replacement policy resources for
64 ≤ q ≤ 2048.

Policy Ways Single Cache
Line LUT

LUT
(Table 3)

[10]
FF

FF
(Table 3)

[10]

PLRUt 64 1 70 – 6 –
PLRUt 128 1 135 – 7 –
PLRUt 256 1 264 – 8 –
PLRUt 512 1 521 – 9 –
PLRUt 1024 1 1034 – 10 –
PLRUt 2048 1 2059 – 11 –

The universal form of the synthesized hardware implementations of the PLRUt algo-
rithm for q = 4, q = 8, q = 16, and q = 32 allows us to determine the values of the delay, gate
complexity, and reliability for the entire range of 4 ≤ q ≤ 2048.

5.2. Adaptation

One of the goals of this study is to determine the possibility of the adaptation [16] of
the cache memory of the processor core to each of the PLRUt or PLRUm policies depending
on one of the following priority characteristics selected in the core: delay, complexity, or
reliability. The characteristic values summarized in Table 11 provide an opportunity to
build comparative graphs for each of the characteristics (Figure 16).

Based on the comparison of the hardware implementation of the algorithms provided
in Figure 16, it is possible to conclude that the PLRUt algorithm is better than the hardware
implementation of the PLRUm algorithm in terms of all characteristics. It makes the
adaptation impossible, but based on the advantages, it increases the probability of the use
of the hardware implementation of this algorithm for the cache memory of the CPU or
implementation in FPGA.
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Table 11. The values of the characteristics of gate complexity, reliability, and delay in hardware
implementations of PLRUm and PLRUt algorithms with ways of q = 4, q = 8, q = 16, and q = 32.

Num. of
Ways, q

Gate Com-
plexity,
CPLRUt

Gate Com-
plexity,
CPLRUm

Reliability,
P (t = 10,000)

PLRUt

Reliability,
P (t = 10,000)

PLRUm

Delay,
τ

PLRUt

Delay,
τ

PLRUm

4 12 20 0.9981 0.9802 4τ 4τ
8 21 43 0.9792 0.9579 4τ 5τ

16 34 91 0.9665 0.9130 4τ 5τ
32 55 203 0.9465 0.8163 5τ 6τ

5.3. Further Development

The obtained results allow us to make improvements to the hardware implementation
of the algorithms of the replacement policy. The fast verification of the workability of such
algorithms can be performed with the use of FPGA to create the hardware implementation
of the required circuit.

The results are also promising for the improvement in the architectures of the existing
processors and for prototyping the superscalar processor models. Modern FPGA chips
allow for the implementation of the super-parallelized scalable and parameterizable dedi-
cated data processing systems for intensive searches of data in dynamic HBM memory and
the implementation of services with dedicated architectures [25].

The creation of a dedicated architecture before the production of the chip allows us
to perform practical measurements to compare the results with the results of theoretical
research [26].

The possibility of the implementation not only of the logic of a cache memory replace-
ment policy but also of the queue of the commands for execution allows us to perform
the next step of improving the performance of the processors while ensuring backward
comparability with existing software for the processors. This step allows us to reduce the
performance by means of out-of-order execution of commands without data dependency.

The practical experience of the creation of the dedicated architecture with powerful
FPGA chips and the development flow with the software for prototyping allows us to apply
the same approach for the creation of hardware models of such algorithms for proving
the concepts and quickly checking the optimizations. It is possible to do this because
at the moment, most FPGAs are produced by the same companies that are involved in
the production of modern processors. The same technological process is used during the
production. At the same time, the total performance of some FPGAs is higher than that of
CPUs [27].

Thus, the finding of a new model of prediction and of candidates for replacement in the
cache memory, and the creation of a queue of commons for execution are the most promising
directions for the next steps of future research. Involving modern developed environments
for FPGA project prototyping allows us to reduce the time taken for the implementation
and testing of such theoretical models. Combining both theoretical research with practical
experiments is the best way to enhance processor architectures with a prototyping process
with low costs and efforts.

6. Conclusions

The main contribution of this study lies in developing a method of hardware imple-
mentation of algorithms for data replacement in the cache memory of processor cores, as
well as the accessible assessments of complexity, latency, and reliability that allow us to
obtain the proof of concept of the adaptive solutions.

This paper proposes the description of automata models and the results of the synthesis
of hardware solutions of PLRUt and PLRUm data replacement algorithms. It allows us to
determine the parameters and values of characteristics, such as the delay in the selection
of a data element for a candidate for replacement, the complexity measured in logical
elements, and the reliability of the equipment, as well as to investigate their dependence on



Computers 2024, 13, 166 21 of 22

the growth of the associativity. With the growth of the associativity of the cache memory,
both the delay parameters and the complexity measured in logical elements increase.

Implementations of both algorithms are compared and considered in detail. The
hardware implementation of the data replacement algorithm PLRUt has advantages in
terms of values of the delay over the hardware implementation of the data replacement
algorithm PLRUm as well as by one τ in the case of the associativity of 8, 16, and 32.

However, the implementation of the algorithms is equal at q = 4. According to the
parameters of complexity and reliability, the hardware implementation of the PLRUt data
replacement algorithm shows better results than the hardware implementation of the
PLRUm data replacement algorithm at q = 4, 8, 16, and 32. This advantage increases the
probability of using the implementation of this algorithm in the CPU cache memory module
or for FPGA implementation.

Further research can be focused on adding and enhancing the set of algorithms for
different replacement policies to determine their priority and selection based on preferred
parameters. The possibility of rapid prototyping and testing with the use of FPGA helps
to prove the workability of the algorithm. In addition, the development of a method
of adapting the mechanisms of replacement policies for changing various algorithms
depending on the parameters of the computing process is very promising.
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