
Citation: Lim, S.; Ham, U.-H.; Han,

S.-M. Implementation of Integrated

Development Environment for

Machine Vision-Based IEC 61131-3.

Computers 2024, 13, 172. https://

doi.org/10.3390/computers13070172

Academic Editor: Ananda Maiti

Received: 25 May 2024

Revised: 4 July 2024

Accepted: 8 July 2024

Published: 15 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Implementation of Integrated Development Environment for
Machine Vision-Based IEC 61131-3
Sun Lim *, Un-Hyeong Ham and Seong-Min Han

Intelligent Robotics Center, Korea Electronics Technology Institute, 655 Pyeongcheon-ro, Wonmi-gu,
Bucheon-si 14502, Gyeonggi-do, Republic of Korea; uhham90@inu.ac.kr (U.-H.H.);
tjdals2038@korea.ac.kr (S.-M.H.)
* Correspondence: sunishot@keti.re.kr; Tel.: +82-10-3540-9865

Abstract: IEC 61131-3 is an international standard for developing standardized software for automa-
tion and control systems. Machine vision systems are a prominent technology in the field of computer
vision and are widely used in various industries, such as manufacturing, robotics, healthcare, and
automotive, and are often combined with AI technologies. In industrial automation systems, soft-
ware developed for defect detection or product classification typically involves separate systems for
automation and machine vision programs, leading to increased system complexity and unnecessary
resource wastage. To address these limitations, this study proposes an IEC 61131-3-based integrated
development environment for programmable machine vision. We selected 11 APIs commonly used
in machine vision systems, evaluated their functions in an IEC 61131-3 compliant development
environment, and measured the performance of representative machine vision applications. This
approach demonstrates the feasibility of developing PLC and machine vision programs within a
single-controller system. We investigated the impact of controller performance on function execution.

Keywords: IEC 61131-3; machine vision; integrated development environment; industrial automation

1. Introduction

IEC 61131-3 provides programming standards for automation and control systems
and plays a crucial role in smart factories. This international standard for standardized
programming in automation and control systems defines standard programming languages,
development environments, and program structures in the industrial automation field.
In constructing smart factory systems, an IEC 61131-3-based integrated development
environment is generally used as a key development tool for major devices ranging from
level 0 to level 2 in the ISA 95 international standard hierarchy.

Machine vision systems are a leading technology in the field of computer vision
and have been increasingly utilized in recent years in various domains, such as smart
factories, robotics, and autonomous driving. Machine vision technology plays a critical role
in enhancing productivity and efficiency in the smart factory sector. For instance, it can
automatically detect the appearance, size, and shape of production items using cameras to
identify defects or contaminants on product surfaces. Additionally, it can scan barcodes
or QR codes to improve the tracking and management of products and raw materials,
and automatically perform logistics and inventory management by communicating with
systems such as MES. Thus, machine vision significantly contributes to the automation and
optimization of production processes in smart factories, leading to improved productivity,
quality control, and manufacturing capabilities.

However, machine vision systems and IEC 61131-3 integrated development environ-
ments are configured separately, leading to numerous problems. Each system operates
on entirely different software and hardware platforms, making it difficult to exchange
data and control signals between them. Additionally, a complex system configuration
can increase setup and maintenance costs and result in low system efficiency owing to

Computers 2024, 13, 172. https://doi.org/10.3390/computers13070172 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13070172
https://doi.org/10.3390/computers13070172
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-5411-7744
https://doi.org/10.3390/computers13070172
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13070172?type=check_update&version=2

Computers 2024, 13, 172 2 of 14

the allocation of different personnel and resources. Most importantly, in systems where
real-time performance is crucial, the complexity arising from system decentralization can
lead to critical errors or make it difficult to meet system requirements, thereby posing
significant limitations.

To address these issues, this study proposes a design for programmable machine vision
in an IEC 61131-3-based integrated development environment. The integrated development
environment supports the development of key control equipment, such as cameras, I/O
devices, and motor drives, using standardized programming languages.

The remainder of this paper is organized as follows. Section 2 provides background
knowledge on machine vision technology and IEC 61131-3-supported integrated develop-
ment environments and introduces related research. Section 3 presents the design of the
machine vision integrated development environment. Section 4 discusses the experimental
results and an evaluation of the proposed design. Finally, Section 5 concludes the study.

2. Background
2.1. IEC 61131-3 and Machine Vision System

IEC 61131-3 is an international standard for industrial automation and control systems
that defines the programming languages for these applications. This standard allows
programmers and engineers to develop and maintain various types of automation equip-
ment and systems, particularly programmable logic controller (PLC) systems. IEC 61131-3
defines the following five programming languages. (1) Ladder diagram (LD): a graphical
language based on traditional relay logic that allows users to create logic programs similar
to electrical circuit diagrams using functions, such as AND, OR, and NOR. (2) Sequential
function chart (SFC): a graphical language for process control based on sequences, defining
the order of operations through steps and transitions. (3) Function block diagram (FBD): a
visual language that uses graphic blocks to represent functions or control systems. Each
block performs a specific function, and the connections between blocks allow for the cre-
ation of complex logic. (4) Instruction list (IL): a low-level text-based language similar to
an assembly language, although less commonly used in modern systems because of its
increasing complexity. (5) Structured text (ST): a high-level text-based language similar to
C that is suitable for implementing complex logic and algorithms. It supports conditional
statements (IF, Switch) and loops (FOR, While), as well as variable types, such as arrays. IEC
61131-3 standardizes the development programs for automation systems using these five
programming languages, enhances code reusability, and simplifies system maintenance.

A machine vision system is a technology that enables computers to process and inter-
pret images by performing visual tasks traditionally performed by humans. Recently, they
have been used in various industrial automation systems, including quality inspection,
robotic task assistance, and medical image analysis. Typically, machine vision systems em-
ploy sensors, such as cameras, to capture images, which are then processed using software
that performs filtering, post-processing for recognition enhancement, and other tasks to
extract meaningful information desired by the user. Finally, based on this information, the
system performs specific tasks or makes decisions based on predefined criteria. Machine
vision technology has seen significant advancements in recent years, owing to the integra-
tion of AI and deep learning techniques. Although traditional image processing algorithms
rely on methods such as edge detection, filtering, and histogram equalization, modern
approaches leverage deep-learning technologies such as convolutional neural networks
(CNNs) for image classification, object detection, and image segmentation. These advance-
ments have broadened the application of machine vision technology in manufacturing and
robotics to tasks such as quality inspection, product classification, and automated assembly.
Additionally, they are widely used in autonomous driving for vehicle recognition, traffic
flow analysis, and traffic signal recognition, as well as in the medical field for various
imaging applications.

Computers 2024, 13, 172 3 of 14

2.2. Related Work

Various studies have been conducted to develop integrated development environ-
ments (IDEs) for automated programming that comply with the IEC 61131-3 standard and
connect to different standards and software. Research has focused on integrated devel-
opment approaches using the latest IEC 61131-3 standard for distributed control systems
based on IEC 61499 [1]. Studies have explored IEC 61131-3-based programs that connect
Matlab/Simulink simulation software, which is widely used in automotive and robotics,
with PLC control programs [2], and integrated development environments that allow PLC
programs to run on ROS/Gazebo [3,4].

There has also been significant research on providing vendor-independent IEC 61131-
3-compliant open-source integrated development environments [5,6]. Research aimed at
defining purpose-specific software standards and development environments based on
IEC 61131-3 has also been conducted [7–9].

Various studies have examined the overhead of the IEC 61131-3-based software in
terms of controller performance and improvements in multicore environments. Research
has been conducted on methodologies for efficiently writing and executing IEC 61131-3
software in low-spec embedded hardware environments [10–12]. Additionally, to overcome
the limited performance of single-core embedded controllers, studies have explored the
use of multicore systems [13–15] and parallelism techniques in IEC 61131-3 software that
considers multicore architectures [16].

Research has been conducted on standard programming environments and application
software to develop software related to machine vision applicable to various automation
processes. Studies have focused on embedded controller-based machine vision systems for
defect detection in the automated assembly of PCB boards [17,18]. Additionally, research
has been conducted on vision systems based on embedded controllers in autonomous
driving environments such as mobile robots [19]. Further studies have explored method-
ologies for developing and implementing machine vision software in environments using
simulation or standardized middleware software [20,21]. Research has also been conducted
on integrated system environments that interact with various pieces of equipment used in
automation processes. Examples include the development of precision machining technol-
ogy through the integration of CNC machines and vision systems for 3D machining [22]
and the development of precise path planning algorithms through cooperative systems of
measuring equipment and machine vision systems [23].

3. Machine Vision System
3.1. Integrated Machine Vision System Based on IEC 61131-3

In conventional automated process systems, vision systems, and industrial controllers
are configured separately. Industrial controllers handle real-time tasks such as motion con-
trol, sensor management, and robot control, whereas vision systems consist of computers
equipped with cameras and image processing capabilities to execute image processing
applications. The separation of control systems within automated processes poses chal-
lenges in terms of integrated control and management. To address these issues, this study
proposes an integrated development environment in which real-time control and machine
vision applications can be executed on a single industrial controller, as shown in Figure 1.
The industrial controller manages all the subordinate elements, including the equipment
within the automated process and cameras for the machine vision system. The cameras can
be connected to an industrial controller through non-real-time interfaces, such as Ethernet
switches, USB, and serial communication. In addition, real-time industrial communication
via a fieldbus can connect the controller to robots, sensors, and motor drives. Using a
unified development environment, users or process developers can develop automated
process programs and download them to an industrial controller, thereby enabling the
development of an integrated automated process system.

Computers 2024, 13, 172 4 of 14

Computers 2024, 13, x FOR PEER REVIEW 4 of 15

industrial communication via a fieldbus can connect the controller to robots, sensors, and
motor drives. Using a unified development environment, users or process developers can
develop automated process programs and download them to an industrial controller,
thereby enabling the development of an integrated automated process system.

Figure 1. Integrated machine vision system.

To develop an integrated machine vision system, the industrial controller must have
a software architecture capable of configuring real-time and non-real-time domains, as
illustrated in Figure 2. Traditionally, applications that operate in real time, such as motor
drives, sensors, and robots, must be based on a real-time operating system (RTOS) or con-
troller. However, machine vision applications are typically developed to operate within a
non-real-time domain because predicting execution time and prioritization are not critical
factors. Considering these characteristics, the industrial controller should support both
real-time and non-real-time domains and provide a programming environment that sat-
isfies the real-time requirements. To address this issue, as shown in Figure 2, an industrial
controller was configured with an OS based on an RT-patched Linux kernel. The industrial
fieldbus can operate within RT-process applications, whereas all libraries and applications
related to machine vision are designed to run in the form of non-real-time Linux processes.

Figure 2. Real-time and non-real-time domain configuration.

3.2. Function Procedure Call for Machine Vision
One of the key contributions of the proposed integrated machine vision system is its

support for a programming environment based on the IEC 61131-3 international standard.
Traditional machine vision systems have been developed separately according to user

Figure 1. Integrated machine vision system.

To develop an integrated machine vision system, the industrial controller must have
a software architecture capable of configuring real-time and non-real-time domains, as
illustrated in Figure 2. Traditionally, applications that operate in real time, such as motor
drives, sensors, and robots, must be based on a real-time operating system (RTOS) or
controller. However, machine vision applications are typically developed to operate within
a non-real-time domain because predicting execution time and prioritization are not critical
factors. Considering these characteristics, the industrial controller should support both real-
time and non-real-time domains and provide a programming environment that satisfies the
real-time requirements. To address this issue, as shown in Figure 2, an industrial controller
was configured with an OS based on an RT-patched Linux kernel. The industrial fieldbus
can operate within RT-process applications, whereas all libraries and applications related
to machine vision are designed to run in the form of non-real-time Linux processes.

Computers 2024, 13, x FOR PEER REVIEW 4 of 15

industrial communication via a fieldbus can connect the controller to robots, sensors, and
motor drives. Using a unified development environment, users or process developers can
develop automated process programs and download them to an industrial controller,
thereby enabling the development of an integrated automated process system.

Figure 1. Integrated machine vision system.

To develop an integrated machine vision system, the industrial controller must have
a software architecture capable of configuring real-time and non-real-time domains, as
illustrated in Figure 2. Traditionally, applications that operate in real time, such as motor
drives, sensors, and robots, must be based on a real-time operating system (RTOS) or con-
troller. However, machine vision applications are typically developed to operate within a
non-real-time domain because predicting execution time and prioritization are not critical
factors. Considering these characteristics, the industrial controller should support both
real-time and non-real-time domains and provide a programming environment that sat-
isfies the real-time requirements. To address this issue, as shown in Figure 2, an industrial
controller was configured with an OS based on an RT-patched Linux kernel. The industrial
fieldbus can operate within RT-process applications, whereas all libraries and applications
related to machine vision are designed to run in the form of non-real-time Linux processes.

Figure 2. Real-time and non-real-time domain configuration.

3.2. Function Procedure Call for Machine Vision
One of the key contributions of the proposed integrated machine vision system is its

support for a programming environment based on the IEC 61131-3 international standard.
Traditional machine vision systems have been developed separately according to user

Figure 2. Real-time and non-real-time domain configuration.

3.2. Function Procedure Call for Machine Vision

One of the key contributions of the proposed integrated machine vision system is its
support for a programming environment based on the IEC 61131-3 international standard.
Traditional machine vision systems have been developed separately according to user
specifications, such as camera manufacturers and software development languages, leading
to low software reusability. To address this issue, we developed a hardware-independent
integrated development environment for machine vision systems based on IEC 61131-3
international standard language.

The industrial controller of an integrated machine vision system enables the develop-
ment of various automated process applications. For example, programs for controlling a
6-axis articulated robot or PLC can be developed and structured based on the IEC 61131-3
international standard language. Applications developed using the IEC 61131-3 standard

Computers 2024, 13, 172 5 of 14

language are assumed to operate in the real-time domain. This is because the IEC 61131-3
international standard is defined as a programming language for PLC systems that are
typically developed as real-time systems. However, software related to machine vision,
such as camera control and image processing libraries, are developed for non-real-time
applications. This is because predicting the execution time and determining the priorities
between processes or tasks in machine vision applications is difficult.

Considering the characteristics of existing systems, this study proposes a function
procedure call (FPC) to support IEC 61131-3-based machine vision programming. Libraries
were structured to enable real-time domain applications to be developed using the IEC
61131-3 programming language without any modifications. However, functions related
to camera control, image processing, and AI machine vision are structured as libraries in
both the real-time and non-real-time domains. In the real-time domain, the machine vision
library consists of only input and output parameters, without a separate execution code. In
the non-real-time domain, the machine vision library is composed of actual machine vision
execution codes.

The workflow of the FPC for machine vision programs is shown in Figure 3. At any
arbitrary point, the machine vision function first captures the input parameters. It then
transmits the values to a buffer to monitor periodic function calls within the non-real-time
domain through the shared memory. When a function execution request is confirmed at a
specific point, the corresponding function is immediately called and the input parameter
values are passed. After the called function is executed, its result is periodically written
to the monitoring buffer of the execution result of the called function within the real-time
domain of shared memory. Finally, the called machine vision function writes the output
value to the final variable and ends its execution.

Computers 2024, 13, x FOR PEER REVIEW 5 of 15

specifications, such as camera manufacturers and software development languages, lead-
ing to low software reusability. To address this issue, we developed a hardware-inde-
pendent integrated development environment for machine vision systems based on IEC
61131-3 international standard language.

The industrial controller of an integrated machine vision system enables the devel-
opment of various automated process applications. For example, programs for controlling
a 6-axis articulated robot or PLC can be developed and structured based on the IEC 61131-
3 international standard language. Applications developed using the IEC 61131-3 stand-
ard language are assumed to operate in the real-time domain. This is because the IEC
61131-3 international standard is defined as a programming language for PLC systems
that are typically developed as real-time systems. However, software related to machine
vision, such as camera control and image processing libraries, are developed for non-real-
time applications. This is because predicting the execution time and determining the pri-
orities between processes or tasks in machine vision applications is difficult.

Considering the characteristics of existing systems, this study proposes a function
procedure call (FPC) to support IEC 61131-3-based machine vision programming. Librar-
ies were structured to enable real-time domain applications to be developed using the IEC
61131-3 programming language without any modifications. However, functions related
to camera control, image processing, and AI machine vision are structured as libraries in
both the real-time and non-real-time domains. In the real-time domain, the machine vision
library consists of only input and output parameters, without a separate execution code.
In the non-real-time domain, the machine vision library is composed of actual machine
vision execution codes.

The workflow of the FPC for machine vision programs is shown in Figure 3. At any
arbitrary point, the machine vision function first captures the input parameters. It then
transmits the values to a buffer to monitor periodic function calls within the non-real-time
domain through the shared memory. When a function execution request is confirmed at
a specific point, the corresponding function is immediately called and the input parameter
values are passed. After the called function is executed, its result is periodically written to
the monitoring buffer of the execution result of the called function within the real-time
domain of shared memory. Finally, the called machine vision function writes the output
value to the final variable and ends its execution.

Figure 3. Workflow of a function procedure call.

3.3. IEC 61131-3 FBD for Machine Vison
Eleven types of functional blocks were designed to validate the IEC 61131-3-based

integrated machine vision system. Machine vision software primarily comprises camera-
related function blocks, image-processing function blocks, and AI-based vision software,
as listed in Table 1. Function blocks starting with CAM_ represent camera control function

Figure 3. Workflow of a function procedure call.

3.3. IEC 61131-3 FBD for Machine Vison

Eleven types of functional blocks were designed to validate the IEC 61131-3-based
integrated machine vision system. Machine vision software primarily comprises camera-
related function blocks, image-processing function blocks, and AI-based vision software, as
listed in Table 1. Function blocks starting with CAM_ represent camera control function
blocks, defining functions such as establishing and terminating connections between the
integrated controller and camera, setting and reading camera parameters, and acquiring
images. The image processing library and AI-based vision function blocks were designed
considering the essential functions commonly used in industrial machine vision systems.
In addition, five types of image-processing function blocks and three types of AI-based
vision function blocks were proposed.

Computers 2024, 13, 172 6 of 14

Table 1. Function block for machine vision.

Function Block Name Description

CAM_OPEN Enable the camera connection
CAM_CLOSE Disenable the camera connection
CAM_GRAB Take a camera video to get an image

CAM_SETPARAMETER Set the parameters of the camera for taking images
CAM_GETPARAMETER Get the parameters of the camera for taking images

Image_ScanBarcode Read the barcode in the image
Image_ScanQrcode Read the qrcode in the image

Image_TemplateMatching Similarity test with genuine product
Image_Blob Spot area detection using brightness and color

Image_Measurement Measure the distance between objects
AI_Classification Perform classification on learned objects

Figure 4 illustrates an example of a classification function block designed in compliance
with the IEC 61131-3 FBD standard language among the proposed 11 types of function
blocks. The FBD language is primarily composed of input and output parameters, with
each parameter having attributes defined by IEC 61131-3 standard variable types (BOOL,
INT, REAL, etc.). The left and right sides of the function block represent input and output
parameters, respectively. Figure 5 shows the FBD design for the 11 types of function blocks
listed in Table 1. Each function block typically includes an executable input parameter for
its start signal. It also includes output parameters, such as execution completion status
(Done), execution status (Busy), and error status (Error, ErrorID). Additionally, separate
input and output parameters are defined for each function block based on its specific
functionality, which is designed to maximize the versatility of the function block.

The Beremiz open-source software was used to implement the proposed IEC 61131-3-
based machine vision function blocks. Beremiz is an integrated development environment
programming software based on the IEC 61131-3 standard language. Internally, it employs
the MatIEC and GCC compilers to generate C code from the PLC code written by the user,
enabling execution, building, and debugging. Beremiz allows the design of function block
layouts in XML and supports users in programming in the editor through an XML parser.
Figure 6 on the left side presents an example code of the FBD classification written in this
XML language among the 11 types of function blocks.

On the right side of Figure 6, an example of code from the FPC in Section 3.2 executed
in the real-time domain is shown. When the execution is signaled as TRUE, the function
block captures the input parameter values and transmits them to the shared memory buffer
of the non-real-time domain. It then monitors the shared memory buffer of the output
parameters per cycle to verify the completion status of the invoked function, after which it
reads the value and writes it to the output parameters.

Computers 2024, 13, x FOR PEER REVIEW 6 of 15

blocks, defining functions such as establishing and terminating connections between the
integrated controller and camera, setting and reading camera parameters, and acquiring
images. The image processing library and AI-based vision function blocks were designed
considering the essential functions commonly used in industrial machine vision systems.
In addition, five types of image-processing function blocks and three types of AI-based
vision function blocks were proposed.

Table 1. Function block for machine vision.

Function Block Name Description
CAM_OPEN Enable the camera connection
CAM_CLOSE Disenable the camera connection
CAM_GRAB Take a camera video to get an image

CAM_SETPARAMETER Set the parameters of the camera for taking images
CAM_GETPARAMETER Get the parameters of the camera for taking images

Image_ScanBarcode Read the barcode in the image
Image_ScanQrcode Read the qrcode in the image

Image_TemplateMatching Similarity test with genuine product
Image_Blob Spot area detection using brightness and color

Image_Measurement Measure the distance between objects
AI_Classification Perform classification on learned objects

Figure 4 illustrates an example of a classification function block designed in compli-
ance with the IEC 61131-3 FBD standard language among the proposed 11 types of func-
tion blocks. The FBD language is primarily composed of input and output parameters,
with each parameter having attributes defined by IEC 61131-3 standard variable types
(BOOL, INT, REAL, etc.). The left and right sides of the function block represent input and
output parameters, respectively. Figure 5 shows the FBD design for the 11 types of func-
tion blocks listed in Table 1. Each function block typically includes an executable input
parameter for its start signal. It also includes output parameters, such as execution com-
pletion status (Done), execution status (Busy), and error status (Error, ErrorID). Addition-
ally, separate input and output parameters are defined for each function block based on
its specific functionality, which is designed to maximize the versatility of the function
block.

Figure 4. Example of AI_Classification function block. Figure 4. Example of AI_Classification function block.

Computers 2024, 13, 172 7 of 14Computers 2024, 13, x FOR PEER REVIEW 7 of 15

Figure 5. Function block list.

The Beremiz open-source software was used to implement the proposed IEC 61131-
3-based machine vision function blocks. Beremiz is an integrated development environ-
ment programming software based on the IEC 61131-3 standard language. Internally, it
employs the MatIEC and GCC compilers to generate C code from the PLC code written
by the user, enabling execution, building, and debugging. Beremiz allows the design of
function block layouts in XML and supports users in programming in the editor through
an XML parser. Figure 6 on the left side presents an example code of the FBD classification
written in this XML language among the 11 types of function blocks.

On the right side of Figure 6, an example of code from the FPC in Section 3.2 executed
in the real-time domain is shown. When the execution is signaled as TRUE, the function
block captures the input parameter values and transmits them to the shared memory
buffer of the non-real-time domain. It then monitors the shared memory buffer of the out-
put parameters per cycle to verify the completion status of the invoked function, after
which it reads the value and writes it to the output parameters.

Figure 5. Function block list.

Computers 2024, 13, x FOR PEER REVIEW 8 of 15

 Example of XML representation Example of FPC real-time domain operation

Figure 6. Example of XML representation and FPC real-time domain operation for classification.

4. Performance Evaluation
In this section, we conduct a performance evaluation of the 11 function blocks based

on the IEC 61131-3 international standard proposed in Section 3. This study aims to com-
pare the overhead of 11 function blocks according to controller specifications and evaluate
the performance of user programs written in the actual IEC 61131-3 standard.

To conduct the performance evaluation, an experimental environment was estab-
lished, as depicted in Figure 7, and the measurements were performed accordingly.The
user IDE is a development environment capable of programming artificial intelligence
machine vision based on the IEC 61131-3 standard, which is executable on the integrated
controller. The detailed specifications are listed in Table 2. In addition, Beckhoff EtherCAT
equipment and an oscilloscope were set up to measure the execution time of the function
blocks. The specifications of the integrated controller are listed in Table 3.

This study establishes an environment utilizing the open-source Beremiz software
version 1.2 based on open-source principles for industrial automation and control system
development, along with an EtherCAT Master-based integrated controller. Beremiz serves
as an open-source integrated development environment capable of programming based
on the IEC 61131-3 standard, with the advantage of easily allowing the addition of user
function blocks. EtherCAT is an essential Ethernet-based fieldbus widely used in PLC sys-
tems and is a core element in process automation technology, along with machine vision
systems.

Figure 6. Example of XML representation and FPC real-time domain operation for classification.

Computers 2024, 13, 172 8 of 14

4. Performance Evaluation

In this section, we conduct a performance evaluation of the 11 function blocks based on
the IEC 61131-3 international standard proposed in Section 3. This study aims to compare
the overhead of 11 function blocks according to controller specifications and evaluate the
performance of user programs written in the actual IEC 61131-3 standard.

To conduct the performance evaluation, an experimental environment was established,
as depicted in Figure 7, and the measurements were performed accordingly.The user IDE is
a development environment capable of programming artificial intelligence machine vision
based on the IEC 61131-3 standard, which is executable on the integrated controller. The
detailed specifications are listed in Table 2. In addition, Beckhoff EtherCAT equipment
and an oscilloscope were set up to measure the execution time of the function blocks. The
specifications of the integrated controller are listed in Table 3.

Computers 2024, 13, x FOR PEER REVIEW 9 of 15

In this section, we measure the execution times of the 11 function blocks developed
based on the IEC 61131-3 international standard PLC language proposed in Section 3. The
measurement method involves using an oscilloscope to measure the changes in electrical
signals for each function block and calculating and analyzing the average, variance, stand-
ard deviation, and maximum and minimum values. The experimental setup for the meas-
urement included an industrial controller where the function blocks were operated, a lap-
top for the integrated development environment capable of remote operation, a Beckhoff
module to generate electrical signal changes at the start and end of each function block,
and an oscilloscope for measurement, each configured with one unit. The specifications of
the laptop with the integrated development environment are listed in Table 2. The Beck-
hoff module utilized the EK1100 model with an EL2008 I/O module attached, and the os-
cilloscope used was the Tektronix MSO 4054 model.

Figure 7. Experimental setup.

Table 2. Specifications of the integrated development environment.

Function Block Name Description
OS Window 11 Pro

CPU i9-13900H(P-Core upto 5.4 GHz/E-core upto 4.1
GHz/14Core/6 P + 8 E)

GPU NVIDIA GeForce RTX 4070 8 GB GDDR6
RAM 32 GB (2 × 16 GB) DDR5 MEMORY

Table 3. Specifications of integrated controller.

IPC Description
Processor Intel AtomⓇ x7-E3950 Processor
Memory 8 GB LPDDR4-2400 Mhz
SATA mSATA 1 slot (empty)

EtherNet 1Gbe x2 (i210 x 2)
Power Input 24 V

OS Ubuntu 18.04.5
Linux Kernel 4.19.295 rt-129

Software openCV 4.5.3 Tensorflow 2.4.1 Pyro 3.9.1

Figure 7. Experimental setup.

Table 2. Specifications of the integrated development environment.

Function Block Name Description

OS Window 11 Pro

CPU i9-13900H(P-Core upto 5.4 GHz/E-core upto 4.1 GHz/
14Core/6 P + 8 E)

GPU NVIDIA GeForce RTX 4070 8 GB GDDR6
RAM 32 GB (2 × 16 GB) DDR5 MEMORY

Table 3. Specifications of integrated controller.

IPC Description

Processor Intel Atom® x7-E3950 Processor
Memory 8 GB LPDDR4-2400 Mhz

SATA mSATA 1 slot (empty)
EtherNet 1Gbe x2 (i210 x 2)

Power Input 24 V
OS Ubuntu 18.04.5

Linux Kernel 4.19.295 rt-129
Software openCV 4.5.3 Tensorflow 2.4.1 Pyro 3.9.1

This study establishes an environment utilizing the open-source Beremiz software
version 1.2 based on open-source principles for industrial automation and control system
development, along with an EtherCAT Master-based integrated controller. Beremiz serves

Computers 2024, 13, 172 9 of 14

as an open-source integrated development environment capable of programming based
on the IEC 61131-3 standard, with the advantage of easily allowing the addition of user
function blocks. EtherCAT is an essential Ethernet-based fieldbus widely used in PLC
systems and is a core element in process automation technology, along with machine
vision systems.

In this section, we measure the execution times of the 11 function blocks developed
based on the IEC 61131-3 international standard PLC language proposed in Section 3. The
measurement method involves using an oscilloscope to measure the changes in electri-
cal signals for each function block and calculating and analyzing the average, variance,
standard deviation, and maximum and minimum values. The experimental setup for the
measurement included an industrial controller where the function blocks were operated, a
laptop for the integrated development environment capable of remote operation, a Beckhoff
module to generate electrical signal changes at the start and end of each function block,
and an oscilloscope for measurement, each configured with one unit. The specifications
of the laptop with the integrated development environment are listed in Table 2. The
Beckhoff module utilized the EK1100 model with an EL2008 I/O module attached, and the
oscilloscope used was the Tektronix MSO 4054 model.

4.1. Machine Vision Function Blocks for IEC 61131-3

This experiment involved operating 11 function blocks using the industrial controller,
as depicted in Table 3, and measuring the execution time through communication between
the operating system, the application program, and the function blocks. Each function
block was executed 30 times to measure the execution time. The experimental results,
including the mean and standard deviation, are presented in Table 4.

Table 4. Measurement of API for 11 types of low-spec industrial controllers.

Function Block Mean Standard Deviation

CAM_OPEN 2.640 s 0.105451411
CAM_CLOSE 2.647 s 0.048383882
CAM_GRAB 0.770 s 4.722993401

CAM_SETPARAMETER 0.506 s 5.299895177
CAM_GETPARAMETER 0.473 s 51.72345266

Image_ScanBarcode 0.352 s 150.4945957
Image_ScanQrcode 0.433 s 154.2946100

Image_TemplateMatching 14.903 s 0.181628436
Image_Blob 0.176 s 47.65953513

Image_Measurement 0.210 s 27.09112196
AI_Classification 11.336 s 0.116856988

Among the 11 functional blocks, with the exception of Template Matching and Clas-
sification, relatively short execution times were observed. Except for CAM_OPEN and
CAM_CLOSE, execution times of less than one second were recorded. CAM_OPEN and
CAM_CLOSE exhibited higher execution times because of the socket buffer creation and
removal for communication between the integrated controller and the camera. However,
other camera-related function blocks utilized existing sockets, resulting in shorter execution
times. After conducting experiments and analyses on the 11 function blocks, it was found
that Template Matching had the longest execution time, approximately 14.9 s, ranking first,
whereas Classification ranked second with an execution time of approximately 11.3 s. Their
standard deviations, ranging from 0.10 to 0.20, were relatively small, indicating reliability.
However, among the fastest-operating blocks, Blob had a relatively high standard deviation.
This is attributed to instances where it operated faster than the average, such as 50.6, 79.6,
and 90.4 ms, within the typical range of 170 to 250 ms.

Computers 2024, 13, 172 10 of 14

4.2. Analysis of Effect According to Controller Performance

Experiments were conducted on four function blocks in a new integrated controller
environment to measure the overhead of the machine vision function blocks based on the
controller performance. In the previous experiment, it was observed that the Template
Matching and Classification function blocks required significantly more execution time than
the other function blocks. However, these long execution times pose limitations that must
be addressed in future industrial automated system designs and applications. Therefore, to
address this issue, a relatively high-performance controller hardware was selected, and the
same experimental environment was set up. The specifications of the controller are listed
in Table 5.

Table 5. Specifications of the integrated high-performance controller.

IPC Description

Processor Intel® Q370 Platform Controller Hub
Memory 32 GB DDR4 (Normal Temp 0 ◦C~+70 ◦C)

SATA internal SATA port for 2.5′′ HDD/SSD
EtherNet Gigabit Ethernet ports by I219 and 5x I210

Power Input 160 W AC/DC power adapter 20 V/8 A
OS Ubuntu 18.04.5

Linux Kernel 4.19.295 rt-129
Software openCV 4.5.3 Tensorflow 2.4.1 Pyro 3.9.1

To observe how the execution time varies according to CPU performance, the perfor-
mance of Template Matching and Classification, which took the longest time to execute,
and Blob, which executed the fastest, were compared and analyzed. The results of mea-
suring the execution times of the four function blocks on the high-performance industrial
controllers are listed in Table 6. Additionally, to analyze the standard deviation values, the
execution time for each run was graphically represented in Figures 8–11.

Table 6. Measurement of execution times for Template Matching, Blob, Measurement, and Classification.

Function Block Low IPC High IPC

Image_TemplateMatching 14.903 s 3.341 s
Image_Blob 0.176 s 0.056 s

Image_Measurement 0.210 s 0.112 s
AI_Classification 11.336 s 10.560 s

Computers 2024, 13, x FOR PEER REVIEW 11 of 15

Power Input 160 W AC/DC power adapter 20 V/8 A
OS Ubuntu 18.04.5

Linux Kernel 4.19.295 rt-129
Software openCV 4.5.3 Tensorflow 2.4.1 Pyro 3.9.1

To observe how the execution time varies according to CPU performance, the perfor-
mance of Template Matching and Classification, which took the longest time to execute,
and Blob, which executed the fastest, were compared and analyzed. The results of meas-
uring the execution times of the four function blocks on the high-performance industrial
controllers are listed in Table 6. Additionally, to analyze the standard deviation values,
the execution time for each run was graphically represented in Figures 8–11.

Table 6. Measurement of execution times for Template Matching, Blob, Measurement, and Classifi-
cation.

Function Block Low IPC High IPC
Image_TemplateMatching 14.903 s 3.341 s

Image_Blob 0.176 s 0.056 s
Image_Measurement 0.210 s 0.112 s

AI_Classification 11.336 s 10.560 s

The comparative analysis revealed that for image processing function blocks requir-
ing significant CPU operations, there was an approximately 2 to 4-fold performance dif-
ference between the high-spec and low-spec controllers. However, for AI-based machine
vision requiring parallel processing, the performance difference between the low-spec and
high-spec controllers improved by approximately 1.2 s. in Table 7. This improvement, alt-
hough notable, is not as significant as that observed in the simple image-processing func-
tion blocks. In the case of AI-based machine vision function blocks such as classification,
the serial calculation process of the CPU limits efficiency gains, which necessitates pro-
cessing numerous matrices in parallel. Therefore, it was concluded that when using AI
FBDs in industrial controllers, attaching specialized parallel processing devices, such as
GPUs or NPUs, and conducting optimizations, such as network lightweighting, are nec-
essary to achieve significant performance improvements.

Table 7. Measurement of API for 11 high-end industrial controllers.

Function Block Mean Standard Deviation
Image_TemplateMatching 3.341 s 0.197384284

Image_Blob 0.056 s 36.8274656
Image_Measurement 0.112 s 156.2497431

AI_Classification 10.560 s 0.176257388

Figure 8. Execution time of Template Matching.

Figure 8. Execution time of Template Matching.

Computers 2024, 13, 172 11 of 14
Computers 2024, 13, x FOR PEER REVIEW 12 of 15

Figure 9. Execution time of Blob.

Figure 10. Execution time of Measurement.

Figure 11. Execution time of Classification.

4.3. Use-Case of IEC 61131-3 Based Machine Vision Application
This study aims to operate automation and machine vision programs within a unified

development environment to minimize unnecessary resource wastage and efficiently op-
erate systems. Recent industrial automation systems have utilized AI-based classification
algorithms for high-precision defect detection and product classification. Therefore, ex-
periments were conducted by configuring scenarios in which the target objects were cap-
tured with cameras, detected, and discriminated using AI-based classification algorithms,
as shown in Figure 12.

Figure 12. Example of IEC 61131-3 based classification application.

Figure 9. Execution time of Blob.

Computers 2024, 13, x FOR PEER REVIEW 12 of 15

Figure 9. Execution time of Blob.

Figure 10. Execution time of Measurement.

Figure 11. Execution time of Classification.

4.3. Use-Case of IEC 61131-3 Based Machine Vision Application
This study aims to operate automation and machine vision programs within a unified

development environment to minimize unnecessary resource wastage and efficiently op-
erate systems. Recent industrial automation systems have utilized AI-based classification
algorithms for high-precision defect detection and product classification. Therefore, ex-
periments were conducted by configuring scenarios in which the target objects were cap-
tured with cameras, detected, and discriminated using AI-based classification algorithms,
as shown in Figure 12.

Figure 12. Example of IEC 61131-3 based classification application.

Figure 10. Execution time of Measurement.

Computers 2024, 13, x FOR PEER REVIEW 12 of 15

Figure 9. Execution time of Blob.

Figure 10. Execution time of Measurement.

Figure 11. Execution time of Classification.

4.3. Use-Case of IEC 61131-3 Based Machine Vision Application
This study aims to operate automation and machine vision programs within a unified

development environment to minimize unnecessary resource wastage and efficiently op-
erate systems. Recent industrial automation systems have utilized AI-based classification
algorithms for high-precision defect detection and product classification. Therefore, ex-
periments were conducted by configuring scenarios in which the target objects were cap-
tured with cameras, detected, and discriminated using AI-based classification algorithms,
as shown in Figure 12.

Figure 12. Example of IEC 61131-3 based classification application.

Figure 11. Execution time of Classification.

The comparative analysis revealed that for image processing function blocks requiring
significant CPU operations, there was an approximately 2 to 4-fold performance difference
between the high-spec and low-spec controllers. However, for AI-based machine vision
requiring parallel processing, the performance difference between the low-spec and high-
spec controllers improved by approximately 1.2 s in Table 7. This improvement, although
notable, is not as significant as that observed in the simple image-processing function
blocks. In the case of AI-based machine vision function blocks such as classification, the
serial calculation process of the CPU limits efficiency gains, which necessitates processing
numerous matrices in parallel. Therefore, it was concluded that when using AI FBDs in
industrial controllers, attaching specialized parallel processing devices, such as GPUs or
NPUs, and conducting optimizations, such as network lightweighting, are necessary to
achieve significant performance improvements.

Table 7. Measurement of API for 11 high-end industrial controllers.

Function Block Mean Standard Deviation

Image_TemplateMatching 3.341 s 0.197384284
Image_Blob 0.056 s 36.8274656

Image_Measurement 0.112 s 156.2497431
AI_Classification 10.560 s 0.176257388

Computers 2024, 13, 172 12 of 14

4.3. Use-Case of IEC 61131-3 Based Machine Vision Application

This study aims to operate automation and machine vision programs within a unified
development environment to minimize unnecessary resource wastage and efficiently oper-
ate systems. Recent industrial automation systems have utilized AI-based classification
algorithms for high-precision defect detection and product classification. Therefore, experi-
ments were conducted by configuring scenarios in which the target objects were captured
with cameras, detected, and discriminated using AI-based classification algorithms, as
shown in Figure 12.

Computers 2024, 13, x FOR PEER REVIEW 12 of 15

Figure 9. Execution time of Blob.

Figure 10. Execution time of Measurement.

Figure 11. Execution time of Classification.

4.3. Use-Case of IEC 61131-3 Based Machine Vision Application
This study aims to operate automation and machine vision programs within a unified

development environment to minimize unnecessary resource wastage and efficiently op-
erate systems. Recent industrial automation systems have utilized AI-based classification
algorithms for high-precision defect detection and product classification. Therefore, ex-
periments were conducted by configuring scenarios in which the target objects were cap-
tured with cameras, detected, and discriminated using AI-based classification algorithms,
as shown in Figure 12.

Figure 12. Example of IEC 61131-3 based classification application.
Figure 12. Example of IEC 61131-3 based classification application.

In this experiment, similar to the previous ones, the average and standard deviation of
the execution time were calculated for 30 runs. in Figure 13. The shortest execution time
was 12.5 s, whereas the longest was 17.1 s. The average time was 13.8 s with a standard
deviation of approximately 0.8. Because the sum of the average execution times of the
camera and each AI function block used in the experiment was less than or equal to the
linearly added value, it was possible to anticipate the expected operation time during the
program configuration.

Computers 2024, 13, x FOR PEER REVIEW 13 of 15

In this experiment, similar to the previous ones, the average and standard deviation
of the execution time were calculated for 30 runs. in Figure 13. The shortest execution time
was 12.5 s, whereas the longest was 17.1 s. The average time was 13.8 s with a standard
deviation of approximately 0.8. Because the sum of the average execution times of the
camera and each AI function block used in the experiment was less than or equal to the
linearly added value, it was possible to anticipate the expected operation time during the
program configuration.

Figure 13. Execution time of scenario.

5. Conclusions
In this study, we propose the idea of developing vision programs commonly used in

existing automation process systems in an IEC 61131-3 supported integrated development
environment. To achieve this, an industrial controller was configured as a software archi-
tecture capable of real-time and non-real-time domain configurations, and a function pro-
cedure-call structure for machine vision function processing was developed. This was de-
signed to minimize the impact on programs running in the existing real-time domain and
maintain the characteristics of existing machine vision systems to develop a reliable inte-
grated development environment. For the performance evaluation of the developed sys-
tem, 11 commonly used APIs in machine vision systems were selected, and their designs
were developed to be programmable in the IEC 61131-3 FBD programming language.
These were programmed, and the performance was evaluated using Beremiz open source
software to implement 11 function blocks, and the performance of the function blocks ac-
cording to the controller environment was measured. It was confirmed that among the 11
function blocks, the Template Matching and Classification function blocks had the highest
execution time in the given integrated controller environment, whereas most other func-
tion blocks ended execution within 1 s. To examine the effect of controller performance on
the execution time of different function blocks, the execution time of four function blocks
was measured even in high-performance controllers. It was confirmed that the AI-based
machine vision function blocks had almost no impact on CPU performance owing to their
characteristics of parallel processing. Finally, performance measurement was conducted
by developing an IEC 61131-3 based process automation test program capable of product
classification. It was confirmed that an average of 13.8 s of execution time was required.

In future research, additional AI-based machine vision APIs that are commonly used
in industrial automation systems, such as object detection and segmentation, will be de-
veloped to augment the proposed set of 11 functional blocks. Furthermore, the impact of
hardware variations, such as GPU and NPU, on function blocks will be evaluated, along
with research on the hardware and software architectures of controllers. Additionally, an
expanded integrated development environment based on the IEC 61131-3 standard will
be developed to accommodate various industrial equipment, such as PLCs, multi-axis

Figure 13. Execution time of scenario.

5. Conclusions

In this study, we propose the idea of developing vision programs commonly used
in existing automation process systems in an IEC 61131-3 supported integrated develop-
ment environment. To achieve this, an industrial controller was configured as a software
architecture capable of real-time and non-real-time domain configurations, and a function
procedure-call structure for machine vision function processing was developed. This was
designed to minimize the impact on programs running in the existing real-time domain
and maintain the characteristics of existing machine vision systems to develop a reliable
integrated development environment. For the performance evaluation of the developed
system, 11 commonly used APIs in machine vision systems were selected, and their de-
signs were developed to be programmable in the IEC 61131-3 FBD programming language.
These were programmed, and the performance was evaluated using Beremiz open source
software to implement 11 function blocks, and the performance of the function blocks

Computers 2024, 13, 172 13 of 14

according to the controller environment was measured. It was confirmed that among the
11 function blocks, the Template Matching and Classification function blocks had the high-
est execution time in the given integrated controller environment, whereas most other
function blocks ended execution within 1 s. To examine the effect of controller performance
on the execution time of different function blocks, the execution time of four function blocks
was measured even in high-performance controllers. It was confirmed that the AI-based
machine vision function blocks had almost no impact on CPU performance owing to their
characteristics of parallel processing. Finally, performance measurement was conducted
by developing an IEC 61131-3 based process automation test program capable of product
classification. It was confirmed that an average of 13.8 s of execution time was required.

In future research, additional AI-based machine vision APIs that are commonly used
in industrial automation systems, such as object detection and segmentation, will be
developed to augment the proposed set of 11 functional blocks. Furthermore, the impact of
hardware variations, such as GPU and NPU, on function blocks will be evaluated, along
with research on the hardware and software architectures of controllers. Additionally, an
expanded integrated development environment based on the IEC 61131-3 standard will
be developed to accommodate various industrial equipment, such as PLCs, multi-axis
robots, and CNC machines. Various automation programs will be developed to assess the
scalability and versatility of the proposed system expansion.

Author Contributions: Conceptualization, S.L.; Methodology, S.L. and S.-M.H.; Software, S.-M.H.;
Validation, S.L. and S.-M.H.; Formal analysis, S.L. and S.-M.H.; Resources, S.-M.H.; Data curation,
S.-M.H.; Writing—original draft, U.-H.H. and S.-M.H.; Writing—review & editing, S.L. and S.-M.H.;
Supervision, S.L.; Project administration, S.L.; Funding acquisition, S.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Technology Innovation Program (No. RS-2024-00417663,
20016247) funded By the Ministry of Trade, Industry & Energy (MOTIE, Republic of Korea).

Data Availability Statement: The data used in this study are available on request from the corre-
sponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gsellmann, P.; Melik-Merkumians, M.; Zoitl, A.; Schitter, G. A novel approach for integrating IEC 61131-3 engineering and

execution into IEC 61499. IEEE Trans. Ind. Inform. 2020, 17, 5411–5418. [CrossRef]
2. Pereira, A.; Lima, C.; Martins, J.F. The use of IEC 61131-3 to enhance PLC control and Matlab/Simulink process simulations. In

Proceedings of the 2011 IEEE International Symposium on Industrial Electronics, Gdansk, Polan, 27–30 June 2011.
3. Kim, Y.; Lee, S.-Y.; Lim, S. Implementation of PLC controller connected Gazebo-ROS to support IEC 61131-3. In Proceedings of

the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11
September 2020; Volume 1.

4. Pinto, T.; Arrais, R.; Veiga, G. Bridging automation and robotics: An interprocess communication between IEC 61131-3 and ROS. In
Proceedings of the 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), Porto, Portugal, 18–20 July 2018.

5. Tisserant, E.; Bessard, L.; De Sousa, M. An open source IEC 61131-3 integrated development environment. In Proceedings of the
2007 5th IEEE International Conference on Industrial Informatics, Vienna, Austria, 23–27 June 2007; Volume 1.

6. Kim, I.; Kim, T.; Sung, M.; Tisserant, E.; Bessard, L.; Choi, C. An open-source development environment for industrial automation
with EtherCAT and PLCopen motion control. In Proceedings of the 2013 IEEE 18th Conference on Emerging Technologies &
Factory Automation (ETFA), Cagliari, Italy, 10–13 September 2013.

7. Papakonstantinou, N.; Sierla, S. Generating an Object Oriented IEC 61131-3 software product line architecture from SysML. In
Proceedings of the 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), Cagliari, Italy, 10–13
September 2013.

8. Kajihara, S.; Ono, M.; Houzouji, H.; Taruishi, H.; Takayanagi, Y. Development and products of the object-oriented engineering
tool for the integrated controller based on IEC 61131-3. In Proceedings of the SICE 2004 Annual Conference, Sapporo, Japan, 4–6
August 2004; Volume 3.

9. Jamro, M.; Trybus, B. An approach to SysML modeling of IEC 61131-3 control software. In Proceedings of the 2013 18th
International Conference on Methods & Models in Automation & Robotics (MMAR), Miedzyzdroje, Poland, 26–29 August 2013.

https://doi.org/10.1109/TII.2020.3033330

Computers 2024, 13, 172 14 of 14

10. Song, S.J.; Lin, X.F.; Huang, Q.B.; Wang, C.H. An Embedded SoftLogic Control System Based on S3C44BOX and IEC 61131-
3 Standard. In Proceedings of the 2007 IEEE International Conference on Control and Automation, Guangzhou, China,
30 May–1 June 2007.

11. Chodorowski, P.; Chmiel, M. IEC 61131-3 compliant PLC structure based on FPGA multi-core solution. In Proceedings of the
2016 International Conference on Signals and Electronic Systems (ICSES), Krakow, Poland, 5–7 September 2016.

12. Chmiel, M.; Kulisz, J.; Czerwinski, R.; Krzyzyk, A.; Rosol, M.; Smolarek, P. An IEC 61131-3-based PLC implemented by means of
an FPGA. Microprocess. Microsyst. 2016, 44, 28–37. [CrossRef]

13. Monot, A.; Vulgarakis, A.; Behnam, M. PASA: Framework for partitioning and scheduling automation applications on multicore
controllers. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), Barcelona, Spain, 16–19
September 2014.

14. Vulgarakis, A.; Shooja, R.; Monot, A.; Carlson, J.; Behnam, M. Task synthesis for control applications on multicore platforms. In
Proceedings of the 2014 11th International Conference on Information Technology: New Generations, Las Vegas, NV, USA, 7–9
April 2014.

15. Becker, M.; Sandström, K.; Behnam, M. A many-core based execution framework for IEC 61131-3. In Proceedings of the IECON
2015-41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015.

16. Canedo, A.; Dalloro, L.; Ludwig, H. Pipelining for cyclic control systems. In Proceedings of the 16th international conference on
Hybrid Systems: Computation and Control, Philadelphia, PA, USA, 8–11 April 2013.

17. Ardhy, F.; Hariadi, F.I. Development of SBC based machine-vision system for PCB board assembly automatic optical inspection. In
Proceedings of the 2016 international symposium on electronics and smart devices (ISESD), Bandung, Indonesia, 29–30 November 2016.

18. Parakontan, T.; Sawangsri, W. Development of the machine vision system for automated inspection of printed circuit board
assembl. In Proceedings of the 2019 3rd International Conference on Robotics and Automation Sciences (ICRAS), Wuhan, China,
1–3 June 2019.

19. Gerndt, R.; Michalik, S.; Krupop, S. Embedded vision system for robotics and industrial automation. In Proceedings of the 2011
9th IEEE International Conference on Industrial Informatics, Lisbon, Portugal, 26–29 July 2011.

20. Li, J.; He, M.; Su, J.; Wang, B.; Li, Z. Design and Implementation of Machine Vision Experiment Platform for Virtual Production
Line. In Proceedings of the 2023 9th International Conference on Virtual Reality (ICVR), Xianyang, China, 12–14 May 2023.

21. Mihajlović, R.; Marinkov, S.; Kovačević, B.; Kaštelan, I. Challenges of Integrating Machine Vision Algorithms Based on Franca
IDL into Adaptive AUTOSAR Environment. In Proceedings of the 2022 45th Jubilee International Convention on Information,
Communication and Electronic Technology (MIPRO), Opatija, Croatia, 23–27 May 2022.

22. Demir, E.; Yildiz, K.; Demir, O.; Ulku, E.E. Computer Vision Based Intelligent 3D CNC Machines. In Proceedings of the 2020
Innovations in Intelligent Systems and Applications Conference (ASYU), Istanbul, Turkey, 15–17 October.

23. Krotova, N.; Pushkov, R.; Evstafieva, S. Development of a trajectory planning algorithm for moving measuring instrument for
binding a basic coordinate system based on a machine vision system. In Proceedings of the 2023 International Conference on
Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 15–19 May 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.micpro.2015.11.001

	Introduction
	Background
	IEC 61131-3 and Machine Vision System
	Related Work

	Machine Vision System
	Integrated Machine Vision System Based on IEC 61131-3
	Function Procedure Call for Machine Vision
	IEC 61131-3 FBD for Machine Vison

	Performance Evaluation
	Machine Vision Function Blocks for IEC 61131-3
	Analysis of Effect According to Controller Performance
	Use-Case of IEC 61131-3 Based Machine Vision Application

	Conclusions
	References

