computers

Article

Node Classification of Network Threats Leveraging Graph-Based
Characterizations Using Memgraph

Sadaf Charkhabi !, Peyman Samimi !, Sikha S. Bagui *(7, Dustin Mink 2

check for
updates

Citation: Charkhabi, S.; Samimi, P.;
Bagui, S.S.; Mink, D.; Bagui, S.C. Node
Classification of Network Threats
Leveraging Graph-Based
Characterizations Using Memgraph.
Computers 2024, 13, 171. https://
doi.org/10.3390/computers13070171

Academic Editor: Paolo Bellavista

Received: 2 July 2024
Revised: 11 July 2024
Accepted: 12 July 2024
Published: 15 July 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Subhash C. Bagui 3

Department of Computer Science, University of West Florida, Pensacola, FL 32514, USA;
sadaf.charkhabi@gmail.com (S.C.); pe.samimi@gmail.com (P.S.)

Department of Cybersecurity, University of West Florida, Pensacola, FL 32514, USA; dmink@uwf.edu
3 Department of Mathematics and Statistics, University of West Florida, Pensacola, FL 32514, USA;
sbagui@uwf.edu

Correspondence: bagui@uwf.edu

Abstract: This research leverages Memgraph, an open-source graph database, to analyze graph-based
network data and apply Graph Neural Networks (GNNs) for a detailed classification of cyberattack
tactics categorized by the MITRE ATT&CK framework. As part of graph characterization, the page
rank, degree centrality, betweenness centrality, and Katz centrality are presented. Node classification
is utilized to categorize network entities based on their role in the traffic. Graph-theoretic features such
as in-degree, out-degree, PageRank, and Katz centrality were used in node classification to ensure that
the model captures the structure of the graph. The study utilizes the UWF-ZeekDataFall22 dataset, a
newly created dataset which consists of labeled network logs from the University of West Florida’s
Cyber Range. The uniqueness of this study is that it uses the power of combining graph-based
characterization or analysis with machine learning to enhance the understanding and visualization
of cyber threats, thereby improving the network security measures.

Keywords: graph machine learning; graph neural networks; graph database; Memgraph; node classification;
MITRE ATT&CK framework; network threats; PageRank; Katz centrality; betweenness centrality

1. Introduction

In today’s digital world, businesses of all sizes are increasingly vulnerable to cyber
threats. The advent of sophisticated cyberattacks necessitates innovative defenses, espe-
cially for organizations constrained by limited resources. Addressing these vulnerabilities
is not just about detecting threats, but it also hinges on the accuracy and effectiveness of
the response strategies deployed. The concept of node classification offers a powerful yet
straightforward solution. Node classification, at its core, is about sorting different nodes
in a network into groups based on their connections or characteristics. This approach is
especially relevant for analyzing network traffic, as it assists in classifying the various
elements within the network, offering insights that can promptly be acted upon.

The relevance of node classification within the context of our dataset, which records
700,340 cybersecurity events through the Zeek Network Security Monitor, cannot be over-
stated. By employing node classification, we can examine through the binary distinction of
attack versus non-attack events, parsing through details such as attack tactics and method-
ologies. This granular approach enables us to not only identify which nodes represent a
security threat but also distinguish the nature of threats such as reconnaissance, privilege
escalation, defense evasion, etc.

Our decision to leverage node classification is based on its ability to organize intricate
data into understandable trends and forecasts. In our dataset, UWF-ZeekDataFall22 [1],
every node represents a network activity, encapsulated by details such as IP addresses,
ports, and protocols. By classifying these nodes, we transform raw data into a structured
form, allowing us to pinpoint the potential vulnerabilities and preemptively boost our

Computers 2024, 13, 171. https:/ /doi.org/10.3390/ computers13070171

https:/ /www.mdpi.com/journal /computers

https://doi.org/10.3390/computers13070171
https://doi.org/10.3390/computers13070171
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-1886-4582
https://orcid.org/0000-0003-0106-3890
https://orcid.org/0000-0001-6140-5384
https://doi.org/10.3390/computers13070171
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13070171?type=check_update&version=1

Computers 2024, 13, 171

2 0f 37

defenses against the most critical threats. This method is crucial for organizations without
extensive cybersecurity resources, offering a cost-effective and practical way to protect their
online perimeters.

In this paper, we present a novel application of the node classification within Mem-
graph to our cybersecurity dataset, UWF-ZeekDataFall22 [1], leveraging the various graph-
based features. So, before we delve into node classification, the first part of the paper
presents a detailed characterization of the graph-based features as well as graph visu-
alizations. Features that were analyzed were as follows: page rank, degree centrality,
betweenness centrality, and Katz centrality. And graph visualizations allow for the intuitive
recognition of patterns, clusters, and outliers that might go unnoticed in raw tabular data.

Memgraph is an open-source graph analytics platform that allows for the representa-
tion of graphs and the application of Graph Machine Learning methods via its assorted
integrated libraries [2]. Comparable in many aspects to Neo4j, Memgraph has distinct differ-
ences; for instance, while Neo4j is developed in Java and stores data on a disk, Memgraph
is built with C/C++ and utilizes in-memory data storage, which enhances the performance
but also means that the volume of data that can be loaded is tied to the machine’s available
RAM. Both systems include specialized Data Science libraries—GDS for Neo4j and MAGE
for Memgraph [3,4]. In this study, we leverage the algorithms from MAGE to generate
Graph Neural Networks (GNNs) using frameworks like Torch and the Deep Graph Library
(DGL), which aids in classifying network attack tactics, as well as in crafting visualizations
of network connections and querying the graph for additional information. This approach
is not only instrumental in identifying at-risk network resources but also in demonstrating
the powerful combination of graph-based techniques and machine learning in enhancing
cybersecurity defenses.

The rest of this paper is organized as follows. Section 2 presents the related literature;
Section 3 presents the dataset; Section 4 explains data preprocessing; Section 5 introduces
Memgraph; Section 6 presents graph visualizations using Memgraph; Section 7 presents
graph characterizations using Memgraph; Section 8 presents node classification; Section 9
presents the conclusions; and finally, Section 10 presents future works.

2. Related Literature

The ever-evolving domain of cybersecurity demands strong and inventive protective
measures as organizations confront increasingly complex and sophisticated cyber threats.
The efficacy of response strategies and the ability to accurately detect and classify network
threats are critical areas of research in the field.

Significant contributions to cybersecurity discourse include the introduction of Bayesian
Privilege Attack Graphs, which provide a mission-centric decision support framework [5].
This approach uses these graphs to model causal relationships and assess the resilience of
system configurations, thus informing strategic decision making. A case study focusing on
a medical information system illustrates the practical implications of their model, especially
when user demands conflict with the most resilient configuration.

In another work, Jacob et al. [6] discuss the challenges of detecting cybersecurity
attacks in software applications that employ a microservices architecture. By utilizing
graph convolutional networks, they provide a graph-based anomaly detection system that
captures the spatial and temporal dynamics within an application’s microservice traffic.
This enables the identification of anomalous distributed traffic indicative of cyberattacks,
contributing a novel perspective to the detection process. Further extending the frame-
work of cyber threat analysis, recent works emphasize the importance of node behavior
classification within network traffic analysis. Not only does this allow for the detection of
individual malicious connections, but it also identifies the nodes generating such traffic,
facilitating targeted actions to mitigate threats and enhance cybersecurity [7].

Machine learning classification techniques are critical in the field of cyber intrusion
detection, offering an efficient method to identify the potential security threats. These
techniques enable systems to learn from past data, effectively recognizing and categorizing

Computers 2024, 13, 171

3 0f 37

cybersecurity events, which can significantly enhance the speed and accuracy of threat de-
tection and response [8]. Moreover, recent advancements in the clustering algorithms have
opened new avenues for understanding the complex datasets in cybersecurity. Clustering
techniques, such as k-means and hierarchical clustering, enable the identification of hidden
structures and relationships within network data, aiding in the categorization of network
entities based on their properties and behaviors [9-11].

Our contribution to this field lies in applying node classification within the Memgraph
in-memory graph database to analyze a comprehensive dataset of cybersecurity events
from the Zeek Network Security data. Memgraph was mainly used since it is an effective
tool for identifying vulnerabilities and suspicious behavior. By focusing on both detection
and classification, our approach not only identifies security threats but also describes the
nature of these threats, helping organizations in strengthening their defenses against the
most critical vulnerabilities.

3. The Dataset

The dataset used in this work is UWF-ZeekDataFall22, available at [1]. The Cyber
Range at the University of West Florida produced these Zeek Conn Log datasets. They are
categorized in accordance with the MITRE Adversarial Tactics, Techniques, and Common
Knowledge (ATT&CK) Framework [12]. This framework is grounded in threat models
that define adversarial tactics, and currently includes 14 main tactics alongside numer-
ous techniques and sub-techniques. This dataset offers insights into the collection of
700,340 cybersecurity records. Within these data, each entry signifies either an attack or its
absence, and the distribution is nearly even: 350,339 records indicate no attack, which are
benign records, while 350,001 records confirm attacks. There is a range of attack tactics
present in the dataset that are discussed below [13].

Among the predominant attack methods, “Resource Development” stands out with
a vast number of instances. This tactic often involves an adversary trying to establish
resources that they can use to maintain their foothold and further their attack, such as
creating new accounts or obtaining more software or tools.

“Reconnaissance” and “Discovery” are also significantly represented. Reconnaissance
is the act of gathering preliminary data or intelligence on a target. This can involve identi-
fying IP addresses, domain names, and network services. On the other hand, “Discovery”
relates to the post-compromise phase, where the adversary actively seeks information
about the attacked system or network, trying to understand what they have infiltrated and
how they can exploit it.

Tactics like “Privilege Escalation” and “Defense Evasion” highlight the adversary’s
attempts to gain more access and avoid detection. Privilege escalation involves techniques
that allow the attacker to obtain a higher level of permissions in a system or network.
In contrast, defense evasion encompasses methods to avoid being detected, including
disabling security software or clearing logs.

Examples of less frequent methods include “Execution”, where malicious code is
run, and “Initial Access”, indicating the point of entry for the adversary. “Command and
Control” refers to the communication between the compromised systems and the attacker,
while “Lateral Movement” deals with the efforts of the adversary to navigate through the
network. “Persistence” highlights the attempts to maintain their foothold, and “Collection”
emphasizes the gathering of valuable data from the compromised systems.

The dataset starts with a timestamp, denoted as “ts”, which marks the time of the
first packet in each connection. To make this timestamp more user-friendly, the “datetime”
column provides a human-readable version of the “ts” column. Every connection is
uniquely identified by the “uid” column.

The dataset captures the IP address and port number of both the packet sender (“src_ip_zeek”
and “src_port_zeek”) and the packet receiver (“dest_ip_zeek” and “des_port_zeek”).

The “proto” column indicates the transport layer protocol used in the connection, such
as UDP. Additionally, the “service” column identifies the application protocol transmitted

Computers 2024, 13, 171

4 of 37

over the connection, for instance, NTP. The “duration” column provides insights into how
long each connection lasted, and for connections that underwent a three-way or four-way
tear-down, this duration excludes the final ACK.

To understand the volume of data exchanged, the dataset includes columns like
“orig_bytes” and “resp_bytes”, which represent the number of payload bytes sent by the
originator and responder, respectively. The state of each connection is captured in the
“conn_state” column, with values like S0, S1, and SF, each signifying a specific state of the
connection.

For a better understanding of the connection’s origin, the “local_orig” column indicates
whether a connection originated locally. Similarly, the “local_resp” column provides
information on whether a connection was responded to locally. The dataset also accounts
for potential packet losses, as indicated by the “missed_bytes” column, which represents
the number of bytes missed in content gaps.

Another feature of this dataset is the “history” column. It records the state history of
connections as a string of letters, each having a specific meaning, such as “s” for a SYN
without the ACK bit set, “h” for a SYN + ACK, and so on. This provides a chronological
record of the connection’s state transitions.

Additionally, the dataset introduces three new columns that enhance its utility:

o “label_technique”: this column provides the label for the data using the MITRE
ATT&CK technique as provided by student.

e “label_tactic”: this column represents the MITRE ATT&CK tactic mapped from the
student-entered technique.

e “label binary”: this is a binary (0/1) label indicating whether the record represents an
attack or not.

4. Data Preprocessing

The dataset was in the form of several CSV files without headers which had to be
handled prior to data preprocessing. We initially added a predefined header, loaded the
content into a DataFrame, and appended this DataFrame to a list. After processing all the
files, we concatenated these individual DataFrames into a single DataFrame. A temporary
“temp.csv” was used during the process and was deleted at the end.

The function, “show_tactics_summary”, provides a quick overview of the tactics
found within the dataset, breaking down the count of each unique tactic label. Using
the DataFrame AP], it groups the entries based on their tactics and displays them in a
descending order of occurrence (Table 1).

Table 1. Tactics within the dataset and their counts.

Tactic Count
None 350,339
Resource Development 275,471
Reconnaissance 51,492
Discovery 16,819
Privilege Escalation 3066
Defense Evasion 3064
Execution 30
Initial Access 19
Command and Control 17
Lateral Movement 11
Persistence 10
Credential Access 1
Collection 1

To create the graph network in Memgraph, the dataset underwent a preprocessing
sequence as shown in Figure 1. This preliminary stage aimed at producing CSV files for
nodes and edges, suitable for importing into Memgraph.

Computers 2024, 13, 171

5 of 37

Node Dataset

Source dataset of connections
(directed edges)

l

Eliminate low frequency tactics

l

Create source and destination
address columns

Edge Dataset

l

Get unique addresses

1

Label addresses as source and
destination of tactics

1

Write resulting dataset to
Nodes CSV file

Figure 1. Preprocessing steps.

1

Remove unessential columns

l

Write resulting dataset to
Edges CSV file

As shown in Figure 1, the “remove_tactics” function filters the dataset to retain only a
specified set of tactics in the first step. This allows for a focused analysis of the more relevant

/i

tactics, which are “Resource Development”, “Reconnaissance”, “Discovery”, “Privilege
Escalation”, and “Defense Evasion”, and eliminates the rest, as shown in Table 2.

Table 2. Relevant tactics and their counts.

Tactic Count

None 350,339

Resource Development 275,471

Reconnaissance 51,492

Discovery 16,819
Privilege Escalation 3066
Defense Evasion 3064

To enhance the readability and streamline the data representation, the “add_merged_
address_and_port_columns” function combines the source and destination IP addresses
with their corresponding ports. This merged data provides a more holistic view of network

connections.

“drop_columns” is a straightforward utility that drops unnecessary columns from
the dataset. By removing these columns, we refined the dataset and made the subsequent
operations faster and more memory-efficient. Figure 2 shows how we modified the dataset
and reduced the number of columns.

Table 3 shows a sample of a dataset after removing the uncommon tactics and irrele-

vant features.

Computers 2024, 13, 171

6 of 37

Original Columns

ts
uid Added Columns
src_ip_zeek
src_port_zeek
dest_ip_zeek
dest_port_zeek
proto
service
duration
orig_bytes
resp_bytes
conn_state
local_orig
local_resp
missed_bytes
history
orig_pkts
orig_ip_bytes
resp_pkts
resp_ip_bytes
community_id
datetime
label_technique
label_tactic
label_binary

| src_address |

| dest_address |

Selected Column

Final Columns

label_tactic
src_address
dest_address

Figure 2. Modification of the dataset and reduction in the number of columns.

Table 3. Sample of the dataset after removing the uncommon tactics and irrelevant features.

Label_Tactic

Src_Address

Dest_Address

Privilege Escalation
Resource Development
Resource Development
Resource Development
Resource Development
Resource Development
Resource Development
Resource Development
Resource Development
Resource Development

143.88.10.11:42296
143.88.5.11:54413
143.88.5.11:54412
143.88.5.11:44183
143.88.5.11:44184
143.88.5.11:44183
143.88.5.11:44184
143.88.5.11:54412
143.88.5.11:54412
143.88.5.11:54413

143.88.10.13:9999
143.88.5.12:31266
143.88.5.12:17727
143.88.5.12:40597
143.88.5.12:20219
143.88.5.12:61318
143.88.5.12:6772
143.88.5.12:49357
143.88.5.12:21018
143.88.5.12:34151

The “create_nodes_df” and “create_edges_df” functions are especially important for
graph-based analysis. They prepare the data for node and edge representations respectively.
Within “create_nodes_df”, we process both source and destination data separately, remove
duplicates, group them by unique addresses, and finally merge them. This helps in
creating a comprehensive node dataset, which is crucial for the network graph visualization

and analysis.

“add_ids_to_edges_df” appends unique integer identifiers to each node (source and
destination). This is invaluable for graph databases and tools that require distinct identifiers
for nodes. Samples of node and edge data are demonstrated in Tables 4 and 5, respectively.

Table 4. Sample of node data.

Tactics_Src Tactics_Dest Address id
none null 0.0.0.0:68 1
none null 143.88.0.2:10048 2
none null 143.88.0.2:10170 3
none null 143.88.0.2:1030 4
none null 143.88.0.2:10347 5
none null 143.88.0.2:10428 6
none null 143.88.0.2:10510 7
none null 143.88.0.2:10653 8
none null 143.88.0.2:10772 9
none null 143.88.0.2:10877 10

Computers 2024, 13, 171

7 of 37

Table 5. Sample of edge data.

Label_Tactic

Src_Address

Dest_Address

Src_Address_id

Dest_Address_id

Privilege Escalation
Resource Development
Resource Development
Resource Development
Resource Development
Resource Development
Resource Development
Resource Development
Resource Development
Resource Development

143.88.10.11:42296 143.88.10.13:9999 8589939149 17179874476
143.88.5.11:44183 143.88.5.12:4057 8589951182 34359770286
143.88.5.11:44183 143.88.5.12:6138 8589951182 17179896322
143.88.5.11:44183 143.88.5.12:56299 8589951182 25769829829
143.88.5.11:44183 143.88.5.12:21280 8589951182 25769822528
143.88.5.11:44183 143.88.5.12:34068 8589951182 8589956151
143.88.5.11:44183 143.88.5.12:5053 8589951182 8589959575
143.88.5.11:44183 143.88.5.12:20780 8589951182 17179888107
143.88.5.11:44183 143.88.5.12:15936 8589951182 17179887106
143.88.5.11:44183 143.88.5.12:29517 8589951182 8589955195

Lastly, the “write_csv” function is a generic utility that takes in any DataFrame and
writes it to a specified CSV file path. This ensures that the output is a single CSV file, rather
than multiple partitions, which is a common occurrence when dealing with large-scale data
in distributed systems.

5. Memgraph

Memgraph stands out as a high-performance, in-memory graph database engineered
to handle the ingestion, querying, and visualization of extensive graph datasets leveraging
the power of the Cypher query language [14]. We used Memgraph to facilitate the ingestion,
storage, and analysis of graph-based cybersecurity data for node classification. This process
began with the transfer of CSV files into the Memgraph container using Docker commands,
ensuring that the data were accessible within the database.

As shown in Figure 3, within Memgraph, the “LOAD CSV” command was employed
to read the CSV files and create nodes in the database. Each node’s properties were derived
from the CSV columns, including address, tactics_src, and tactics_dest. To enhance the
query performance when searching for nodes based on their address, an index was created
based on the address property of NetworkNode.

/ -
NetworkNode {
address,
tactics_src: row.tactics_src,
tactics_dest: row.tactics_dest})
SET n.tactics_src = row.tactics_src
SET n.tactics_dest = row.tactics_dest;

CREATE INDEX ON :NetworkNode{address);

LOAD CSV FROM “/fall_2022_edges.csv” WITH HEADER AS row
MATCH (src:NetworkNode {address: row.src_address})
MATCH (dest:NetworkNode {address: row.dest_address})
CREATE (src)-[e:COMMUNICATES_WITH]->(dest)

SET e.tactic = row. label_tactic;

Figure 3. Cypher query: creating nodes and edges.

The second “LOAD CSV” command established relationships between nodes, effec-
tively modeling the connections in the graph. Each relationship was labeled with the
corresponding tactic type, indicating the nature of the communication between nodes.

To confirm the successful execution of the query and loading of the data, we extracted
and display a limited selection of edges using the Reconnaissance tactic, as shown in
Figure 4. Figure 5 presents a graphical display of the 10,000 edges of the Reconnaissance
tactic. It shows two main bigger clusters with two very distinct centroids, and some outliers
from these centroids, and a few much smaller clusters with very different centroids. There
appears to be at least one clear outlier in between one of the bigger clusters and one of the
smaller clusters. Figure 6 shows a zoomed-in view of 13 edges.

Computers 2024, 13,171

8 of 37

p —
WHERE e.ltactic
RETURN *

LIMIT 10000;

Figure 5. Ten thousand edges of the reconnaissance tactic.

. Reconnaissance

143.88.20.12:1000

Reconnaissance

 Reconnaissance

Recorinaissance
Reconnaisance
\ : . 143.88.20.1147716
Reconpajssance ;

Reconnsjssance

143.88.20.11:47717

143.88.19.12:60596

Reconnaissance

143.88.20.11:47410

Reconnaissance

143.88.19.11:22

143.88.20.11:46597
Reconnaissance ™
Reconnaissance
Reconnaissance
143.88.20.11:64540

Recomnaissance

143.88.20.11:46598 B
__Reconnaissance

143.88.20.11:47411

143.88.20.12:100

Figure 6. Ten thousand edges of the reconnaissance tactic and a zoomed-in view of 13 of those edges.

6. Graph Visualizations

Graph visualization is important in the analysis and interpretation of complex datasets,
particularly in the field of cybersecurity, where understanding the web of connections can
be vital in identifying vulnerabilities and threats. It allows for the intuitive recognition

Computers 2024, 13,171

9 of 37

of patterns, clusters, and outliers that might go unnoticed in raw tabular data. Graph
visualizations can also be useful in the selection of proper algorithms like PageRank and be-
tweenness centrality, which can highlight the nodes of particular importance. Figures 7-11
show graph representations of the important attack tactics in our dataset as well as the
benign connections. A limit of 10,000 was applied where the number of edges exceeded
that number. This limit, set only for visualization purposes, was selected because Mem-
graph was struggling with extremely large graphs. By limiting the edges to 10,000, the
computational feasibility and visualization clarity were balanced.

Figure 9. All edges of the discovery tactic.

Computers 2024, 13,171

10 of 37

Figure 11. All edges of the defense evasion tactic.

The benign graph (Figure 7) serves as a point of reference where the connections
are typically less structured and more random compared to the intentional and strategic
arrangements seen in attack tactics. The Resource Development graph (Figure 8) shows a
concentrated buildup of connections around certain nodes. These nodes could represent
the strategic compilation of resources that are to be used in the later stages of an attack.
The Reconnaissance graph (Figure 5) depicts a high level of interconnectedness, with some
nodes acting as central hubs. This reflects the tactic’s focus on extensively mapping the
network and identifying the potential targets for exploitation. Similarly, the Discovery
graph (Figure 9) features central nodes with numerous direct connections, symbolizing
the tactic of exploring the compromised environment to uncover the vulnerabilities that
can be used for future attacks. In the privilege escalation graph (Figure 10), certain nodes
have a high concentration of connections, denoting the critical assets targeted for gaining
higher-level access. The defense evasion graph (Figure 11) displays a complex web of
connections as adversaries implement various techniques to avoid detection.

These visualizations illuminate the stages and strategies of cyberattacks versus benign
connections. While benign activity displays a less purposeful structure, each attack tactic
reveals the intent and focus: Resource Development and Discovery for setting the stage,
Reconnaissance for information gathering, privilege escalation for gaining deeper access,
and defense evasion for sustaining the attack without detection.

7. Graph Characterizations

A graph consists of points known as nodes, interconnected by links called edges. In
this framework, each node corresponds to a distinct IP address, and each edge describes the

Computers 2024, 13, 171

11 of 37

linkage between a source and a destination IP address, representing the tactic of the attack
deployed. Thus, the graph demonstrates the trajectory of an attack from the attacker’s
computer to that of the target.

In the analysis of a graph, the key metrics of interest include PageRank, Degree,
betweenness centrality, and Katz centrality. It is important to note that in the context of
cybersecurity attacks, the graph is directed—this means that the connections between nodes
(representing cyberattacks) have a specific direction, much like an arrow pointing from the
attacker to the target. Consequently, the degree of each node is split into two distinct types:
in-degree, which counts the number of inbound attack vectors to a node, and out-degree,
which tallies the number of outbound attack vectors from a node.

7.1. PageRank

PageRank in Memgraph is an algorithm that ranks the nodes in a graph based on
the structure of incoming links. It is similar to Google’s PageRank algorithm, which was
originally used to rank websites in search results [15]. In Memgraph, nodes are analogous
to web pages, and directed edges (which indicate the direction from one node to another)
are like the hyperlinks between them. The PageRank algorithm assigns a probability
distribution representing the likelihood that a person randomly clicking on a link will land
on any particular node [16]. In a directed graph, PageRank considers both the quantity
and quality of these directed edges. A higher PageRank indicates that a node is more
“important” or “influential” within the graph, based on how many connections it has and
how significant those connections are. In this work, the PageRank score is used to evaluate
the probability of an attack using previous attack records.

The calculation of PageRank involves an iterative process where each node’s rank is
updated based on the ranks of the nodes linking to it, adjusted by a damping factor that
accounts for the probability of random jumps to any node. This iterative process continues
until the ranks” convergence is complete. The Cypher query used to generate the PageRank
scores is presented in Figure 12, and Table 6 presents the PageRank execution times for the
most common tactics in the dataset.

MATCH n = ()-[e
WHERE e.tactic = “[name of tactic]”
WITH project(n) AS

pro
CALL pagerank.get(proji YIELD node, rank
SET node.rank = rank

RETURN node.address AS address, rank
ORDER BY rank DESC;

Figure 12. PageRank score cypher query.

Table 6. PageRank execution time for the most common tactics.

Tactic Row Count Execution Time (ms)
None 80,133 1540
Resource Development 65,829 1450
Reconnaissance 18,303 529
Discovery 1060 348
Privilege Escalation 2873 357
Defense Evasion 2871 349

Tables 7-11, showing the IP addresses and their corresponding PageRank scores, cate-
gorized by different attack tactics, serve as a strategic tool in cybersecurity threat analysis
and network defense planning. A high PageRank score for an IP address within a specific
attack tactic category suggests that this address plays a significant and influential role
within the context of that attack tactic. This information is critical as it allows for prioriti-
zation of resources and defensive measures more effectively. Cybersecurity professionals
can allocate enhanced monitoring, deploy additional security controls, or take preemptive
action to protect these high-risk IP addresses.

Computers 2024, 13, 171 12 of 37

Table 7. Top 10 PageRank scores for Resource Development.

Resource Development

Address PageRank Score
143.88.5.12:80 0.000941348
143.88.5.12:8181 0.000491105
143.88.5.12:3500 0.000478241
143.88.5.12:445 0.000465377
143.88.5.12:21 0.000439649
143.88.5.12:8080 0.00022096
143.88.5.12:631 0.00022096
143.88.9.15:9999 0.000195231
143.88.5.15:9999 0.000105183
143.88.5.12:6697 6.65911 x 107%

Table 8. Top 10 PageRank scores for Reconnaissance.

Reconnaissance

Address PageRank Score
143.88.255.10:53 0.441815467
143.88.5.12:8080 0.001601374
143.88.10.12:6565 0.001159242
143.88.2.11:3000 0.000236343
143.88.20.12:445 0.000133542
143.88.6.12:445 0.000133322
143.88.6.12:3000 0.000120444
143.88.6.12:8181 0.000120444
143.88.20.12:8181 8.19574 x 10705
143.88.255.56:161 8.1811 x 10~%

Table 9. Top 10 PageRank scores for Discovery.

Discovery
Address PageRank Score
143.88.18.11:3000 0.017779142
143.88.18.11:8181 0.008576373
143.88.6.12:445 0.003969507
143.88.10.12:445 0.003969507
143.88.255.56:161 0.001668997
143.88.18.11:8011 0.000917536
143.88.18.11:9100 0.000916797
143.88.18.11:1099 0.000916791
143.88.18.11:1075 0.000916791
143.88.18.11:70 0.000916789

Table 10. Top 10 PageRank scores for Privilege Escalation.

Privilege Escalation

Address PageRank Score
143.88.255.10:53 0.458748235
143.88.7.14:4444 0.000668235

143.88.10.13:9999 0.000348235
143.88.18.12:51372 0.000188235
143.88.18.12:40658 0.000188235
143.88.18.12:51394 0.000188235
143.88.18.12:53354 0.000188235
143.88.18.12:48608 0.000188235
143.88.18.12:49693 0.000188235

143.88.18.12:45109 0.000188235

Computers 2024, 13, 171

13 of 37

Table 11. Top 10 PageRank scores for Defense Evasion.

Defense Evasion

Address PageRank Score

143.88.255.10:53 0.459067963
143.88.10.13:9999 0.000348478

143.88.6.13:4444 0.000348478
143.88.18.12:43444 0.000188366
143.88.18.12:55429 0.000188366
143.88.18.12:48298 0.000188366
143.88.18.12:56590 0.000188366
143.88.18.12:33656 0.000188366
143.88.18.12:55797 0.000188366
143.88.18.12:48346 0.000188366

7.2. Degree Centrality

Degree centrality in network analysis measures a node’s direct connections within a
graph, serving as an indicator of the node’s activity and potential influence. In Memgraph,
degree centrality can distinguish important nodes based on their interaction level. Specifi-
cally, in directed graphs, there are two sides to consider: in-degree centrality, which counts
the number of incoming edges to a node, highlighting those nodes that attract the most
connections, and out-degree centrality, which considers outgoing edges [17].

Unlike the PageRank algorithm, which accounts for both the quantity and quality of
links, degree centrality focuses solely on the number of direct connections, thus providing a
quantitative measure of a node’s centrality. It is a simpler metric that does not involve itera-
tive calculations, making it efficient for analyzing large networks quickly. In Memgraph'’s
context, understanding nodes with high in-degree or out-degree centrality can be critical,
particularly in applications like cybersecurity, where they might signify the potential points
for the spread of information or vulnerabilities for network attacks [18]. The Cypher query
used to obtain in-degree centrality is presented in Figure 13.

—lel—>
WHERE e.tactic = “[name of tacticl”

WITH project(n) AS proj

CALL degree_centrality.get(proj,’in’) YIELD node, degree

SET node.in_degree = degree
RETURN node.address AS address, degree
ORDER BY degree DESC;

Figure 13. In-degree centrality cypher query.

Tables 12-17 present the top 10 IP addresses ranked by their in-degree centrality
scores. The in-degree centrality scores reveal the number of direct connections to an IP
address, reflecting its potential role as a target in cyberattacks. For example, the IP address
“143.88.255.10:53” consistently appears with high in-degree centrality across several tactics,
suggesting that it is an essential piece of network infrastructure that is frequently targeted.

Table 12. Top 10 in-degree centrality scores for benign connections.

None

Address In-Degree
10.0.10.1:53 3.441771078
143.88.1.1:53 0.276543703
143.88.11.1:53 0.108807967
8.8.8.8:53 0.093033994
8.8.4.4:53 0.091860929
143.88.255.10:53 0.036152848
£f02::1:2:547 0.034642839
143.88.0.41:53 0.017084311
172.28.128.255:138 0.010582539

172.28.128.255:137 0.008922777

Computers 2024, 13, 171

14 of 37

Table 13. Top 10 in-degree centrality scores for Resource Development.

Resource Development

Address In-Degree
143.88.5.12:80 0.001200097
143.88.5.12:3500 0.000622835
143.88.5.12:8181 0.000607644
143.88.5.12:445 0.000607644
143.88.5.12:21 0.00054688
143.88.5.12:8080 0.000288631
143.88.5.12:631 0.000288631
143.88.9.15:9999 0.000227867
143.88.5.12:6667 0.000151911
143.88.5.12:4676 0.000121529
Table 14. Top 10 in-degree centrality scores for Reconnaissance.
Reconnaissance
Address In-Degree
143.88.255.10:53 2.342203038
143.88.10.12:6565 0.005682439
143.88.5.12:8080 0.003387608
143.88.2.11:3000 0.000874221
143.88.20.12:445 0.000710305
143.88.20.12:1556 0.000655666
143.88.20.12:5822 0.000655666
143.88.20.12:5405 0.000655666
143.88.20.12:6667 0.000601027
143.88.20.12:18040 0.000601027
Table 15. Top 10 in-degree centrality scores for Discovery.
Discovery
Address In-Degree
143.88.18.11:3000 0.029272899
143.88.18.11:8011 0.019830028
143.88.18.11:646 0.018885741
143.88.18.11:9100 0.018885741
143.88.18.11:70 0.018885741
143.88.18.11:1075 0.018885741
143.88.18.11:992 0.018885741
143.88.18.11:7496 0.018885741
143.88.18.11:1099 0.018885741
143.88.18.11:50002 0.017941454
Table 16. Top 10 in-degree centrality scores for Privilege Escalation.
Privilege Escalation
Address In-Degree
143.88.255.10:53 1.065807799
143.88.7.14:4444 0.001044568
143.88.10.13:9999 0.000696379
143.88.18.12:51372 0
143.88.18.12:40658 0
143.88.18.12:51394 0
143.88.18.12:53354 0
143.88.18.12:48608 0
143.88.18.12:49693 0
143.88.18.12:45109 0

Computers 2024, 13, 171

15 of 37

Table 17. Top 10 in-degree centrality scores for Defense Evasion.

Defense Evasion

Address In-Degree
143.88.255.10:53 1.066550523
143.88.6.13:4444 0.000696864

143.88.10.13:9999 0.000348432
143.88.18.12:43444 0
143.88.18.12:55429 0
143.88.18.12:48298 0
143.88.18.12:56590 0
143.88.18.12:33656 0
143.88.18.12:55797 0
143.88.18.12:48346 0

From Tables 16 and 17 it can be noted that only three nodes are at the receiving end of

these tactics.

The Cypher query used to obtain the out-degree centrality is presented in Figure 14.

SET node.out_degree =
RETURN node.address AS address, degree

e
= “[name of tacticl”
WITH project(n) AS proj
CALL degree_centrality.get(proj,‘out’) YIELD node, degree

degree

ORDER BY degree DESC;

Figure 14. Out-degree centrality cypher query.

Tables 18-23 present the top 10 IP addresses ranked by their out-degree centrality
scores. The out-degree centrality scores reveal the number of direct connections from an

IP address.

Table 18. Top 10 out-degree centrality scores for benign connections.

None
Address Out-Degree
fe80::250:56ff:fe9e:5457:546 0.021576898
172.28.128.3:138 0.010582539
172.28.128.3:137 0.008922777
143.88.1.50:138 0.008548395
143.88.1.50:137 0.007350372
143.88.11.10:35104 0.007025907
143.88.11.10:61612 0.006988469
143.88.11.10:50888 0.006813757
143.88.11.10:53887 0.006701443
143.88.11.10:42982 0.006639046

Table 19. Top 10 out-degree centrality scores for Resource Development.

Resource Development

Address Out-Degree
143.88.5.11:54413 1.045284681
143.88.5.11:54412 1.045254299
143.88.5.11:44183 1.044874521
143.88.5.11:44184 1.044646655
143.88.5.11:53748 455733 x 10~%
143.88.5.11:52264 3.03822 x 10~%
143.88.5.11:44634 3.03822 x 10~%
143.88.5.11:44216 3.03822 x 10705
143.88.5.11:37695 3.03822 x 109
143.88.5.11:54466 3.03822 x 10705

Computers 2024, 13, 171 16 of 37

Table 20. Top 10 out-degree centrality scores for Reconnaissance.

Reconnaissance

Address Out-Degree
143.88.20.11:47716 0.058245001
143.88.20.11:64539 0.058081084
143.88.20.11:46598 0.057480057
143.88.20.11:47717 0.057425418

143.88.20.11:46597 0.05731614
143.88.20.11:64540 0.057206863
143.88.20.11:47410 0.057152224
143.88.20.11:47411 0.057042946
143.88.7.11:42979 0.000655666
143.88.7.11:53007 0.000546388

Table 21. Top 10 out-degree centrality scores for Discovery.

Discovery

Address Out-Degree
143.88.18.12:59247 1.003777148
143.88.18.12:38565 1.000944287
143.88.18.12:51277 0.997167139
143.88.18.12:39128 0.996222852
143.88.18.12:51278 0.993389991
143.88.18.12:52794 0.992445703
143.88.18.12:52795 0.992445703
143.88.18.12:50198 0.992445703
143.88.18.12:59246 0.991501416
143.88.18.12:59017 0.987724268

Table 22. Top 10 out-degree centrality scores for Privilege Escalation.

Privilege Escalation

Address Out-Degree
143.88.18.12:52620 0.001044568
143.88.18.12:34388 0.000696379
143.88.18.12:60712 0.000696379
143.88.18.12:36691 0.000696379
143.88.18.12:56708 0.000696379
143.88.18.12:36876 0.000696379
143.88.18.12:41039 0.000696379
143.88.18.12:33548 0.000696379
143.88.18.12:51245 0.000696379
143.88.18.12:48856 0.000696379

Table 23. Top 10 out-degree centrality scores for Defense Evasion.

Defense Evasion

Address Out-Degree
143.88.18.12:52620 0.001045296
143.88.18.12:37628 0.000696864
143.88.18.12:59767 0.000696864
143.88.18.12:55832 0.000696864
143.88.18.12:43722 0.000696864
143.88.18.12:53705 0.000696864
143.88.18.12:53096 0.000696864
143.88.18.12:53147 0.000696864
143.88.18.12:36559 0.000696864
143.88.18.12:38070 0.000696864

By incorporating both in-degree and out-degree centrality in an analysis, it is possible
to optimize the distribution of security resources and implement strategic defenses to

Computers 2024, 13, 171

17 of 37

protect the nodes that are either pivotal in network operations or are potential targets for
malicious activities.

7.3. Betweenness Centrality

Betweenness centrality is a measure used in network analysis to determine the im-
portance of nodes in a graph. It quantifies the number of times that a node acts as a
bridge along the shortest path between two other nodes. In essence, the nodes with high
betweenness centrality have a significant influence on the flow of information (or any other
resource) through the network because more shortest paths pass through them [19].

In Memgraph, betweenness centrality can be used to identify the key nodes within
a graph that are critical for maintaining the network’s connectivity. For example, in
cybersecurity, nodes with high betweenness centrality might be those through which
the majority of network traffic flows, making them the potential targets for attacks. By
identifying these nodes, the network administrators can prioritize them for additional
security measures [20].

The calculation of betweenness centrality for a node involves counting how many of
the shortest paths from all nodes to all others pass through that node. The centrality score
is usually normalized by dividing by the number of pairs of nodes, excluding the node of
interest, to account for the size of the network.

For example, in the context of the cybersecurity within Memgraph, betweenness
centrality could be used to analyze the network traffic flow to detect the anomalies or
potential security breaches. By examining the nodes that frequently occur on the shortest
paths of network traffic, it is possible to monitor and secure the most critical components
of a network infrastructure, possibly predicting and preventing cyberattacks before they
happen. The Cypher query used to obtain betweenness centrality is presented in Figure 15.

)
WHERE e. tactlc = “[name of tacticl”
WITH BT‘OJeCt(n) AS pr

0j
CALL betweenness_centrality.get(proj)
YIELD node, betweenness centrallty
Set node.betweenness_centrality = betweenness_centrality
RETURN node.address AS address, betweenness_centrality
ORDER BY betweenness_centrality DESC;

Figure 15. Betweenness Centrality cypher query.

In the application of betweenness centrality to our network graph, a contrast was
observed between the results for “attack tactics” and “benign connections”. The zero
centrality scores for all nodes under attack tactics indicate that these nodes are not situated
on the paths most traveled during these events, suggesting that such tactics might be
non-centralized and spread out. In contrast, the nodes associated with benign connections
show non-zero centrality (Table 24), underscoring their role in regular traffic flow and
implying an interconnected network during normal operations. This differentiation in
centrality metrics could reflect the underlying structure and behavior patterns unique to
both benign and malicious network activities.

Table 24. Top 10 betweenness centrality scores for benign connections.

None
Address Betweenness Centrality

143.88.11.10:61612 1.61 x 107
143.88.11.10:42982 1.53 x 107
143.88.11.10:35104 8.81 x 108
143.88.11.14:2030 7.37 x 108
143.88.11.14:16992 6.98 x 108

143.88.11.11:3 9.34 x 10%°
143.88.11.13:57294 3.89 x 10%°
143.88.11.11:5353 3.11 x 10%°
143.88.11.11:51493 2.98 x 10%°

143.88.11.14:49158 2.86 x 1010

Computers 2024, 13, 171

18 of 37

7.4. Katz Centrality

Katz centrality, as implemented in Memgraph, is a measure of centrality that extends
beyond immediate direct connections to consider the total number of walks through a node,
thus capturing a wider range of influences in a graph. Unlike other centrality measures
that only consider the shortest path, Katz centrality accounts for an infinite series of walks,
where each successive path length is penalized by a factor «, which is less than one. This
ensures that shorter paths contribute more to the centrality score than longer paths, with
the attenuation factor diminishing the influence of each additional step in the path [16].
Katz centrality is particularly useful in networks where pathways of influence extend
beyond immediate neighbors, such as citation networks or the World Wide Web. It is also
applicable in contexts where traditional centrality measures might not be effective, such as
in directed acyclic graphs.

In Memgraph, Katz centrality can be calculated based on the work of Alexander van
der Grinten and others, which focuses on the scalable computation of Katz centrality in
both static and dynamic graphs. The method involves iterative approximations to refine
the upper and lower bounds of centrality scores, ensuring that the centrality rankings
are accurate, even if the exact centrality values are not guaranteed to be precise [21]. The
Cypher query used to obtain Katz centrality is presented in Figure 16.

e
WHERE e.tactic = “Defense Evasion”
WITH project(n) AS proj

CALL katz_centrality.get(proj)

YIELD node, rank

Set node.katz_centrality = rank
RETURN node.address AS address, rank
ORDER BY rank DESC;

Figure 16. Katz centrality cypher query.

Tables 25-30 present the top 10 IP addresses ranked by their Katz centrality scores
for the common attack tactics as well as the benign connections reflecting the relative
importance of different nodes in the network. For benign connections (None), high Katz
centrality scores (e.g., for addresses like 10.0.10.1:53) indicate nodes that are central in the
network communication during regular activities. These are likely to be key infrastruc-
ture components such as DNS servers or gateways that handle a lot of traffic and have
many connections.

In the context of specific attack tactics like Resource Development, Reconnaissance,
and others, the Katz centrality scores are lower compared to benign traffic. This suggests
that the nodes involved in these tactics are less central to the network’s overall structure.
They may represent specialized or occasional communications rather than regular traffic,
reflecting the more undercover nature of these activities.

Table 25. Top 10 Katz centrality scores for benign connections.

None
Address Katz Centrality
10.0.10.1:53 55,159.2
143.88.1.1:53 4432
143.88.11.1:53 1743.8
8.8.8.8:53 1491
8.8.4.4:53 1472.2
143.88.255.10:53 579.4
£f02::1:2:547 555.2
143.88.0.41:53 273.8
172.28.128.255:138 169.6

172.28.128.255:137 143

Computers 2024, 13, 171

19 of 37

Table 26. Top 10 Katz centrality scores for Resource Development.

Resource Development

Address Katz Centrality
143.88.5.12:80 15.8
143.88.5.12:3500 8.2
143.88.5.12:8181 8
143.88.5.12:445 8
143.88.5.12:21 7.2
143.88.5.12:631 3.8
143.88.5.12:8080 3.8
143.88.9.15:9999 3
143.88.5.12:6667 2
143.88.5.12:40060 1.6

Table 27. Top 10 Katz centrality scores for Reconnaissance.

Reconnaissance
Address Katz Centrality

143.88.255.10:53 8573.4
143.88.10.12:6565 20.8
143.88.5.12:8080 12.4
143.88.2.11:3000 3.2
143.88.20.12:445 2.6
143.88.20.12:1556 24
143.88.20.12:5405 24
143.88.20.12:5822 24
143.88.20.12:6667 22
143.88.20.12:119 2.2

Table 28. Top 10 Katz centrality scores for Discovery.

Discovery

Address Katz Centrality

143.88.18.11:3000
143.88.18.11:8011
143.88.18.11:1075
143.88.18.11:7496
143.88.18.11:1099
143.88.18.11:70
143.88.18.11:9100
143.88.18.11:646
143.88.18.11:992
143.88.18.11:1093

[S5] = N

Table 29. Top 10 Katz centrality scores for Privilege Escalation.

Privilege Escalation

Address Katz Centrality

143.88.255.10:53 612.2

143.88.7.14:4444 0.6
143.88.10.13:9999 0.4
143.88.18.12:52537 0
143.88.18.12:49994 0
143.88.7.11:53302 0
143.88.18.12:52575 0
143.88.18.12:52556 0
143.88.7.11:53300 0
143.88.18.12:41414 0

Computers 2024, 13, 171

20 of 37

Table 30. Top 10 Katz centrality scores for Defense Evasion.

Defense Evasion

Address Katz Centrality
143.88.255.10:53 612.2
143.88.6.13:4444 0.4

143.88.10.13:9999 0.2
143.88.18.12:52975 0
143.88.18.12:35501 0
143.88.18.12:58899 0
143.88.18.12:34066 0
143.88.18.12:56178 0
143.88.18.12:52941 0
143.88.18.12:44901 0

Addresses that repeatedly appear across different attack tactics with non-zero cen-
trality scores (like 143.88.255.10:53) may indicate nodes that are potential control points or
valuable assets targeted across various stages of cyberattacks. These insights can be used to
identify the critical nodes for further security considerations, as well as to understand the
behavior and propagation patterns of potential threats within the network infrastructure.

Figure 17 is a visualization of the node with address 143.88.10.13:9999 that has both
privilege escalation and defense evasion Katz centrality.

Defense-Evasion .

Privilege Escatation 143.88.10.11:42296

. Privilege Escalation

143.88.10.13:9999

Figure 17. Katz centrality for the node with 143.88.10.13:9999 address.

8. Node Classification

Graph Neural Networks (GNNs) were used for node classification to determine
whether IP address and port combinations within datasets are indicative of an attack or
benign activity. Node classification is pivotal in determining if a node acts as the origin
or target of an attack tactic. Within the Memgraph environment, node classification is
executed utilizing the torch open-source machine learning library.

8.1. Parameters Used for Node Classification

To train the models, a range of parameters were configured, including the architecture
of the hidden feature layers, the specific layer type utilized, the learning rate for model
optimization, and the total number of training cycles or epochs.

8.1.1. Hidden Feature Layers

Hidden features refer to the dimensions of the hidden layers within GNNs that process
and transform the input features into an embedding space. The size of the hidden features
is a key parameter in model configuration, determining the complexity and capacity of
the GNN to capture the patterns in the data. For our experiments, we employed hidden
feature sizes of [8, 8] and [16, 16], which represent the dimensions of the node embeddings
in the respective hidden layers. The feature size of [8, 8] was chosen to facilitate quicker
convergence. By limiting the dimensionality of the hidden layers, the computational
complexity was reduced, allowing the model to process and learn from the graph data
more efficiently. In contrast, the [16, 16] feature size was selected to enhance the model’s
capacity to capture the more intricate relationships and nuanced patterns within the graph.

Computers 2024, 13, 171

21 of 37

8.1.2. Layer Type

Layer types in Memgraph define the architecture of the GNNs and are crucial for the
model’s ability to learn from the graph-structured data. We utilized various layer types to
best capture the relational patterns within our dataset.

1. Graph Attention Networks with Jumping Knowledge (GATJK): This layer type com-
bines the strengths of graph attention networks (GAT) with jumping knowledge (JK)
networks. GAT layers allow nodes to attend over their neighborhoods’ features, as-
signing more weight to the more important nodes during feature aggregation. The JK
extension enables the network to leverage neighborhood information from different
neighborhood ranges, improving the model’s performance on graphs with complex
structures. We used GATJK for its capacity to capture both the local and more distant
relational information within the graph. GATJK is particularly adept at handling
intricate and hierarchical relationships within our network data.

2. Graph Attention Networks (GAT and GATv2): These layers use attention mechanisms
to weigh the influence of neighboring nodes. This is particularly useful in differentiat-
ing the importance of the various connections that a node might have. GATv2 is an
iteration of GAT with improved attention mechanisms that allow for more nuanced
weighting of neighbor contributions. These layers were chosen for their effectiveness
in capturing local graph structures and highlighting the critical nodes that play pivotal
roles in network behaviors.

3. GraphSAGE: Short for Graph Sample and Aggregate, this approach generalizes to
unseen nodes by learning a function that generates embeddings by sampling and
aggregating the features from a node’s local neighborhood. We selected GraphSAGE
for its inductive capabilities, which are particularly effective when working with
graphs that evolve over time, such as in network security.

The choice to use GATJK, SAGE, and GATv2 was motivated by the different prop-
erties of our network data and the need to be experimented with both transductive and
inductive learning paradigms to determine which yields the best performance for our node
classification tasks.

8.1.3. Learning Rate

The learning rate is a critical hyperparameter that influences the rate at which the
model learns from the training data. It determines the step size at each iteration while
moving toward a minimum of the loss function. In our work, we experimented with
different learning rates to find the optimal value that minimizes the loss while preventing
the model from overshooting the minimum. We specifically used the learning rates of
0.1, 0.001, and 0.0005 in various training scenarios. Initially a higher learning rate of
0.1 was selected to accelerate the model’s training. This expedited the exploration of the
parameter space, allowing the model to quickly descend towards a local minimum of the
loss function. A medium learning rate of 0.001 was then employed to strike a balance
between the convergence speed and stability. Towards the later stages of training, a lower
learning rate of 0.0005 was tested to fine-tune the model parameters. We systematically
evaluated each learning rate across multiple training scenarios, assessing its impact using
the metrics such as classification accuracy and loss curve.

8.1.4. Number of Epochs

The number of epochs is essential in determining how well the model learns from the
data without being underfit or overfit. We experimented with three numbers of epochs,
starting with five to allow the model to grasp the basics of the patterns in the data swiftly.
We then tested higher numbers, such as 10 and 100 epochs, to observe the long-term
learning trends and to determine the point of diminishing returns where additional epochs
do not equate to better generalization on unseen data. The selection of the number of epochs
in our node classification study was driven by a combination of theoretical principles and

Computers 2024, 13, 171

22 of 37

empirical observations. Starting with a low number of epochs allowed us to establish a
baseline, while moderate and high epochs facilitated a deeper learning process.

8.2. Feature Selection and Preprocessing for Node Classification

In the initial phase of the node classification, the built-in modules described in the
previous section were applied to calculate the centrality metrics for each node, as shown in
the Cypher query presented in Figure 18.

d degree_centrality.get YIELD node, degree SET node.1n_degree
egree;

CAbL degree_centrality.get(“out”) YIELD node, degree SET node.out_degree
= degree;

CALL pagerank.get() YIELD node, rank SET node.rank = rank;

CALL betweenness_centrality.get() YIELD node, betweenness_centrality SET
node.betweenness_centrality = betweenness_centrality;

CALL katz_centrality.get() YIELD node, rank SET node.katz_centrality =
rank;

Figure 18. Calculating the centrality metrics for each node.

The nodes were updated with feature arrays, namely Featuresl and Features2, which
contained the calculated centrality metrics (Figure 19). These feature arrays were essential
for the machine learning tasks and contained the following metrics:

MATCH SET node.featuresl = [node.1n_degree, node.out_degree,
node. rankl] ;

MATCH (node) SET node.features2 = [node.in_degree, node.out_degree,
node. rank, node.katz_centrality, node.betweenness centralityl;

Figure 19. Features arrays.

Featuresl Array:

e In-Degree: this reflects the number of incoming connections to a node, indicating its
popularity or influence within the network.

e Out-Degree: this represents the number of outgoing connections from a node, high-
lighting its role in disseminating information.

e PageRank: This quantifies a node’s importance by considering both its incoming and
outgoing links. Nodes with a high PageRank are influential in the network.

Features2 Array:
Featurel Array plus Katz centrality and betweenness centrality

e Katz centrality: this measures a node’s centrality by considering paths of different
lengths, providing a more comprehensive view of influence.

e Betweenness centrality: this evaluates a node’s significance in terms of facilitating the
communication between other nodes, identifying critical intermediaries.

We initially queried the graph to find the tactic combinations present within the
dataset. Two separate queries were executed to extract and document the unique val-
ues of tactics_dest (Figure 20) and tactics_src (Figure 21), representing the destination
and source types in the network data, respectively. This information was later used
when we were assigning numerical classes to the nodes based on their tactics_src and
tactics_dest properties.

MATCH (n) WITH DISTINCT n.tactics_dest AS DestinationType
RETURN DestinationType;

Figure 20. Extracting unique values of tactics_dest.

MATCH (n) WITH DISTINCT n.tactics_src AS SourceType
RETURN SourceType;

Figure 21. Extracting unique values of tactics_src.

Computers 2024, 13, 171

23 of 37

The destination types are:

None

Discovery
Reconnaissance

XN LN

—
o

Resource Development
Defense evasion, privilege escalation

Discovery, Reconnaissance
Reconnaissance, Resource Development
Privilege escalation
Defense evasion, privilege escalation, Reconnaissance, none
Defense evasion

The source types are:

None

Reconnaissance
Discovery

XN

—_
e

Resource Development

Defense evasion, privilege escalation
Discovery, Reconnaissance
Defense evasion, Discovery, privilege escalation
Discovery, Reconnaissance
Privilege escalation
Defense evasion

Multiple MATCH statements were employed to assign numerical classes to the nodes
based on their tactics_src and tactics_dest properties (Figure 22). This classification cate-
gorized the nodes according to the tactics that they represented, enabling the subsequent
machine learning tasks to differentiate between them.

WHERE
WHERE
WHERE
WHERE

WHERE

WHERE

WHERE

WHERE n.

.dest_class =

(n) WHERE
n.dest_class = 9;

.tactics_dest
tactics_dest
.tactics_dest

.tactics_dest

.tactics_dest =
.tactics_dest = ““ SET n.dest_class = 7;

tactics_dest
8;

n.tactics_dest =

SET n.dest_class = 1;
“Reconnaissance” SET n.dest_class = 2;
“Discovery” SET n.dest_class = 3;
“Resource Development” SET n.dest_class

“Privilege Escalation” SET n.dest_class
“Defense Evasion” SET n.dest_class = 6;
“Defense Evasion, Privilege Escalation”

“Discovery, Reconnaissance” SET

MATCH (n) WHERE n.tactics_dest = “Reconnaissance, Resource Development”

SET n.dest_class =

MATCH (n) WHERE n.tactics_dest = “Defense Evasion,
none” SET n.dest_class = 11;

Reconnaissance,

WHERE n.

) WHERE
WHERE
WHERE

WHERE

WHERE
WHERE n.

WHERE n.tactics_src = “Defense Evasion,

10;

tactics_src =

«tactics_src =
.tactics_src =
.tactics_src =
.tactics_src =

.tactics_src

tactics_src =

class = 8

WHERE ' n.tactics_src =

n.src_class = 9;

MATCH (n) WHERE n.tactics_src = “Defense Evasion,

Privilege Escalation,

“none” SET n.src_class = 1;

“Reconnaissance” SET n.src_class = 2;
“Discovery” SET n.src_class = 3;
“Resource Development” SET n.src_class

“Privilege Escalation” SET n.src_class

“Defense Evasion” SET n.src_class = 6;
““ SET n.src_class = 7;

Privilege Escalation”
SET

“Discovery, Reconnaissance”

Discovery, Privilege

Escalation” SET n.src_class = 10;

Figure 22. Assigning classes.

To prepare the data for the node classification, the node_classification.set_model_parameters
procedure was invoked. This procedure allowed for the configuration of the GNN model,

Computers 2024, 13, 171

24 of 37

specifying the parameters such as layer type, learning rate, hidden feature size, and others (as
shown in Figure 23). Once the model was configured, the node_classification.train statement was
used to train the GNN model on the dataset, with the defined features and classes (Figure 24).

e_c
layer_type: “GATIK",
learning_rate: 0.1,
hidden_features_size: [8, 81,
class_name: “dest_class”,
features_name: “featuresl”,
num_epochs: 5,

weight_decay: 0.0005,

split_ratio: 0.8,

metrics: [“loss”, “accuracy”, “fl_score”, “precision”, “recall”,
“num_wrong_examples”],

aggregator: “mean”

}) YIELD *x RETURN x;

Figure 23. Specifying parameters for node classification.

PROCEDURE MEMORY UNLIMITED

YIELD * RETURN x;

Figure 24. Node classification.

8.3. Node Classification Results and Discussion

In this study, we assessed the impact of varying configurations on the performance of
graph neural network (GNN) models for node classification. To ensure the robustness and
effectiveness of our node classification approach, we conducted a comprehensive explo-
ration of various parameter sets, as summarized in Table 31. We systematically adjusted the
various aspects of our Graph Neural Network (GNN) model to assess their impact on the
node classification performance. The key model parameters adjusted included the feature
set (featuresl and features2), layer type (GATJK, SAGE and, GATv2), hidden feature size
([8-8] and [16-16]), learning rate (0.1, 0.001, and 0.0005), and epochs (5, 10, and 100). By
varying these parameters, we aimed to identify the most effective configuration that would
yield the optimal classification results for our dataset.

Figure 25a—r show the plots that were generated by running the GNN model with each
of the configurations in Table 31, recording the performance metrics (accuracy, precision,
recall, F1 score) for both the source and the destination data, as well as the loss metrics
(training loss validation loss) after each epoch. These metrics were then plotted over the
number of epochs to visualize the training process and the outcomes for both the source
and destination, allowing for a comparative analysis of the model’s performance across
the different datasets. By comparing the plots presented in Figure 25a-t, the following
observations were made.

Table 31. Parameter sets for node classification.

Features 1/2 Source/Dest Hidden Features Layer Type Learning Rate Epochs
1 Dest [8, 8] “GATJK” 0.1 100
1 Source [8, 8] “GATJK” 0.1 100
2 Dest [8, 8] “GATJK” 0.1 100
2 Source [8, 8] “GATJK” 0.1 100
1 Dest [8, 8] “GATJK” 0.1 5
1 Source [8, 8] “GATJK” 0.1 5
2 Dest [8, 8] “GATJK” 0.1 5
2 Source [8, 8] “GATJK” 0.1 5
1 Dest [16, 16] “GATJK” 0.1 100
1 Source [16, 16] “GATJK” 0.1 100
2 Dest [16, 16] “GATJK” 0.1 100
2 Source [16, 16] “GATJK” 0.1 100
1 Dest [8, 8] “GATJK” 0.001 100

Computers 2024, 13,171 25 of 37
Table 31. Cont.
Features 1/2 Source/Dest Hidden Features Layer Type Learning Rate Epochs
1 Source 8, 8] “GATJK” 0.001 100
2 Dest [8, 8] “GATJK” 0.001 100
2 Source [8, 8] “GATJK” 0.001 100
1 Dest [8, 8] “GATJK” 0.001 5
1 Source [8, 8] “GATJK” 0.001 5
2 Dest [8, 8] “GATJK” 0.001 5
2 Source [8, 8] “GATJK” 0.001 5
1 Dest [8, 8] “SAGE” 0.0005 10
1 Source [8, 8] “SAGE” 0.0005 10
2 Dest [8, 8] “SAGE” 0.0005 10
2 Source [8, 8] “SAGE” 0.0005 10
1 Dest [8, 8] “GATv2” 0.0005 100
1 Source [8, 8] “GATv2” 0.0005 100
2 Dest [8, 8] “GATv2” 0.0005 100
2 Source [8, 8] “GATv2” 0.0005 100
1 Dest [8, 8] “GATv2” 0.0005 10
1 Source [8, 8] “GATv2” 0.0005 10
2 Dest [8, 8] “GATv2” 0.0005 10
2 Source [8, 8] “GATv2” 0.0005 10
1 Dest [8, 8] “GATv2” 0.0005 5
1 Source [8, 8] “GATv2” 0.0005 5
2 Dest [8, 8] “GATv2” 0.0005 5
2 Source [8, 8] “GATv2” 0.0005 5

(@)

Features Name: featuresl, Hidden Feature Size: [8-8], Layer Type: GATJK, Learning Rate: 0.1, Epochs: 5

1.0

0.8

0.6

Values

0.4

0.2 4

0.0

1.0

o.e

0.6

Valuzs

0.4 4

0.0

Source Performance Metrics

Source Loss Metrics

—— Accuracy
F1 Scorc

—— precision

—— Recall

Loss Values

N —— Loss
[\, —— ValLoss

1 1 2 2 3 3 a a 5
Epoch

Destination Performance Metrics

Loss Values

124

1.0+

0.8

0.6

Epoch
Destination Loss Metrics

—— Loss
—— Val Loss

—
—_

—— Accuracy 11 e
—— F1Score

—— precision

—— Recall

0.2
1 1 2 2 3 3 a a 5 1 1 2 2 3 3 a a 3

Figure 25. Cont.

Computers 2024, 13,171

26 of 37

Source Performance Metrics

(b)

Features Name: Tfeatures2, Hidden Feature Size: [8-8], Layer Type: GATJK, Learning Rate: 0.1, Epochs: 5

Source Loss Metrics

10

0.8

0.6

Values

0.4

0.z

0.0

10

0.8

06

Values

0.a

0.2

0.0

Accuracy
r1 Score
precision
Recall

Loss Values

10

0.9

o.e

0./

0.6

0.5

0.4

—— Loss
—— val Loss

1 2 2 3 3 a
Epoch

Destination Performance Metrics

I

2 2 3 3

Epoch
Destination Loss Metrics

Accuracy
F1 Score
Precision
Recall

Loss Values

"

—— Loss
—— wval Loss

Epoch

()

Features Name: featuresl, Hidden Feature Size: [8-8]. Layer Type: GATJK, Learning Rate: 0.001, Epochs: 5

0.8

0.6

Values

0.4

0.2

0.0

0.8

0.6

Values

0.4

0.2

0.0

Source Performance Metrics

Source Loss Metrics

—— loss
—— val Loss

0.5
£ o040
=
S
0.35
0.30
—— Accuracy
—— F1score 025
—— Precision N :
—— Recall
1 1 2 2 3 3 a a 5 1 2 2 3 3 a a s
Epoch Epoch
Destination Performance Metrics Destination Loss Metrics
— —— Loss
0.8 —— val Loss
07
o6
4}
2 os
3 —
S
0.4
03
—— Accuracy
—— F1 Score 0.2 -_—
—— recision \//
—— Recall
1 1 2 2 3 3 a a 5 1 2 2 3 3 a a s
Epoch Epoch

Figure 25. Cont.

Computers 2024, 13,171

27 of 37

(d)

Features Name: features2, Hidden Feature Size: [8-8], Layer Type: GATJK, Learning Rate: 0.001, Epochs: 5

Source Performance Metrics

Source Loss Metrics

10
—— Loss
/ \ L oiee
104\
\
\
0.8 4 \
\
0.8 \\
\
0.6 1
\
8 S
4 s
S 2 06 \‘
= \
0.4 4 \
—_—
0.4 T
0.2 ~—_
—— Accuracy
—— F1 Score
—— vrecision 021
—— Recall
0.0
1 1 2 2 3 3 a s 1 1 2 2 3 3 a 4 s
Epoch Epoch
1o Destination Performance Metrics Destination Loss Metrics
—— Loss
—— vallass
0.6 4
0.8 4
o5 4
0.6 1
g
8 s 0.4
= =
E 3 \ /r/\
0.4 ~—"
0.2 4
—— Accuracy 024
—— F1 Score
—— vrecision —_—
—— Recall
0.0
1 1 2 2 3 3 a s 1 1 2 2 3 3 a 4 s
Epoch Epoch

Features Name: featuresl, Hidden Feature Size: [8-8], Layer Type: SAGE, Learning Rate: 0.0005, Epochs: 10

Source Performance Metrics

(e)

Source Loss Metrics

10
—— Loss
0.9 —— Val Loss
0.8 0.8
0.7
0.6
& 0.6+
@]
b =
E =
= g
S o5
0.4
" \
N\
0.2+ 0.3 1 /\/ \
—— Accuracy T
—— F1 score
—— Precision 0 -
—— Recall
0.0
2 a 6 8 10 2 4 6 8 10
Epoch Epoch
Destination Performance Metrics Destination Loss Metrics
10
= —— Loss
—— Val Loss
1.0
0.8
0.8
0.6
3
@]
1 =
] K
= g 06
S
0.4
0.4
0.2
—— Accuracy
—— F1 Score 0.2
—— Precision
—— Recall
0.0
2 a 6 8 10 2 4 6 8 10
Epoch Epoch

Figure 25. Cont.

Computers 2024, 13,171 28 of 37

()

Features Name: features2, Hidden Feature Size: [8-8], Layer Type: SAGE, Learning Rate: 0.0005, Epochs: 10

Source Performance Metrics Source Loss Metrics
10
—— Accuracy
094
0.8
0.8 4
0.6
. 8 o]
4 3
=2 =
2 g
0.1
064
0.2 0.5 4
0.4 4
0.0
ES P 3 s To 3 2 3 3 To
Epoch Epoch
Destination Performance Metrics Destination Loss Metrics
10
—— Accuracy — Loss
——— F1 Score —— wval Loss
— n 1.4
os
12
0.6
g 1.0
i g
| =
= 2
0. oo
0.6 4
0.2
~
0.4 S~ @O0 ——
0.0
ES P 3 s To 3 2 3 3 To
Epoch Epoch

(8)

Features Name: featuresl, Hidden Feature Size: [8-8], Layer Type: GATJK, Learning Rate: 0.1, Epochs: 100

Source Performance Metrics Source Loss Metrics
10
160 4 — Loss
—— val Loss
140
as |
120 4
06 J 100 4
= ERETE
= 8
s
041 60
20 4
0.2
—— Accuracy 20
—— F1score
— Precision Woan A A
—— Recall 0
0.0
o 20 40 60 80 100 o 20 a0 60 80 100
Epoch Epoch
Destination Performance Metrics Destination Loss Metrics
10
—— Loss
W s00 | —— val loss
0.8
400 4
0.6
., 300 o
g E
E =
= 8
s
o4 200
100 o
LER
—— Accuracy
—— F1score
—— Precision /
—— Recall 04
0.0
o 20 40 60 80 100 o 20 a0 60 80 100
Epoch Epoch

Figure 25. Cont.

Computers 2024, 13,171

29 of 37

Source Performance Metrics

(h)

Features Name: features2, Hidden Feature Size: [8-8], Layer Type: GATJK, Learning Rate: 0.1, Epochs: 100

Source Loss Metrics

10
—— Loss
—— val Loss
80 4
0.8 |
60 o
0.6
3
@ =
E =
= 2 a0
S
0.4
20
0.2
—— Accuracy
—— F1 Score
—— Precision A
—— Recall 04 —
0.0
o 20 a0 60 80 100 o 20 a0 60 80 100
Epoch Epoch
Destination Performance Metrics Destination Loss Metrics
10 250
—— Loss
(\ —— val Loss
\
0.8 200 -
|
0.6 l f 150
! \ @
. VRO :
Fi VI E
E
— 100
0.4
s0 4
0.2
—— Accuracy
—— F1 Score
—— Precision A
—— Recall 09
0.0
o 20 a0 60 80 100 o 20 a0 60 80 100

Epoch

(

1

)

Epoch

Features Name: featuresl, Hidden Feature Size: [8-8], Layer Type: GATJK, Learning Rate: 0.001, Epochs: 100

Source Performance Metrics

Source Loss Metrics

10
—— Loss
64 —— val Loss
o.s
54
a
0.6
g
E =
= 2 2
S
0.1
24
0.2
1
—— Accuracy
—— F1 score
—— Precision M
—— Recall o
0.0
o 20 a0 60 80 100 [20 40 60 80 100
Epoch Epoch
10 Destination Performance Metrics Destination Loss Metrics
164 —— Loss
—— val Loss
1.4
0.z
1.2
0.6 1.0 1
8
£ E
= 0.8
= 2
S
0.
0.6
0.4
0.z
—— Accuracy 0.2
—— F1score
—— rprecision
—— Recall 00
0.0 g
o 20 a0 60 80 100 o 20 0 &0 80 100
Epoch Epoch

Figure 25. Cont.

Computers 2024, 13,171

30 of 37

()

Features Name: features2, Hidden Feature Size: [8-8], Layer Type: GATJK, Learning Rate: 0.001, Epochs: 100

Source Performance Metrics

Source Loss Metrics

10
—— Loss
1.041 —— val Loss
0.8 |
0.8
0.6
- £ 0.6
2 =
E =
=]
S
0.4
0.4
0.2
—— Accuracy 0.2
—— F1 Score
—— Precision
—— Recall
0.0
o 20 a0 60 80 100 o 20 a0 60 80 100
Epoch Epoch
Destination Performance Metrics Destination Loss Metrics
10
—— Loss
—— Val Loss
175
0.8 |
1.50
1.25
0.6
]
@ =
1 S 1.00 4
= 7
S
0.4 0.75 4
o.s0
0.2
—— Accuracy 0.25 4
—— F1 Score
—— Precision
—— Recall
0.0 0.00 4
o 20 a0 60 80 100 o 20 a0 60 80 100

Epoch

(k)

Epoch

Features Name: featuresl, Hidden Feature Size: [16-16], Layer Type: GATJK, Learning Rate: 0.1, Epochs: 100

Source Performance Metrics

Source Loss Metrics

1.0
—— Loss
20000 — Valless
o8
15000 |
0.6
bt
o S
E =
= =
] % 10000
S
0.4
5000
02
—— Accuracy
—— F1score
—— Precision
—— Recall o
0.0
[20 a0 60 80 100) 20 a0 60 80 100
Epoch Epoch
Destination Performance Metrics Destination Loss Metrics
10
14000 Loss
—— val Loss
12000
o8
10000
0.6
.. 8000
o]
E =
= =
= a
£ e000
0.4
4000
02
2000
—— Accuracy
—— F1 Score
—— Precision
—— Recall 04
0.0
[20 a0 60 80 100) 20 a0 60 80 100

Epoch

Figure 25. Cont.

Epoch

Computers 2024, 13,171

310f37

o)

Features Name: features2, Hidden Feature Size: [16-16], Layer Type: GATJK, Learning Rate: 0.1, Epochs: 100

Source Performance Metrics

Source Loss Metrics

50 4 — Loss
—— val Loss
0.8
a0
0.6 30 4
8 S
= =
=2 i
S
0.4 204
10
0.2
—— Accuracy
—— F1Score
—— recision
—— Recall o
0.0
° 20 a0 60 80 100 20 a0 60 80 100
Fpach Fpach
Destination Performance Metrics Destination Loss Metrics
10
— Loss
—— val Loss
2500
0.8
2000
0.6
% 2 1500
= =
= 8
S
0.4
1000
0.2 500
—— Accuracy
—— F1 Score
on
o
0.0
© 20 a0 60 80 100 20 40 60 80 160
Epoch Epoch

Source Performance Metrics

(m)

Features Name: featuresl, Hidden Feature Size: [8-8], Layer Type: GATv2, Learning Rate: 0.0005, Epochs: 100

Source Loss Metrics

10
—— Accuracy —— Loss
—— F1score —— val Loss
—— Precision 1.4
—— Recall
o.s
124
0.6
g 10
g =
E =2
£ 4
3
o4 0.8
0.6 1
0.2
0.4 VAYONS A
0.0
o 20 a0 0 80 100 20 a0 oo 80 100
Epoch Epoch
Destination Performance Metrics Destination Loss Metrics
10
—— Accuracy —— Loss
—— F1 Score 1.6 4 —— Val Loss
0.5 1.4+
124
0.6
g
= 104
£ E
= F
3
0.4 0.8
0.6 1
0.2
0.2 4
0.0 0.2
o >0 a0 60 a0 100 20 a0 60 a0 100
Epoch Epoch

Figure 25. Cont.

Computers 2024, 13,171 32 of 37

(n)

Features Name: features2, Hidden Feature Size: [8-8], Layer Type: GATV2, Learning Rate: 0.0005, Epochs: 100

Source Performance Metrics Source Loss Metrics
10
—— Accuracy a5 — Loss
—— riscore —— val Loss
—— Precision
—— Recall 40
0.5 1
3.5 4
3.0 4
0.6
4 = 2.5
= 2
k=]
0.2 4 20
154
0.2
10 J
0.5 - =
0.0
o 20 a0 60 80 100 ° 20 a0 60 80 100
Epoch Epoch
1o Destination Performance Metrics Destination Loss Metrics
Accuracy 18 — toss

—— F1 score —— Val Loss
—— Precision
—— Recall 16

oa
o.s

0.6
0.2

0.4

\alues
° °
2 o
| | 1 |
Loss Values
n - w
3 v »
| | 1 |

A e A,

0.0

o-

100 20 40 60 80 100
Epoch Epoch

(0)

Features Name: featuresl, Hidden Feature Size: [8-8], Layer Type: GATv2, Learning Rate: 0.0005, Epochs: 10

o-
N
o
&
S
o
o
<3

Source Performance Metrics Source Loss Metrics
10

—— Accuracy 1.4 — loss
—— FlScore —— Val Loss
—— Precision
—— Recall

0.8

0.6 4 1.0

0.4 4 0.8

0.6 |

0.2

0.0

Values
Less Values

I

N
N
IS
o
o
"

2 4 6 8 10
Epoch Epoch

10 Destination Performance Metrics Destination Loss Metrics

Accuracy — loss
F1 Score 1.6 —— Val Loss
Precision
Recall

0.8 4 1.4

0.6 4

0.4
0.8

0.6 |
0.2

0.4

0.0

Values
Loss Values

[I

° N
N
S
o
o
"

-_—
2 4 6 8 1

o
Epoch Epoch

Figure 25. Cont.

Computers 2024, 13,171

33 0f 37

Features Name: features2, Hidden Feature

Source Performance Metrics

P

Size: [8-8]. Layer Type: GATv2, Learning Rate: 0.0005, Epochs: 10

Source Loss Metrics

— s
B
—— Recall
4 T 1.0
e g
—
Epoch Epoch
Destination Performance Metrics Destination Loss Metrics
v ——
—— F1 Scoure —— WVal Loss
—— Precision 1.6 o
—— Recall
E
= 2
3
0.6 4 —
~_
—
—
0.4 4 —
S
Epoch Epoch

Features Name: featuresl, Hidden Feature

Source Performance Metrics

q)

Size: [8-81, Layer Type: GATV2, Learning Rate: 0.0005, Epochs: 5

Source Loss Metrics

13
—— accuracy s
— ——— Val Loss
— 12
e
11
10
oo
£ 3 oo
= 2
3
o4 0.8
o7
02
s
—
os
0o
I I z T) 3 P b 3 z) 3 3 3 P 3
Epoch Epoch
Destination Performance Metrics Destination Loss Metrics
10
—— Accuracy e — Loss
——— F1 Score . ——— Val Loss
s
12
s e
g /\ H
g T | =
z — s
04 os
o2 on
—
—
T~—
S
—_
0
i i 3 3 3 3 4 a 3 : 3 3 3 a 4 3
Epoch Epoch

Figure 25. Cont.

Computers 2024, 13, 171

34 of 37

(1)

Features Name: features2, Hidden Feature Size: [8-8], Layer Type: GATV2, Learning Rate: 0.0005, Epochs: 5

10 Source Performance Metrics Source Loss Metrics

F1 Score val Loss

0.8

o6 — /\
e

o.a

Values
Loss Velues

0.3

0.8

0.2 4
o.r

06 —

0.0

1 1 2 2 3 3 a 2 5 2 3
Epoch Epoch

"
b
[

N
w
a
a
o

Destination Performance Metrics Destination Loss Metrics

o

0.6 ——

41 \//(_/ ' e \\\\

0.6

Valugs
Loss Values

0.4
0.0

3
Epoch Epoch

Figure 25. Node classification results: varying configurations of GNN models.

The inclusion of centrality measures (katz_centrality, betweenness_centrality) in fea-
tures2 compared to the basic nodal degrees and rank in features1 showed a noticeable
enhancement in the model’s performance. Specifically, models using features2 with SAGE
layers and a learning rate of 0.0005 over 10 epochs (Figure 25f) exhibited an average F1
score improvement of 5%, a precision increase by 6%, and a recall rise by 4%, signaling a
more accurate and consistent classification capability.

A hidden feature size of [8-8] struck an optimal balance between the model’s complex-
ity and generalizability. Configurations with this size displayed less variance in loss values
and maintained the performance over a range of learning rates and epochs. In contrast,
a size of [16-16] was associated with inconsistent loss patterns, particularly under the
GATJK layer type. The SAGE layer type has proven to be more effective than GATJK and
GATv2 when working with smaller hidden feature sizes, as demonstrated by the superior
performance metrics in configurations utilizing SAGE (Figure 25f). Conversely, GATJK
layers paired with larger hidden features ([16-16]) exhibited high variability in loss, with
some models demonstrating training loss to validation loss ratios exceeding 20:1, indicative
of potential overfitting. GATv2 layers, while showing improved stability over GATJK in
some configurations, still fell short of the performance achieved by SAGE layers.

The models trained with a high learning rate of 0.1 were prone to an erratic perfor-
mance, across all the tested configurations. This was evident in the performance metrics,
where the loss values fluctuated by up to 200% from one epoch to the next. In contrast,
a lower learning rate of 0.0005 consistently produced a smooth reduction in loss across
successive epochs, suggesting a more stable and reliable training process.

The number of epochs played a critical role in the model training. While a higher
number of epochs, such as 100, could potentially lead to better learning, it also increased
the risk of overfitting, as shown by the variability in the loss metrics. A moderate number of
epochs, specifically 10, was often enough to achieve a high performance without overfitting,
as seen in the stable loss decline and high F1 score in the optimal configurations.

Computers 2024, 13, 171

35 of 37

Considering all the factors examined, the most effective model configuration for the
node classification was found to be features2 with a [8-8] hidden feature size, using the
SAGE layer type, a learning rate of 0.0005, and over 10 epochs, as highlighted in Table 31.

This setup not only provided the highest performance metrics, with an F1 score
plateauing at around 85%, but it also showed a consistent training behavior, with average
loss decreases of about 0.03 per epoch. This configuration excels due to its ability to
effectively capture and classify the node information without overfitting, ensuring the
model’s robustness and adaptability to new data, and making it the preferred choice for
deployment in the cybersecurity node classification tasks.

9. Conclusions

In this study, we leveraged Memgraph, an open-source graph database, to perform a
graph-based analysis of network data and applied Graph Neural Networks (GNNs) for
classifying cybersecurity attack tactics as categorized by the MITRE ATT&CK framework.
Our approach incorporated various graph characterization metrics such as PageRank,
degree centrality, betweenness centrality, and Katz centrality to enhance the model’s ability
to capture the structural features of the graph. Using the UWF-ZeekDataFall22 dataset, we
demonstrated that combining graph-based techniques with machine learning significantly
improves the classification of network entities, identifying both the presence and nature of
cyber threats.

The results from our node classification experiments indicated that certain model con-
figurations, particularly those using SAGE layers with a lower learning rate and moderate
epoch numbers, achieved high performance metrics. This underscores the potential of
GNNs in the domain of cybersecurity for effective threat detection and network defense.
Our study highlights the importance of integrating graph analytics and machine learning
to address the complex cybersecurity challenges. By transforming the raw network data
into structured graph representations and employing advanced classification techniques,
we can gain deeper insights into the network threats, enabling proactive and informed
security measures.

10. Future Works

While our research presents promising results, several areas demand further explo-
ration. Future work can focus on the following aspects:

1. Scalability and Performance Optimization: As the volume of network data continues
to grow, it is crucial to optimize the performance and scalability of our graph-based
analysis framework. This can involve exploring more efficient algorithms for graph
characterization and enhancing the computational efficiency of the GNN models.

2. Advanced Feature Engineering: Investigating additional graph-theoretic features can
improve the accuracy and robustness of threat classification. This includes exploring
the dynamic graph neural networks that can adapt to the changes in the network
structure over time.

3. sCross-domain Applications: extending the application of our methodology to other
domains such as financial fraud detection, social network analysis, and biological
network analysis can demonstrate its versatility and effectiveness in different contexts.

By addressing these areas, future research can further advance the field of cyberse-
curity, providing more robust and adaptive defense mechanisms against the evolving
cyber threats.

Author Contributions: Conceptualization, S.S.B.; methodology, S.C. and P.S.; software, S.C. and
PS.; validation, S.5.B., S.C., PS., D.M. and S.C.B.; formal analysis, 5.5.B., S.C., P.S.,, D.M. and S.C.B.;
investigation, 5.5.B., S.C., P.S., D.M. and S.C.B.; resources, S.5.B., D.M. and S.C.B.; data curation, D.M.;
writing—original draft preparation, S.C. and PS.; writing—review and editing, S.5.B., S.C., P.S., D.M.
and S.C.B.; visualization, S.C. and P.S.; supervision, 5.C.B., S.5.B. and D.M.; project administration,

Computers 2024, 13, 171 36 of 37

S.C.B., S.5.B. and D.M.; funding acquisition, S.C.B., S.5.B. and D.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the National Centers of Academic Excellence in Cybersecurity,
NCAE-C-002: Cyber Research Innovation Grant Program, Grant Number: H98230-21-1-0170. We
would also like to thank the Askew Institute at University of West Florida for partially supporting
this grant.

Data Availability Statement: The datasets are available at https://datasets.uwf.edu/ (accessed on
20 August 2023).

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. Datasets.uwf.edu. Available online: https://datasets.uwf.edu/ (accessed on 17 April 2024).

2. Memgraph. Getting Started with Memgraph. Available online: https://memgraph.com/docs/getting-started (accessed on
6 January 2024).

3. Welcome to Neo4j. Available online: https://neo4j.com/docs/getting-started/ (accessed on 6 January 2024).

4. Neo4j vs. Memgraph—How to Choose a Graph Database? Available online: https:/ /memgraph.com/blog/neo4j-vs-memgraph
(accessed on 6 January 2024).

5. Javornik, M.; Husék, M. Mission-centric decision support in cybersecurity via Bayesian Privilege Attack Graph. Eng. Rep. 2022, 4,
€12538. [CrossRef]

6. Jacob, S.; Qiao, Y.; Ye, Y.; Lee, B. Anomalous distributed traffic: Detecting cyber security attacks amongst microservices using
graph convolutional networks. Comput. Secur. 2022, 118, 102728. [CrossRef]

7. Zola, E; Segurola-Gil, L.; Bruse,].L.; Galar, M.; Orduna-Urrutia, R. Network traffic analysis through node behaviour classification:
A graph-based approach with temporal dissection and data-level preprocessing. Comput. Secur. 2022, 115, 102632. [CrossRef]

8. Algahtani, H.; Sarker, I.H.; Kalim, A.; Hossain, S.M.M.; Ikhlaq, S.; Hossain, S. Cyber intrusion detection using machine learning
classification techniques. In Computing Science, Communication and Security: First International Conference, COMS2 2020, Gujarat,
India, 26-27 March 2020; Revised Selected Papers 1; Springer: Berlin/Heidelberg, Germany, 2020; pp. 121-131.

9. Ding, Z,; Cao, D,; Liu, L,; Yu, D.; Ma, H.; Wang, F. A Method for Dis-covering Hidden Patterns of Cybersecurity Knowledge
Based on Hierarchical Clustering. In Proceedings of the 2021 IEEE Sixth International Conference on Data Science in Cyberspace
(DSC), Shenzhen, China, 9-11 October 2021; pp. 334-338. [CrossRef]

10. Kumari, R.; Sheetanshu; Singh, M.K,; Jha, R.; Singh, N.K. Anomaly detection in network traffic using K-mean clustering. In
Proceedings of the 2016 3rd International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India,
3-5 March 2016; pp. 387-393. [CrossRef]

11. Sagdatullin, A. Cybersecurity System with State Observer and K-Means Clustering Machine Learning Model. In Distributed
Computer and Communication Networks; Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V., Eds.; Springer Nature: Cham,
Switzerland, 2023; pp. 183-195.

12. What Is the MITRE ATT&CK Framework? Available online: https://www.trellix.com/security-awareness/cybersecurity /what-
is-mitre-attack-framework/ (accessed on 17 April 2024).

13. Bagui, S.S.; Mink, D.; Bagui, S.C.; Ghosh, T.; Plenkers, R.; McElroy, T.; Dulaney, S.; Shabanali, S. Introducing UWF-ZeekData22: A
Comprehensive Network Traffic Dataset Based on the MITRE ATT&CK Framework. Data 2023, 8, 18. [CrossRef]

14. Kanakaris, N.; Michail, D.; Varlamis, I. A Comparative Survey of Graph Databases and Software for Social Network Analytics:
The Link Prediction Perspective. In Graph Databases; CRC Press: Boca Raton, FL, USA, 2023; pp. 36-55.

15. Gleich, D.F. PageRank Beyond the Web. SIAM Rev. 2015, 57, 321-363. [CrossRef]

16. Memgraph. Pagerank. Available online: https://memgraph.com/docs/advanced-algorithms/available-algorithms/pagerank
(accessed on 15 January 2024).

17. Memgraph. Degree_Centrality. Available online: https://memgraph.com/docs/advanced-algorithms/available-algorithms/
degree_centrality (accessed on 22 January 2024).

18. Golbeck, J. Introduction to Social Media Investigation; Elsevier: Amsterdam, The Netherlands, 2015.

19. Xiang, N.; Wang, Q.; You, M. Estimation and update of betweenness centrality with progressive algorithm and shortest paths

approximation. Sci. Rep. 2023, 13, 17110. [CrossRef] [PubMed]

https://datasets.uwf.edu/
https://datasets.uwf.edu/
https://memgraph.com/docs/getting-started
https://neo4j.com/docs/getting-started/
https://memgraph.com/blog/neo4j-vs-memgraph
https://doi.org/10.1002/eng2.12538
https://doi.org/10.1016/j.cose.2022.102728
https://doi.org/10.1016/j.cose.2022.102632
https://doi.org/10.1109/DSC53577.2021.00053
https://doi.org/10.1109/RAIT.2016.7507933
https://www.trellix.com/security-awareness/cybersecurity/what-is-mitre-attack-framework/
https://www.trellix.com/security-awareness/cybersecurity/what-is-mitre-attack-framework/
https://doi.org/10.3390/data8010018
https://doi.org/10.1137/140976649
https://memgraph.com/docs/advanced-algorithms/available-algorithms/pagerank
https://memgraph.com/docs/advanced-algorithms/available-algorithms/degree_centrality
https://memgraph.com/docs/advanced-algorithms/available-algorithms/degree_centrality
https://doi.org/10.1038/s41598-023-44392-0
https://www.ncbi.nlm.nih.gov/pubmed/37816806

Computers 2024, 13,171 37 of 37

20. Memgraph. Betweenness_Centrality. Available online: https://memgraph.com/docs/advanced-algorithms/available-
algorithms/betweenness_centrality (accessed on 29 January 2024).

21. vander, A.G.; Bergamini, E.; Green, O.; Bader, D.A.; Meyer-henke, H. Scalable Katz Ranking Computation in Large Static and
Dynamic Graphs. ACM J. Exp. Algorithmics (JEA) 2022, 27, 1-16. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://memgraph.com/docs/advanced-algorithms/available-algorithms/betweenness_centrality
https://memgraph.com/docs/advanced-algorithms/available-algorithms/betweenness_centrality
https://doi.org/10.1145/3524615

	Introduction
	Related Literature
	The Dataset
	Data Preprocessing
	Memgraph
	Graph Visualizations
	Graph Characterizations
	PageRank
	Degree Centrality
	Betweenness Centrality
	Katz Centrality

	Node Classification
	Parameters Used for Node Classification
	Hidden Feature Layers
	Layer Type
	Learning Rate
	Number of Epochs

	Feature Selection and Preprocessing for Node Classification
	Node Classification Results and Discussion

	Conclusions
	Future Works
	References

