Transforming Digital Marketing with Generative AI
Abstract
:1. Introduction
2. Background
2.1. Personalisation in Digital Marketing
2.2. Recommender System
2.3. Social Media Marketing
2.4. Search Engine Marketing
2.5. Email Marketing
2.6. Concerns with Digital Marketing
2.7. Generative AI
3. Proposed Framework
3.1. Defining Marketing Aim
3.2. Data Collection
3.3. Data Processing
3.4. Designing Generative AI Models
3.5. Training Generative AI Models
3.6. Evaluating Generative AI Models
3.7. Deploying Generative AI Models
- The framework aims to provide guidance for the digital marketing process, and there is no strict order to follow the stages in the process. This allows the unique demands of each project to be adapted and, therefore, ensures that specific marketing objectives can be addressed in the most efficient manner possible.
- The process is iterative, meaning that steps can be repeated as necessary to refine and enhance outcomes. This enables continuous improvement and optimisation, allowing for adjustments based on new data, insights, or changes in the market.
- Furthermore, the framework is only conceptual, and the process can be rolled back to previous stages at any time, ensuring a high degree of adaptability and responsiveness in their digital marketing efforts.
4. Case Study 1: Virtual Try-On
4.1. Marketing Aim
4.2. Data Collection
4.3. Data Processing
4.4. Model Design
4.5. Model Training
4.6. Evaluation
4.7. Deployment
4.8. Summary
5. Case Study 2: Image-to-Video Generation
5.1. Marketing Aim
5.2. Data Collection
5.3. Data Processing
5.4. Model Design
5.5. Model Training
5.6. Evaluation
5.7. Deployment
5.8. Summary
6. Discussions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Desai, V.; Vidyapeeth, B. Digital marketing: A review. Int. J. Trend Sci. Res. Dev. 2019, 5, 196–200. [Google Scholar] [CrossRef]
- Filo, K.; Lock, D.; Karg, A. Sport and social media research: A review. Sport Manag. Rev. 2015, 18, 166–181. [Google Scholar] [CrossRef]
- Saxena, A.; Khanna, U. Advertising on social network sites: A structural equation modelling approach. Vision 2013, 17, 17–25. [Google Scholar] [CrossRef]
- Nelson-Field, K.; Riebe, E.; Sharp, B. More mutter about clutter: Extending empirical generalizations to Facebook. J. Advert. Res. 2013, 53, 186–191. [Google Scholar] [CrossRef]
- Khraim, H.S. The impact of search engine optimization on online advertisement: The case of companies using E-Marketing in Jordan. Am. J. Bus. Manag. 2015, 4, 76–84. [Google Scholar] [CrossRef]
- Sahni, N.S.; Wheeler, S.C.; Chintagunta, P. Personalization in email marketing: The role of noninformative advertising content. Mark. Sci. 2018, 37, 236–258. [Google Scholar] [CrossRef]
- Alalwan, A.A.; Rana, N.P.; Dwivedi, Y.K.; Algharabat, R. Social media in marketing: A review and analysis of the existing literature. Telemat. Inform. 2017, 34, 1177–1190. [Google Scholar] [CrossRef]
- Krishen, A.S.; Dwivedi, Y.K.; Bindu, N.; Kumar, K.S. A broad overview of interactive digital marketing: A bibliometric network analysis. J. Bus. Res. 2021, 131, 183–195. [Google Scholar] [CrossRef]
- Kim, K.H. Digital and social media marketing in global business environment. J. Bus. Res. 2021, 131, 627–629. [Google Scholar] [CrossRef]
- Yasmin, A.; Tasneem, S.; Fatema, K. Effectiveness of digital marketing in the challenging age: An empirical study. Int. J. Manag. Sci. Bus. Adm. 2015, 1, 69–80. [Google Scholar] [CrossRef]
- Bala, M.; Verma, D. A critical review of digital marketing. Int. J. Manag. IT Eng. 2018, 8, 321–339. [Google Scholar]
- Aguirre, E.; Mahr, D.; Grewal, D.; De Ruyter, K.; Wetzels, M. Unraveling the personalization paradox: The effect of information collection and trust-building strategies on online advertisement effectiveness. J. Retail. 2015, 91, 34–49. [Google Scholar] [CrossRef]
- Taylor, D.G.; Lewin, J.E.; Strutton, D. Friends, fans, and followers: Do ads work on social networks?: How gender and age shape receptivity. J. Advert. Res. 2011, 51, 258–275. [Google Scholar] [CrossRef]
- Kshetri, N.; Voas, J. Online advertising fraud. Computer 2019, 52, 58–61. [Google Scholar] [CrossRef]
- Yang, X. The effects of AI service quality and AI function-customer ability fit on customer’s overall co-creation experience. Ind. Manag. Data Syst. 2023, 123, 1717–1735. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Kshetri, N.; Dwivedi, Y.K.; Davenport, T.H.; Panteli, N. Generative artificial intelligence in marketing: Applications, opportunities, challenges, and research agenda. Int. J. Inf. Manag. 2023, 18, 102716. [Google Scholar] [CrossRef]
- Feuerriegel, S.; Hartmann, J.; Janiesch, C.; Zschech, P. Generative AI. Bus. Inf. Syst. Eng. 2024, 66, 111–126. [Google Scholar] [CrossRef]
- Soni, V. Adopting Generative AI in Digital Marketing Campaigns: An Empirical Study of Drivers and Barriers. Sage Sci. Rev. Appl. Mach. Learn. 2023, 6, 1–15. [Google Scholar]
- Islam, T.; Miron, A.; Liu, X.; Li, Y. Svton: Simplified virtual try-on. In Proceedings of the 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA), Nassau, Bahamas, 12–14 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 369–374. [Google Scholar]
- Islam, T.; Miron, A.; Liu, X.; Li, Y. StyleVTON: A Multi-Pose Virtual Try-On with Identity and Clothing Detail Preservation. Neurocomputing 2024, 594, 127887. [Google Scholar] [CrossRef]
- Islam, T.; Miron, A.; Liu, X.; Li, Y. FashionFlow: Leveraging Diffusion Models for Dynamic Fashion Video Synthesis from Static Imagery. arXiv 2023, arXiv:2310.00106. [Google Scholar]
- Islam, T.; Miron, A.; Liu, X.; Li, Y. Deep Learning in Virtual Try-On: A Comprehensive Survey. IEEE Access 2024, 12, 29475–29502. [Google Scholar] [CrossRef]
- De Keyzer, F.; Dens, N.; De Pelsmacker, P. Is this for me? How consumers respond to personalized advertising on social network sites. J. Interact. Advert. 2015, 15, 124–134. [Google Scholar] [CrossRef]
- Lin, C.A.; Kim, T. Predicting user response to sponsored advertising on social media via the technology acceptance model. Comput. Hum. Behav. 2016, 64, 710–718. [Google Scholar] [CrossRef]
- Resnick, P.; Varian, H.R. Recommender systems. Commun. ACM 1997, 40, 56–58. [Google Scholar] [CrossRef]
- Lu, J.; Wu, D.; Mao, M.; Wang, W.; Zhang, G. Recommender system application developments: A survey. Decis. Support Syst. 2015, 74, 12–32. [Google Scholar] [CrossRef]
- Deshpande, M.; Karypis, G. Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst. (TOIS) 2004, 22, 143–177. [Google Scholar] [CrossRef]
- Pazzani, M.J.; Billsus, D. Content-based recommendation systems. In The Adaptive Web: Methods and Strategies of Web Personalization; Springer: Berlin/Heidelberg, Germany, 2007; pp. 325–341. [Google Scholar]
- Burke, R. Hybrid recommender systems: Survey and experiments. User Model. User-Adapt. Interact. 2002, 12, 331–370. [Google Scholar] [CrossRef]
- Lee, J.; Hong, I.B. Predicting positive user responses to social media advertising: The roles of emotional appeal, informativeness, and creativity. Int. J. Inf. Manag. 2016, 36, 360–373. [Google Scholar] [CrossRef]
- Okazaki, S.; Taylor, C.R. Social media and international advertising: Theoretical challenges and future directions. Int. Mark. Rev. 2013, 30, 56–71. [Google Scholar] [CrossRef]
- Swani, K.; Milne, G.R.; Brown, B.P.; Assaf, A.G.; Donthu, N. What messages to post? Evaluating the popularity of social media communications in business versus consumer markets. Ind. Mark. Manag. 2017, 62, 77–87. [Google Scholar] [CrossRef]
- Kumar, V.; Mirchandani, R. Increasing the ROI of social media marketing. IEEE Eng. Manag. Rev. 2013, 41, 17–23. [Google Scholar] [CrossRef]
- Wu, C.W. The performance impact of social media in the chain store industry. J. Bus. Res. 2016, 69, 5310–5316. [Google Scholar] [CrossRef]
- Barreto, A.M. The word-of-mouth phenomenon in the social media era. Int. J. Mark. Res. 2014, 56, 631–654. [Google Scholar] [CrossRef]
- Leung, F.F.; Gu, F.F.; Palmatier, R.W. Online influencer marketing. J. Acad. Mark. Sci. 2022, 50, 226–251. [Google Scholar] [CrossRef]
- Anandhan, A.; Shuib, L.; Ismail, M.A.; Mujtaba, G. Social media recommender systems: Review and open research issues. IEEE Access 2018, 6, 15608–15628. [Google Scholar] [CrossRef]
- Campana, M.G.; Delmastro, F. Recommender systems for online and mobile social networks: A survey. Online Soc. Netw. Media 2017, 3, 75–97. [Google Scholar] [CrossRef]
- García-Sánchez, F.; Colomo-Palacios, R.; Valencia-García, R. A social-semantic recommender system for advertisements. Inf. Process. Manag. 2020, 57, 102153. [Google Scholar] [CrossRef]
- Thelwall, M. Commercial web site links. Internet Res. 2001, 11, 114–124. [Google Scholar] [CrossRef]
- Boughton, S.B. Search engine marketing. Perspect. Bus. 2005, 2, 29–33. [Google Scholar]
- Sharma, D.; Shukla, R.; Giri, A.K.; Kumar, S. A brief review on search engine optimization. In Proceedings of the 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 10–11 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 687–692. [Google Scholar]
- Kritzinger, W.T.; Weideman, M. Search engine optimization and pay-per-click marketing strategies. J. Organ. Comput. Electron. Commer. 2013, 23, 273–286. [Google Scholar] [CrossRef]
- Kapoor, K.K.; Dwivedi, Y.K.; Piercy, N.C. Pay-per-click advertising: A literature review. Mark. Rev. 2016, 16, 183–202. [Google Scholar] [CrossRef]
- Farris, P.W.; Bendle, N.; Pfeifer, P.E.; Reibstein, D. Marketing Metrics: The Definitive Guide to Measuring Marketing Performance; Pearson Education: London, UK, 2010. [Google Scholar]
- Sen, R. Optimal search engine marketing strategy. Int. J. Electron. Commer. 2005, 10, 9–25. [Google Scholar] [CrossRef]
- Chaffey, D.; Ellis-Chadwick, F. Digital Marketing: Strategy; Smart Insights (Marketing Intelligence) Limited: London, UK, 2012. [Google Scholar]
- Lambrecht, A.; Tucker, C. When does retargeting work? Information specificity in online advertising. J. Mark. Res. 2013, 50, 561–576. [Google Scholar] [CrossRef]
- Palmer, D.E. Pop-ups, cookies, and spam: Toward a deeper analysis of the ethical significance of internet marketing practices. J. Bus. Ethics 2005, 58, 271–280. [Google Scholar] [CrossRef]
- Tene, O. What google knows: Privacy and internet search engines. Utah L. Rev. 2008, 2008, 1433. [Google Scholar] [CrossRef]
- Ansari, A.; Mela, C.F. E-customization. J. Mark. Res. 2003, 40, 131–145. [Google Scholar] [CrossRef]
- Graham, S. How to Balance Consumer Privacy and Personalization in Marketing; FreakOut Pte. Ltd.: Singapore, 2020. [Google Scholar]
- Nuseir, M.T.; El Refae, G.A.; Aljumah, A.; Alshurideh, M.; Urabi, S.; Kurdi, B.A. Digital Marketing Strategies and the Impact on Customer Experience: A Systematic Review. In The Effect of Information Technology on Business and Marketing Intelligence Systems; Springer: Berlin/Heidelberg, Germany, 2023; pp. 21–44. [Google Scholar]
- Martynenko, M.; Losheniuk, O.; Demchenko, H.; Osypenko, N. Developing and implementing digital marketing strategies of the future: Toward improving product quality and competitiveness. Futur. Econ. Law 2023, 3, 63–84. [Google Scholar]
- Munro, J.; Richards, B. The digital challenge. In Destination Brands; Routledge: London, UK, 2012; pp. 141–154. [Google Scholar]
- Kushwaha, B.P. Search engine marketing a new way of marketing in digital age. Palarch’s J. Archaeol. Egypt/Egyptol. 2020, 17, 2053–2065. [Google Scholar]
- Taken Smith, K. Longitudinal study of digital marketing strategies targeting Millennials. J. Consum. Mark. 2012, 29, 86–92. [Google Scholar] [CrossRef]
- Parise, S.; Guinan, P.J.; Kafka, R. Solving the crisis of immediacy: How digital technology can transform the customer experience. Bus. Horizons 2016, 59, 411–420. [Google Scholar] [CrossRef]
- Rawson, A.; Duncan, E.; Jones, C. The truth about customer experience. Harv. Bus. Rev. 2013, 91, 90–98. [Google Scholar]
- Edelman, D.; Heller, J. How digital marketing operations can transform business. McKinsey Digit. 2015, 20036. Available online: https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/Marketing%20and%20Sales/Our%20Insights/How%20digital%20marketing%20operations%20can%20transform%20business/McK_How_digital_marketing_operations_ca_transform_business.pdf (accessed on 6 May 2024).
- Shrestha, Y.R.; Krishna, V.; von Krogh, G. Augmenting organizational decision-making with deep learning algorithms: Principles, promises, and challenges. J. Bus. Res. 2021, 123, 588–603. [Google Scholar] [CrossRef]
- Whang, S.E.; Lee, J.G. Data collection and quality challenges for deep learning. Proc. Vldb Endow. 2020, 13, 3429–3432. [Google Scholar] [CrossRef]
- Moens, M.F.; Li, J.; Chua, T.S. Mining User Generated Content; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Liu, Y.; Jiang, C.; Zhao, H. Assessing product competitive advantages from the perspective of customers by mining user-generated content on social media. Decis. Support Syst. 2019, 123, 113079. [Google Scholar] [CrossRef]
- Cao, Y.; Li, S.; Liu, Y.; Yan, Z.; Dai, Y.; Yu, P.S.; Sun, L. A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt. arXiv 2023, arXiv:2303.04226. [Google Scholar]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27. Available online: https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf (accessed on 6 May 2024).
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (accessed on 9 May 2024).
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 2020, 33, 6840–6851. [Google Scholar]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [Google Scholar] [CrossRef] [PubMed]
- GitHub: Let’s Build from Here. Available online: https://github.com/ (accessed on 6 May 2024).
- Hugging Face—The AI Community Building the Future. Available online: https://huggingface.co/ (accessed on 6 May 2024).
- PyTorch. Available online: https://pytorch.org/ (accessed on 6 May 2024).
- TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 6 May 2024).
- Caffe|Deep Learning Framework. Available online: https://caffe.berkeleyvision.org/ (accessed on 6 May 2024).
- Ying, X. An overview of overfitting and its solutions. In Proceedings of the Journal of Physics: Conference Series; International Conference on Computer Information Science and Application Technology (CISAT); IOP Publishing: Daqing, China, 2019; Volume 1168, p. 022022. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Aszemi, N.M.; Dominic, P. Hyperparameter optimization in convolutional neural network using genetic algorithms. Int. J. Adv. Comput. Sci. Appl. 2019, 10. Available online: https://thesai.org/Publications/ViewPaper?Volume=10&Issue=6&Code=IJACSA&SerialNo=38 (accessed on 9 May 2024). [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Han, X.; Wu, Z.; Wu, Z.; Yu, R.; Davis, L.S. Viton: An image-based virtual try-on network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7543–7552. [Google Scholar]
- Wang, B.; Zheng, H.; Liang, X.; Chen, Y.; Lin, L.; Yang, M. Toward characteristic-preserving image-based virtual try-on network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 589–604. [Google Scholar]
- Chen, H.J.; Hui, K.M.; Wang, S.Y.; Tsao, L.W.; Shuai, H.H.; Cheng, W.H. Beautyglow: On-demand makeup transfer framework with reversible generative network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10042–10050. [Google Scholar]
- Ma, L.; Jia, X.; Sun, Q.; Schiele, B.; Tuytelaars, T.; Van Gool, L. Pose guided person image generation. Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://www.researchgate.net/publication/317205156_Pose_Guided_Person_Image_Generation (accessed on 6 May 2024).
- Dong, H.; Liang, X.; Shen, X.; Wang, B.; Lai, H.; Zhu, J.; Hu, Z.; Yin, J. Towards multi-pose guided virtual try-on network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 Octobe–2 November 2019; pp. 9026–9035. [Google Scholar]
- Hadi Kiapour, M.; Han, X.; Lazebnik, S.; Berg, A.C.; Berg, T.L. Where to buy it: Matching street clothing photos in online shops. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3343–3351. [Google Scholar]
- Chen, H.; Gallagher, A.; Girod, B. Describing clothing by semantic attributes. In Proceedings of the Computer Vision—ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Proceedings, Part III 12. Springer: Berlin/Heidelberg, Germany, 2012; pp. 609–623. [Google Scholar]
- Iwata, T.; Watanabe, S.; Sawada, H. Fashion coordinates recommender system using photographs from fashion magazines. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011. [Google Scholar]
- Kang, W.C.; Kim, E.; Leskovec, J.; Rosenberg, C.; McAuley, J. Complete the look: Scene-based complementary product recommendation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10532–10541. [Google Scholar]
- Pachoulakis, I.; Kapetanakiss, K. Augmented reality platforms for virtual fitting rooms. Int. J. Multimed. Its Appl. 2012, 4, 35. [Google Scholar] [CrossRef]
- Choi, S.; Park, S.; Lee, M.; Choo, J. Viton-hd: High-resolution virtual try-on via misalignment-aware normalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 14131–14140. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Lensa: AI Photo Editor, Camera—Apps on Google Play. Available online: https://play.google.com/store/apps/details?id=com.lensa.app&hl=en_GB&gl=US (accessed on 13 September 2023).
- Zablotskaia, P.; Siarohin, A.; Zhao, B.; Sigal, L. Dwnet: Dense warp-based network for pose-guided human video generation. arXiv 2019, arXiv:1910.09139. [Google Scholar]
- Singer, U.; Polyak, A.; Hayes, T.; Yin, X.; An, J.; Zhang, S.; Hu, Q.; Yang, H.; Ashual, O.; Gafni, O.; et al. Make-a-video: Text-to-video generation without text-video data. arXiv 2022, arXiv:2209.14792. [Google Scholar]
- Evelina, T.Y.; Kusumawati, A.; Nimran, U. The influence of utilitarian value, hedonic value, social value, and perceived risk on customer satisfaction: Survey of e-commerce customers in Indonesia. Bus. Theory Pract. 2020, 21, 613–622. [Google Scholar] [CrossRef]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef] [PubMed]
- Chilimbi, T.; Suzue, Y.; Apacible, J.; Kalyanaraman, K. Project adam: Building an efficient and scalable deep learning training system. In Proceedings of the 11th USENIX symposium on operating systems design and implementation (OSDI 14), Broomfield, CO, USA, 6–8 October 2014; pp. 571–582. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, T.; Miron, A.; Nandy, M.; Choudrie, J.; Liu, X.; Li, Y. Transforming Digital Marketing with Generative AI. Computers 2024, 13, 168. https://doi.org/10.3390/computers13070168
Islam T, Miron A, Nandy M, Choudrie J, Liu X, Li Y. Transforming Digital Marketing with Generative AI. Computers. 2024; 13(7):168. https://doi.org/10.3390/computers13070168
Chicago/Turabian StyleIslam, Tasin, Alina Miron, Monomita Nandy, Jyoti Choudrie, Xiaohui Liu, and Yongmin Li. 2024. "Transforming Digital Marketing with Generative AI" Computers 13, no. 7: 168. https://doi.org/10.3390/computers13070168
APA StyleIslam, T., Miron, A., Nandy, M., Choudrie, J., Liu, X., & Li, Y. (2024). Transforming Digital Marketing with Generative AI. Computers, 13(7), 168. https://doi.org/10.3390/computers13070168