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Abstract: This comprehensive review explores the advancements in processing-in-memory (PIM)
techniques and chiplet-based architectures for deep neural networks (DNNs). It addresses the
challenges of monolithic chip architectures and highlights the benefits of chiplet-based designs in
terms of scalability and flexibility. This review emphasizes dataflow-awareness, communication
optimization, and thermal considerations in PIM-enabled manycore architectures. It discusses tailored
dataflow requirements for different machine learning workloads and presents a heterogeneous PIM
system for energy-efficient neural network training. Additionally, it explores thermally efficient
dataflow-aware monolithic 3D (M3D) NoC architectures for accelerating CNN inferencing. Overall,
this review provides valuable insights into the development and evaluation of chiplet and PIM
architectures, emphasizing improved performance, energy efficiency, and inference accuracy in deep
learning applications.

Keywords: deep neural network (DNN); processing-in-memory (PIM); heterogeneous architecture;
resistive ReRAM (ReRAM); network on chip (NoC); latency; power; accuracy

1. Introduction

Deep learning has emerged as a powerful technique for solving complex problems
across various domains, including computer vision, natural language processing, and
robotics [1–3]. The success of deep neural networks (DNNs) in these domains has led to
an increasing demand for efficient hardware architectures that can accelerate the training
and inference processes. Traditional von Neumann architectures, with their separated
CPU and memory units, struggle to meet the high computational demands and data
movement requirements of deep learning workloads [4–10]. To address these challenges,
researchers have been exploring innovative approaches such as chiplet-based architectures
and processing-in-memory (PIM) techniques.

Chiplet-based architectures offer a promising solution to the limitations of monolithic
chip designs in deep learning. Monolithic chips, with their large area and on-chip inter-
connection costs, face challenges in scaling up to accommodate the growing sizes of deep
learning models. Chiplet-based architectures, on the other hand, divide the system into
smaller interconnected units called chiplets, allowing for improved scalability, modularity,
and flexibility. These chiplets can be designed and optimized independently, leading to
better yield and reduced costs. Furthermore, chiplet-based architectures enable efficient
utilization of resources by distributing the computational workload across multiple chiplets,
resulting in improved performance and energy efficiency [11–16].

In parallel, processing-in-memory (PIM) techniques have gained significant attention
as a means to overcome the memory bottleneck in deep learning. In traditional architectures,
data movement between the processor and memory units consumes a significant amount
of energy and time. PIM architectures aim to alleviate this bottleneck by integrating
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processing units directly into the memory subsystem. By performing computations in close
proximity to the data, PIM architectures minimize data movement, reduce latency, and
improve energy efficiency. PIM architectures can leverage emerging memory technologies
like resistive random-access memory (ReRAM) to achieve high-performance and energy-
efficient acceleration of deep learning tasks [17–21].

1.1. Motivation behind Review

The limitations of monolithic chip designs, including their large area and on-chip
interconnection costs, make it difficult for them to scale up and accommodate the growing
sizes of deep learning models. In contrast, chiplet-based architectures offer a promising
solution by dividing the system into smaller interconnected units called chiplets. This divi-
sion enables improved scalability, modularity, and flexibility. Chiplet-based architectures
allow for independent design and optimization of chiplets, leading to better yield and
reduced costs. By distributing the computational workload across multiple chiplets, chiplet-
based architectures can efficiently utilize resources, resulting in improved performance and
energy efficiency [22–28].

Moreover, the memory bottleneck in traditional architectures, where data movement
between the processor and memory units consumes significant energy and time, can be
addressed through PIM techniques. PIM architectures integrate processing units directly
into the memory subsystem, minimizing data movement, reducing latency, and improving
energy efficiency. These architectures leverage emerging memory technologies like resistive
random-access performance and energy-efficient acceleration of deep learning memory
(ReRAM) to achieve high-tasks [29–33].

Therefore, the motivation behind this review is to explore the advancements in chiplet-
based architectures and PIM techniques for deep learning applications, highlighting their
potential to revolutionize deep learning hardware. By leveraging the benefits of chiplet-
based architectures and PIM techniques, researchers and engineers can overcome the
challenges faced by traditional von Neumann architectures and contribute to the develop-
ment of efficient and powerful AI hardware.

1.2. Gaps in Current Research

This review aims to address several gaps in the current research on processing-in-
memory (PIM) architectures for deep neural networks. Some of the identified gaps ad-
dressed by this review are as follows:

1. Lack of comprehensive understanding: This review acknowledges the need for a
comprehensive understanding of PIM techniques and their potential in revolutioniz-
ing deep learning hardware. It provides valuable insights into the advancements in
chiplet-based architectures and PIM techniques, emphasizing their benefits in terms
of performance, energy efficiency, scalability, and flexibility.

2. Limited exploration of chiplet-based architectures: Traditional monolithic chip de-
signs face challenges in scaling up to accommodate the growing sizes of deep learning
models. This review highlights chiplet-based architectures as a promising solution
to these limitations and discusses their advantages in terms of improved scalabil-
ity, modularity, and flexibility. It emphasizes the efficient utilization of resources
and distribution of computational workload across multiple chiplets for enhanced
performance and energy efficiency.

3. Insufficient focus on dataflow-awareness and communication optimization: This
review recognizes the importance of dataflow-awareness and communication op-
timization in the design of PIM-enabled manycore architectures. It discusses the
tailored dataflow requirements of different machine learning workloads and empha-
sizes the optimization of PIM architectures to minimize latency and improve energy
efficiency. It also addresses the challenges associated with on-chip interconnection
networks and the need for scalable communication in chiplet-based architectures.
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4. Limited exploration of thermal considerations: Thermal constraints pose significant
challenges in the design of PIM architectures. This review highlights the importance
of thermal considerations and discusses thermally efficient dataflow-aware mono-
lithic 3D NoC architectures for accelerating CNN inferencing. It compares different
architectures and emphasizes the advantages of thermally efficient designs, such as
TEFLON (thermally efficient dataflow-aware 3D NoC), in terms of energy efficiency,
inference accuracy, and thermal resilience.

5. Inadequate exploration of programming models and hardware utilization: This review
presents a heterogeneous PIM system for energy-efficient neural network training.
It addresses the significance of programming models that accommodate both fixed-
function logics and programmable cores, providing a unified programming model and
runtime system for efficient task offloading and scheduling. It emphasizes achieving
balanced hardware utilization in heterogeneous systems with abundant operation-
level parallelism.

6. Limited analysis of cybersecurity challenges: This review acknowledges the cyberse-
curity challenges associated with deep neural networks (DNNs) and their increased
attack surface. It discusses adversarial attacks, model stealing attacks, and concerns
regarding privacy and data leakage. While the focus of this review is primarily on
hardware architectures, this section provides an important perspective on the security
implications of deploying DNNs.

By addressing these gaps, this comprehensive review contributes to the existing
knowledge by providing insights into the development and evaluation of chiplet and PIM
architectures. It emphasizes the improved performance, energy efficiency, and inference
accuracy in deep learning applications. This review’s coverage of various aspects, including
chiplet-based architectures, PIM techniques, dataflow-awareness, thermal considerations,
programming models, and cybersecurity challenges, makes it a valuable resource for
researchers and engineers working in the field of deep learning hardware.

1.3. Key Insights

This comprehensive review aims to provide insights into the advancements in chiplet-
based architectures and processing-in-memory techniques for deep learning applications. It
explores the challenges faced by monolithic chip architectures and highlights the potential
of chiplet-based designs in addressing these challenges [34–42]. This review familiarizes
SIAM (scalable in-memory acceleration with mesh), a benchmarking simulator that evalu-
ates chiplet-based in-memory computing (IMC) architectures, and showcases the flexibility
and scalability of SIAM through benchmarking different deep neural networks.

Furthermore, this review delves into the design considerations of processing-in-
memory architectures for deep learning workloads. It emphasizes the importance of
dataflow-awareness and communication optimization in the design of PIM-enabled many-
core platforms. By understanding the unique traffic patterns and data exchange require-
ments of different machine learning workloads, PIM architectures can be optimized to
minimize latency and improve energy efficiency. This review also discusses the challenges
associated with on-chip interconnection networks, thermal constraints, and the need for
scalable communication in chiplet-based architectures.

Additionally, this review presents a heterogeneous PIM system for energy-efficient
neural network training. This approach combines fixed-function arithmetic units and
programmable cores on a 3D die-stacked memory, providing a unified programming model
and runtime system for efficient task offloading and scheduling. This review highlights
the significance of programming models that accommodate both fixed-function logics and
programmable cores, as well as achieving balanced hardware utilization in heterogeneous
systems with abundant operation-level parallelism [43–45].

Finally, this review explores thermally efficient dataflow-aware monolithic 3D (M3D)
NoC architectures for accelerating CNN inferencing. It discusses the benefits of integrating
processing-in-memory cores using ReRAM technology and emphasizes the importance
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of efficient network-on-chip (NoC) designs to reduce data movement. This review com-
pares different architectures and highlights the advantages of TEFLON (thermally efficient
dataflow-aware 3D NoC) over performance-optimized space-filling curve (SFC)-based
counterparts in terms of energy efficiency, inference accuracy, and thermal resilience.

In summary, the advancements in chiplet-based architectures and processing-in-
memory techniques have the potential to revolutionize deep learning hardware. These
approaches offer scalability, flexibility, improved performance, and energy efficiency, ad-
dressing the challenges faced by traditional monolithic chip designs. By leveraging the
benefits of chiplet-based architectures and processing-in-memory techniques, researchers
and engineers can pave the way for enhanced deep learning capabilities and contribute to
the development of efficient and powerful AI hardware [30,31,46,47].

This review is divided into several sections, each focusing on different aspects of
processing-in-memory architectures for deep neural networks. Figure 1 illustrates the
layout of the article and highlights the key challenges associated with PIM-enabled many-
core architectures. The figure provides a visual representation of the main challenges
addressed in this review. It depicts a circular layout with various components and arrows
connecting them. The components represent different aspects of PIM-enabled manycore
architectures, while the arrows indicate the interconnected relationships and challenges
between these components. Section 1 provides an overview of the challenges faced by
traditional architectures and the potential solutions offered by chiplet-based designs and
processing-in-memory (PIM) techniques. Section 2 then delves into the details of PIM,
discussing its innovative approach of integrating computational units into the memory
subsystem and the benefits it brings in terms of performance, energy efficiency, and scal-
ability. The challenges associated with implementing PIM in heterogeneous CPU–GPU
architectures are explored, including memory organization, programming models, data
movement, and power/thermal constraints [48–50]. Section 3 highlights the importance of
dataflow-awareness, communication optimization, and thermal considerations in design-
ing PIM-enabled manycore architectures. Furthermore, it discusses a heterogeneous PIM
system for energy-efficient neural network training and thermally efficient dataflow-aware
monolithic 3D NoC architectures for accelerating CNN inferencing. Section 4 addresses
the cybersecurity challenges associated with deep neural networks (DNNs). It discusses
the increased attack surface due to the growth of AI capabilities and explores adversarial
attacks, model stealing attacks, and concerns regarding privacy and data leakage. Finally,
this review concludes by emphasizing the potential of PIM techniques in revolutionizing
deep learning hardware and contributing to the development of efficient AI hardware [32].
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1.4. Research Strategy and Data Extraction Methodology

The literature search strategy for this review involved searching various academic
databases and search engines such as IEEE Xplore, ACM Digital Library, and Google Scholar.
The search utilized keywords and search terms including PIM, chiplet-based architectures,
deep learning, deep neural networks (DNNs), memory subsystem, dataflow-awareness,
communication optimization, thermal considerations, resistive ReRAM, network-on-chip
(NoC), latency, power, accuracy, heterogeneous architecture, machine learning workloads,
computational units, memory technologies, Von Neumann bottleneck, performance op-
timization, energy efficiency, and scalability. The inclusion criteria focused on selecting
articles directly related to PIM architectures, chiplet-based designs, and their applications
in deep learning, including novel research, advancements, case studies, and experimen-
tal evaluations. The literature search covered several years to include both foundational
works and recent research articles. The selection criteria for this review included relevance
to PIM, recent advancements, comparative analysis of PIM architectures, and emphasis
on dataflow-awareness and communication optimization. The data extraction process
involved identifying and extracting key variables or data points such as performance
metrics (training time, inference time, speedup, throughput, accuracy), energy efficiency
(energy consumption, energy efficiency, power consumption), and scalability (chiplet-based
designs, system size, resource utilization, performance scaling) from the selected studies.

2. Processing-in-Memory (PIM)
2.1. Introduction

Processing-in-memory (PIM) is an innovative approach that aims to overcome the
memory bottleneck in traditional computer architectures by integrating computational
units directly into the memory subsystem. With the rapid growth of data-intensive ap-
plications, such as deep learning, PIM has gained significant attention as a promising
solution for improving performance, energy efficiency, and overall system scalability. In
traditional computer architectures, the processor and memory units are separate entities,
requiring frequent data movement between them. This data movement, often referred
to as the von Neumann bottleneck, consumes a significant amount of energy and intro-
duces latency, limiting the overall system performance. As the computational demands
of modern applications continue to increase, the memory subsystem becomes a critical
performance bottleneck. PIM architectures aim to address this bottleneck by bringing
processing units closer to the data. By integrating computational units, such as arithmetic
units or accelerators, into the memory cells or in close proximity to them, PIM architectures
enable computations to be performed directly on the data, minimizing the need for data
movement. This approach not only reduces energy consumption but also improves system
performance by reducing memory access latency. Various memory technologies can be
leveraged in PIM architectures, including static random-access memory (SRAM), dynamic
random-access memory (DRAM), and emerging non-volatile memory technologies such
as resistive random-access memory (ReRAM) and phase-change memory (PCM) [33,34].
These memory technologies offer different trade-offs in terms of density, access speed,
power consumption, and endurance, and can be tailored to suit specific PIM design require-
ments. PIM architectures have shown promising results in a wide range of applications,
particularly in data-intensive domains such as artificial intelligence, machine learning, and
big data analytics. Deep learning, in particular, benefits greatly from PIM architectures
as they can significantly reduce the data movement between the processor and memory
during the training and inference processes, leading to improved energy efficiency and
faster computation.

2.2. Challenges

Processing-in-memory (PIM) refers to the integration of processing elements within
the memory subsystem of a computing system. Heterogeneous CPU–GPU architectures,
which combine central processing units (CPUs) and graphics processing units (GPUs), can
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benefit from PIM to improve performance and energy efficiency. However, there are several
challenges associated with implementing PIM in heterogeneous CPU–GPU architectures.
Here are some of the key challenges:

1. Memory organization: PIM requires a rethinking of memory organization to enable
processing elements within the memory subsystem. CPUs and GPUs have different
memory access patterns and requirements, which need to be accommodated in the de-
sign. Efficiently organizing and managing data in a PIM architecture can be complex,
especially when dealing with heterogeneous processing units.

2. Programming model: PIM architectures require a programming model that allows
developers to express data and task parallelism effectively. Developing software for
PIM architectures can be challenging due to the need for explicit data placement and
synchronization between the CPU and GPU components. The programming models
need to be designed to fully exploit the potential parallelism offered by PIM while
maintaining ease of use.

3. Data movement: Efficient data movement is crucial for PIM architectures. Moving
data between the CPU and GPU components can incur significant overhead due to the
communication between different memory spaces. Minimizing data movement and
optimizing data transfer mechanisms become essential for achieving high performance
in heterogeneous CPU–GPU architectures.

4. Power and thermal constraints: PIM architectures can potentially consume significant
power due to the increased integration of processing elements within the memory
subsystem. Managing power and thermal constraints in heterogeneous CPU–GPU
architectures is critical to prevent overheating and ensure reliable operation. Design-
ing efficient power management techniques that balance performance and energy
consumption is a significant challenge.

5. Memory consistency and coherence: Maintaining memory consistency and coherence
in PIM architectures is complex, particularly in heterogeneous CPU–GPU systems.
CPUs and GPUs often have their own caches and memory hierarchies, which need to
be synchronized to ensure data integrity and correctness. Developing efficient coher-
ence protocols and memory consistency models for heterogeneous PIM architectures
is a non-trivial task.

6. Hardware design and integration: Hardware design challenges arise when integrat-
ing processing elements within the memory subsystem. PIM architectures require
modifications to the memory controller, cache hierarchy, and interconnects to enable
efficient data processing within memory. Co-designing the hardware components
and optimizing the integration of processing elements in a heterogeneous CPU–GPU
architecture is a significant challenge.

3. PIM-Based Systems

Researchers and engineers are actively working on overcoming these obstacles to fully
exploit the benefits of processing-in-memory in heterogeneous CPU–GPU architectures.

The following sub-sections provides a comprehensive review that addresses these ob-
stacles and offers potential solutions for maximizing the benefits of processing-in-memory
in heterogeneous CPU–GPU architectures.

3.1. Heterogeneous PIM Architecture

The challenges associated with training neural networks, particularly deep neural
networks (DNNs), arise from the significant energy consumption and time overhead caused
by frequent data movement between the processor and memory. Ongoing research aims to
maximize the benefits of processing-in-memory in heterogeneous CPU–GPU architectures
by overcoming these obstacles.

One such approach is proposed in [1] as a hardware design and involves integrat-
ing fixed-function arithmetic units and programmable cores on the logic layer of a 3D
die-stacked memory. Figure 2 illustrates a 3D die-stacked memory configuration where
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fixed-function arithmetic units and programmable cores are integrated on the logic layer.
This integration forms a heterogeneous processing-in-memory (PIM) architecture, which
is connected to the CPU. The aim is to minimize data movement and improve system
performance by bringing processing capabilities closer to the memory. In addition to the
hardware design, a software design is presented, which includes a programming model
and runtime system. These components enable programmers to develop, offload, and
schedule various neural network training operations across the CPU and the heteroge-
neous PIM architecture. The objective is to achieve program portability, facilitate program
maintenance, enhance system energy efficiency, and improve hardware utilization. By
combining the proposed hardware and software designs, a comprehensive solution is
offered to address the challenges of energy consumption and data movement during neural
network training. The heterogeneous PIM architecture, accompanied by the programming
model and runtime system, provides an effective approach for efficient neural network
training by leveraging the advantages of processing-in-memory techniques.

The challenges of programming processing-in-memory (PIM) architectures for neu-
ral network acceleration in heterogeneous systems with fixed-function logics and pro-
grammable cores are non-trivial. One key requirement is a unified programming model
that can effectively handle the heterogeneity of PIM architectures. Achieving balanced
hardware utilization in such heterogeneous systems is another challenge, particularly in
harnessing operation-level parallelism for efficient execution of neural network training
workloads. This architecture [1] aims to minimize data movement and enhance energy
efficiency by performing computations in close proximity to the data. To enable program-
ming flexibility, the OpenCL programming model has been extended to accommodate the
heterogeneity of PIM architectures. This extension allows developers to express parallelism
and take advantage of both fixed-function logics and programmable cores. Insights into
the characteristics of neural network training workloads have been provided, showcasing
profiling results of time-consuming and memory-intensive operations across different
training models. The significance of reducing data movement is emphasized, motivating
the adoption of PIM architectures. The combination of hardware and software design
techniques aims to improve performance, energy efficiency, and hardware utilization in
heterogeneous CPU–GPU systems with PIM capabilities.
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Another study [7] offers recommendations for software designers, insights into work-
load suitability for the PIM system, and suggestions for future hardware and architecture
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designers of PIM systems. It discusses the concept of processing-in-memory (PIM) as a
solution to the data movement bottleneck in memory-bound workloads. It introduces
the UPMEM (Universal Processing Memory) PIM architecture, which combines DRAM
memory arrays with in-order cores called DRAM processing units (DPUs) integrated in
the same chip. Figure 3 depicts the architecture of the UPMEM PIM system, which is
introduced as a solution to address the data movement bottleneck in memory-bound work-
loads. The figure illustrates how the DRAM memory arrays and DPUs are interconnected
within the PIM system. This integration enables the DPUs to operate directly on the data
stored in the DRAM memory arrays, minimizing the need for data movement between
the CPU and memory. As a result, the UPMEM PIM architecture aims to improve system
performance and reduce energy consumption. The study presents key takeaways from the
comprehensive analysis of the UPMEM PIM architecture.
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Firstly, it describes the experimental characterization of the architecture using mi-
crobenchmarks and introduces PrIM (processing-in-memory benchmarks), a benchmark
suite consisting of 16 memory-bound workloads from various application domains. The
analysis provides insights into the performance and scaling characteristics of PrIM bench-
marks on the UPMEM PIM architecture. It compares the architecture’s performance and
energy consumption to CPU and GPU counterparts. The evaluation is conducted on real
UPMEM-based PIM systems with different numbers of DPUs.

Another study [10] discusses the development of a practical processing-in-memory
(PIM) architecture using commercial DRAM technology. The proposed PIM architecture
leverages 2.5D/3D stacking integration technologies and exploits bank-level parallelism
in commodity DRAM to provide higher bandwidth and lower energy per bit transfer to
processors. Importantly, the architecture does not require changes in host processors or
application code, making it easily integrable with existing systems. The PIM architecture
is implemented with a 20 nm DRAM technology and integrated with an unmodified
commercial processor. A software stack is also developed to enable the execution of existing
applications without modifications. System-level evaluations demonstrated significant
performance improvements for memory-bound neural network kernels and applications,
with speedups of 11.2× and 3.5×, respectively. Additionally, the proposed PIM architecture
reduced the energy per bit transfer by 3.5× and improved the overall energy efficiency of
the system by 3.2×.

The ever-increasing demand for high-performance machine learning applications has
spurred a quest for more efficient and powerful processors. One of the key challenges in
this domain lies in optimizing the data flow between memory and computing units within
conventional architectures, which often leads to significant energy consumption and latency
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issues. Addressing this challenge, Ref. [12] presents an innovative architecture called Lattice,
which leverages nonvolatile processing-in-memory (NVPIM) based on resistive random-
access memory (ReRAM) to accelerate deep convolution neural networks (DCNN). The
primary objective of Lattice is to overcome the drawbacks associated with costly analog–
digital conversions and excessive data copies or writes. To achieve this, the architecture
introduces a novel approach to compute the partial sum of dot products between feature
maps and weights in a CMOS peripheral circuit, effectively eliminating the need for analog–
digital conversions. By doing so, Lattice not only reduces the energy overhead associated
with these conversions but also enhances the overall system energy efficiency. Furthermore,
Lattice incorporates an efficient data mapping scheme that aligns the feature map and
weight data, minimizing unnecessary data copies or writes. This optimization helps to
further reduce energy consumption and improve the overall performance of the system. In
addition, the architecture introduces a zero-flag encoding scheme, specifically designed
for sparse DCNNs, which enables energy savings during the processing of zero-values.
To validate the effectiveness of the proposed architecture, extensive experiments were
conducted, comparing Lattice to three state-of-the-art NVPIM designs: ISAAC, PipeLayer,
and FloatPIM. The results clearly demonstrate that Lattice outperforms these existing
designs, achieving substantial energy efficiency improvements ranging from 4× to 13.22×.
The significance of Lattice extends beyond its immediate contributions. It sheds light on
the pressing need for ultra-low power machine learning processors, especially in the era of
resource-constrained edge devices and internet of things (IoT) applications. By addressing
the challenges associated with data traffic between memory and computing units, Lattice
paves the way for more energy-efficient and high-performance machine learning systems.

PIM-STM, a library developed by [18], offers a range of transactional memory (TM) im-
plementations specifically designed for PIM systems. The library addresses the difficulties
involved in efficiently implementing TM within PIM devices and assesses various design
choices and algorithms. Additionally, it showcases experimental findings that highlight
the performance and memory efficiency advantages attained by utilizing PIM-STM, as
opposed to conventional CPU-based systems. The primary objective of this research is to
furnish developers with valuable guidelines while also providing them with a library to
experiment with alternative STM designs for PIM architectures.

In the study discussed in [19], a novel architecture named “Reconfigurable Processing-
in-Memory” (PIM) is presented as a solution for data-intensive applications, specifically
addressing the challenges posed by deep neural networks (DNNs) and convolutional
neural networks (CNNs). These challenges primarily revolve around resource limita-
tions and the overhead associated with data movement. While existing PIM architectures
involve trade-offs in power, performance, area, energy efficiency, and programmability,
the proposed architecture aims to achieve higher energy efficiency while maintaining
programmability and flexibility. The proposed solution introduces a unique multi-core
reconfigurable architecture integrated within DRAM sub-arrays. Each core comprises
multiple processing elements (PEs) equipped with programmable functional units con-
structed using high-speed reconfigurable multi-functional look-up tables (M-LUTs). These
M-LUTs enable the generation of multiple functional outputs in a time-multiplexed manner,
eliminating the need for separate LUTs for each function. This architecture supports a
wide range of operations necessary for CNN and DNN processing, including convolution,
pooling, activation functions, and batch normalization. It offers enhanced efficiency and
performance compared to conventional PIM architectures, making it particularly suitable
for demanding applications involving big data and AI acceleration. Overall, the proposed
reconfigurable PIM architecture aims to provide energy-efficient and high-performance
solutions for data-intensive applications. It achieves this by leveraging the capabilities of
multi-functional look-up tables and integrating them within DRAM sub-arrays.

In [20], a novel architecture named StreamPIM is introduced to tackle the memory wall
problem and enhance the performance and energy efficiency of large-scale applications.
The proposed architecture takes advantage of racetrack memory (RM) techniques, which in-
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crease memory density and enable processing-in-memory (PIM) architectures. StreamPIM
tightly integrates the memory core with computation units, creating a matrix processor
using domain-wall nanowires instead of CMOS-based computation units. Additionally, it
introduces a domain-wall nanowire-based bus to eliminate the need for electromagnetic
conversion. By leveraging the internal parallelism of RM, the architecture optimizes per-
formance. The StreamPIM architecture effectively addresses issues related to data transfer
overheads and conversion inefficiencies, resulting in improved performance and energy
efficiency for matrix computations. It provides a promising solution to overcome the
limitations imposed by the memory wall, enabling more efficient and powerful processing
in large-scale applications. In order to compare and analyze different architectures used
in processing-in-memory (PIM) systems, a table has been compiled (Table 1) outlining
the significant features of various PIM architectures. The table provides a comprehensive
overview of the key characteristics and functionalities of each architecture, facilitating a
better understanding of their respective advantages and limitations.

Table 1. Significant features of various PIM architectures.

Paper Approach/Architecture Description Key Features Advantages Challenges

[1] Hardware Design with
3D Stacked Memory

Integration of
fixed-function
arithmetic units
and programmable
cores on a 3D
die-stacked
memory

Minimizes data
movement,
improves system
performance,
programming
model and runtime
system for
offloading and
scheduling

- Reduced data
movement between
processor and
memory

- Improved system
performance

- Enables efficient
offloading and
scheduling

- Complex
hardware
design and
integration

- Programming
model and
runtime system
development

[7] UPMEM PIM
Architecture

DRAM memory
arrays combined
with in-order cores
(DRAM processing
units—DPUs) on
the same chip

Improves
performance and
energy efficiency
in memory-bound
workloads,
benchmarking
against CPU and
GPU counterparts

- Enhanced
performance in
memory-bound
workloads

- Improved energy
efficiency

- Direct integration of
processing units in
memory

- Limited
scalability for
certain
workloads

- Programming
and software
support for
DPUs

[10]
Practical PIM
Architecture with
Commodity DRAM

Exploits bank-level
parallelism in
commercial DRAM
and 2.5D/3D
stacking
integration
technologies

Higher bandwidth,
lower energy per
bit transfer, no
changes to host
processors or
application code

- Increased memory
bandwidth

- Reduced energy
consumption per bit
transfer

- Seamless integration
with existing
systems

- Overcoming
stacking and
integration
challenges

- Ensuring
compatibility
with diverse
memory
systems

[12] Lattice Architecture
with NVPIM

Utilizes
nonvolatile
processing-in-
memory (NVPIM)
based on resistive
random-access
memory (ReRAM)
for accelerating
DCNNs

Eliminates
analog–digital
conversions,
reduces data
copies/writes,
improved energy
efficiency and
performance

- Eliminates costly
analog–digital
conversions

- Reduced data copies
and writes

- Improved energy
efficiency and
performance

- Integration and
compatibility
with existing
systems

- Achieving
high-density
ReRAM arrays
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Table 1. Cont.

Paper Approach/Architecture Description Key Features Advantages Challenges

[18] PIM-STM Library

Library providing
various
implementations
of transactional
memory (TM) for
PIM systems

Efficient TM
implementation in
PIM devices,
evaluation of
different design
choices and
algorithms

- Efficient
implementation of
transactional
memory (TM) in
PIM devices

- Provides guidelines
and alternative
design choices for
TM in PIM
architectures

- Ensuring TM
consistency and
correctness

- Overhead of
TM implementa-
tions on PIM
systems

[19] Reconfigurable PIM
Architecture

PIM architecture
integrated within
DRAM sub-arrays,
leveraging
multi-functional
look-up-tables

Higher energy
efficiency,
programmability,
and flexibility for
CNN and DNN
processing

- Increased energy
efficiency

- Programmability
and flexibility for
CNN and DNN
processing

- Utilizes
multi-functional
look-up-tables for
operations

- Designing
efficient and
scalable lookup-
table-based
architectures

- Memory access
and data
dependencies

[20] StreamPIM
Architecture

Utilizes racetrack
memory (RM)
techniques and
domain-wall
nanowires to
address memory
wall issue

Improved
performance and
energy efficiency
in large-scale
applications, tight
coupling of
memory core and
computation units

- Addresses memory
wall issue in
large-scale
applications

- Improved
performance and
energy efficiency

- Tight coupling of
memory core and
computation units

- Overcoming
challenges in
RM fabrication
and integration

- Ensuring
reliable and
efficient data
movement in
RM

3.2. Dataflow Aware Architecture

As deep convolutional neural networks (DNNs) become more complex, the need for a
manycore architecture with multiple ReRAM-based processing elements (PEs) on a single
chip arises. However, traditional PIM-based architectures often prioritize computation and
overlook the crucial role of communication. Merely increasing computational resources
without addressing the communication infrastructure’s limitations can hamper overall per-
formance. The use of chiplet-based 2.5D architectures has gained attention in recent years.
These architectures involve the integration of multiple smaller dies through a network-
on-interposer (NoI) [2]. The motivation behind this approach has been to achieve energy
efficiency and cost advantages compared to monolithic planar chips. Additionally, the
exploration of 3D integration techniques, such as through-silicon vias (TSVs) or monolithic
inter-tier vias (MIVs), offers opportunities for improved performance and energy efficiency.
In the context of machine learning workloads, it is crucial to consider the specific traffic
patterns and data exchange requirements. Real-world scenarios often involve the simulta-
neous execution of multiple machine learning applications with varying inputs. To address
this, dataflow-awareness becomes essential in manycore accelerators designed for machine
learning applications. Different machine learning workloads, such as convolutional neu-
ral networks (CNNs), graph neural networks (GNNs), and transformer models, exhibit
unique on-chip traffic patterns when mapped onto a manycore system. Optimizing the
dataflow between chip-lets or processing elements (PEs) is critical for reducing latency and
improving energy efficiency. One approach involves mapping consecutive neural layers
onto neighboring chip-lets or PEs to minimize long-range and multi-hop data exchange
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as stated in [2]. Figure 4 provides a visual representation of the SWAP architecture and
illustrates the arrangement of chiplets within the system. This architecture incorporates
both mapped (M) and unmapped (NM) chiplets, as shown in the diagram. The inclusion of
a limited number of mapped and unmapped chiplets enables the system to optimize its
performance.
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To cater to machine learning workloads, the design of a dataflow-aware network-
on-interposer (NoI) architecture suited for 2.5D/3D integration is important. However,
several challenges arise when communicating between chiplets, including dealing with
large physical distances, mitigating issues with poor electrical wires, and managing power
constraints. Achieving ultra-high bandwidth, energy-efficient, and low-latency inter-chiplet
data transfer is a significant consideration. Furthermore, thermal challenges need to be
addressed when designing dataflow-aware manycore architectures.

In [11], the advantages and challenges of utilizing resistive random-access memory
(ReRAM)-based processing-in-memory (PIM) architectures for deep learning applications
are discussed. ReRAM-based architectures have demonstrated potential in accelerating
deep learning algorithms while achieving higher energy efficiency compared to tradi-
tional GPUs. However, they also present certain limitations in terms of model accuracy
and performance. The document highlights the design challenges specific to ReRAM-
based PIM architectures for convolutional neural networks (CNNs) and graph neural
networks (GNNs). These challenges include the precision sensitivity of CNNs and the
communication-intensive nature of GNNs. Moreover, the authors address the non-idealities
of ReRAMs, such as noise, hard faults, process variations, and limited write endurance,
which can impact the implementation of large-scale deep learning algorithms. To overcome
these challenges and shortcomings, the authors propose ReRAM-based heterogeneous
manycore PIM designs as a potential solution.

In [14], the focus is on implementing processing-in-memory (PIM) technology to
accelerate deep learning (DL) workloads. To overcome the increasing fabrication costs
associated with monolithic PIM accelerators, the paper proposes a 2.5-D system that in-
tegrates multiple PIM chiplets using a network-on-package (NoP) approach. However,
existing NoP architectures often overlook the communication requirements of DL work-
loads. To address this issue, the SWAP architecture is introduced, which takes into account
the traffic characteristics of DL applications. The SWAP architecture exhibits significant
improvements in performance and energy consumption while also reducing fabrication
costs compared to state-of-the-art NoP topologies. The paper presents an optimization
methodology for designing an irregular NoP architecture specifically tailored to DL work-
loads and provides experimental evaluations that demonstrate the superior performance
of the SWAP architecture.

In [15], the challenges of on-chip training for large-scale deep neural networks (DNNs)
are addressed, and a mixed-precision RRAM-based compute-in-memory (CIM) architecture
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called MINT is proposed. MINT leverages analog computation within the memory array
to accelerate vector-matrix multiplications (VMM) and tackles issues related to weight
precision and ADC resolution. By splitting weights into MSBs and LSBs, MINT employs
CIM transposable arrays for forward and backward propagations of MSBs, while regular
memory arrays store LSBs for weight updates. The impact of ADC resolution on training
accuracy is analyzed, and experimental evaluations on a convolutional VGG-like network
using the CIFAR-10 dataset demonstrate the superior accuracy and energy efficiency of
the MINT architecture compared to baseline CIM architectures. Overall, MINT offers a
promising solution to the challenges of on-chip training in large-scale DNNs, showcasing
improved accuracy and energy efficiency.

To minimize execution time, energy consumption, and overall cost, Ref. [16] highlights
the importance of hardware-mapping co-optimization in multi-accelerator systems and the
need for exploring the multi-objective space. It introduces MOHaM, a framework for multi-
objective hardware-mapping co-optimization. MOHaM addresses these requirements and
provides an open-source infrastructure for designing multi-accelerator systems with known
workloads. MOHaM utilizes a specialized multi-objective evolutionary algorithm to select
suitable sub-accelerators, configure them, determine their optimal placement, and map
the layers of DNNs spatially and temporally. The framework is evaluated against existing
design space exploration (DSE) frameworks and demonstrates Pareto optimal solutions
with significant improvements in latency and energy reduction. It introduces custom
genetic operators and an optimization algorithm, making it faster and more efficient than
exhaustive search methods. The results show substantial latency and energy reductions
compared to state-of-the-art approaches.

3.3. Thermally Aware Architecture

The increased integration density and higher power dissipation in dataflow-aware
architectures require efficient thermal management techniques to ensure reliable operation
and prevent overheating. The design of dataflow-aware manycore architectures must
therefore tackle thermal challenges.

One such study in [3] introduces a thermally optimized dataflow-aware monolithic
3D (M3D) network-on-chip (NoC) architecture for enhancing convolutional neural network
(CNN) inferencing. The proposed design aims to integrate multiple processing-in-memory
(PIM) cores using resistive random-access memory (ReRAM) technology on a single chip.
Figure 5 illustrates the proposed thermally optimized dataflow-aware monolithic 3D (M3D)
network-on-chip (NoC) architecture for enhancing convolutional neural network (CNN)
inferencing. The architecture is designed to address the challenges of improving the
efficiency of CNN inferencing by integrating multiple processing-in-memory (PIM) cores
using resistive random-access memory (ReRAM) technology on a single chip. The key
component in the figure is the PIM cores, represented as rectangular blocks. These cores are
responsible for performing computations directly in the memory subsystem, leveraging the
benefits of PIM. The integration of PIM cores with ReRAM technology enables efficient and
high-performance processing of neural network operations. It emphasizes the importance
of efficient communication in ReRAM-based architectures and underscores the need for
an effective network-on-chip (NoC) solution. It focuses on the concept of mapping CNN
layers to ReRAM-based PEs and the significance of maintaining contiguity among PEs
to minimize communication latency. It discusses the use of space-filling curves (SFCs)
to achieve dataflow-awareness in designing the NoC architecture. More importantly, it
addresses the thermal constraints of ReRAMs, particularly the impact of temperature on
conductance and inference accuracy. It emphasizes the importance of avoiding thermal
hotspots and distributing high-power consuming cores effectively in the 3D architecture.

In [2], Floret is mentioned as an SFC-enabled network-on-interposer (NoI) topology
for 2.5D chiplet-based integration, which achieves high performance by mapping neural
layers of CNN models to contiguous chip-lets. It is stated that Floret outperforms other
existing NoI architectures. However, Ref. [3] introduces TEFLON, which is described as
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a thermally efficient dataflow-aware monolithic 3D (M3D) NoC architecture designed to
accelerate CNN inferencing without creating thermal bottlenecks. TEFLON is claimed
to reduce the energy-delay-product (EDP) and improve inference accuracy compared to
performance-optimized SFC-based counterparts.

It is also observed in this study that CNNs like GN and RN34* exhibit higher reduction
in energy-delay-product (EDP) compared to linear VGG CNNs such as VGG11, VGG19,
VGG19*, and VGG16*. This is attributed to the presence of additional bypass links for the
CNN neural layers that are spatially split among multiple processing elements (PEs) in GN
and RN34*. These additional bypass links contribute to improved efficiency and reduced
energy consumption in the inference process, resulting in higher EDP reduction compared
to the linear VGG CNNs.
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(The asterisk (*) next to the CNN models (GN, RN34, VGG19, VGG19, VGG16) indi-
cates that there might be some variations or modifications to the original models.)

A comparison of inference accuracy on the CIFAR-10 dataset is made between different
implementations:

(a) Software-only implementation without any impact of thermal noise.
(b) Floret on a 100 PE system size, considering the impact of reduced noise margin

and thermal noise, with varying PE frequency (10 MHz and 100 MHz).
It indicates that the impact of thermal noise on the inference accuracy at 100 MHz is

significant on Floret for all the CNNs. For instance, the inference accuracy of the RN34
model in the Floret-enabled NoC drops by 13.4% compared to the software-only implemen-
tation. On the other hand, TEFLON-enabled NoC shows more resilience to thermal noise
even at high frequencies, with an average accuracy loss ranging from 0.5% to 2% only.

Another study in [4] also discusses a design methodology for a heterogeneous 3D
NoC that handles the communication requirements between CPUs and GPUs efficiently
while reducing thermal issues caused by high power density. It highlights the challenges
of training CNNs on heterogeneous manycore platforms and emphasizes the benefits of
using 3D ICs and NoCs in improving performance and reducing data transfer latency. It
discusses the need to optimize both performance and thermal characteristics in manycore
systems and explores the role of CPU, GPU, and memory controller placement in achieving
better performance and temperature profiles. The authors present their proposed design
methodology and evaluate its effectiveness in reducing temperature while maintaining
performance. They conduct experiments using LeNet and CIFAR CNNs and demonstrate
a significant reduction in maximum temperature with only a minimal degradation in
the full-system energy-delay-product compared to traditional 3D NoCs optimized solely
for performance.

To gain insights into various PIM architectures, challenges, and proposed solutions,
refer to Table 2.
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Table 2. Overview of PIM architectures, challenges, and proposed solutions.

Paper Architecture Challenges Proposed Solutions

[2] Chiplet-based 2.5D
architectures

Communication limitations, energy
efficiency, cost advantages

Integration of multiple smaller dies
through a network-on-interposer (NoI)

[3]
Thermally optimized
dataflow-aware monolithic 3D
(M3D) NoC architecture

Efficient communication, thermal
challenges of ReRAMs

Space-filling curves (SFCs) for
dataflow-awareness, avoiding thermal
hotspots, distributing high-power
consuming cores

[11]
ReRAM-based
processing-in-memory (PIM)
architectures

Model accuracy, performance, noise,
hard faults, process variations,
limited write endurance

ReRAM-based heterogeneous
manycore PIM designs

[14] Network-on-package (NoP)
architecture for DL workloads

Communication requirements,
fabrication costs

SWAP architecture based on DL traffic
characteristics

[15]
Mixed-precision RRAM-based
compute-in-memory (CIM)
architecture

Higher weight precision, ADC
resolution

MINT architecture with analog
computation inside memory array

[16]
Multi-accelerator systems,
hardware-mapping
co-optimization

Latency, energy consumption, cost MOHaM framework for multi-objective
hardware-mapping co-optimization

3.4. Processing-in-Memory Systems Applications
3.4.1. Graph Neural Networks

Graph neural networks (GNNs) are machine learning models used for analyzing
graph-structured data. The execution of GNNs involves both compute-intensive and
memory-intensive operations, with the latter being a significant bottleneck due to data
movement between memory and processors. PIM systems aim to alleviate this bottleneck
by integrating processors close to or inside memory arrays.

In [5], the focus is on accelerating graph neural networks (GNNs) using processing-
in-memory (PIM) systems. The paper introduces PyGim, a machine learning framework
specifically designed to accelerate GNNs on real PIM systems. PyGim aims to harness the
power of PIM architectures to improve the performance and efficiency of GNN computa-
tions. By leveraging the capabilities of PIM, PyGim enables efficient processing of graph
data directly within the memory, reducing data movement and latency. The framework
provides an interface for developers to easily integrate and accelerate GNN models on PIM
systems, allowing for faster and more efficient graph-based computations. It proposes intel-
ligent parallelization techniques for memory-intensive GNN kernels and develops a Python
API for them. The framework enables hybrid execution of GNNs, where compute-intensive
and memory-intensive operations are executed on processor-centric and memory-centric
systems, respectively. Figure 6 depicts the execution of the aggregation step in a real
processing-in-memory (PIM) system, as presented in the study referenced as [5]. This figure
provides a visual representation of the practical implementation of the aggregation process
within the context of a PIM system. PyGim is extensively evaluated on a real-world PIM
system, outperforming its CPU counterpart and achieving higher resource utilization than
CPU and GPU systems. It emphasizes the potential of PIM architectures in accelerating
GNNs and presents several key innovations. These include the combination of accelerators
(CoA) scheme, which utilizes different accelerators for compute-intensive and memory-
intensive operations, and hybrid parallelism (HP) techniques for efficient parallelization of
GNN aggregation on PIM systems. A PIM backend is developed, integrated with PyTorch,
and made available through a user-friendly Python API. The evaluation of PyGim on a
commercial PIM system demonstrates its superior performance compared to CPU-based
approaches. PyGim is intended to be open-sourced to facilitate the widespread use of PIM
systems in GNN applications.
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There is another study in [8] that discusses the challenges of training graph neural
networks (GNNs) on large real-world graph datasets in edge-computing scenarios. It
also proposes the use of resistive random-access memory (ReRAM)-based processing-in-
memory (PIM) architectures, which offer energy efficiency and low latency. However,
ReRAM-based PIM architectures face issues of low reliability and performance when used
for GNN training with large graphs. To overcome these challenges, it introduces a learning-
for-data-pruning framework. This framework utilizes a trained binary graph classifier
(BGC) to prune subgraphs early in the training process, reducing the size of the input data
graph. By reducing redundant information, the overall training process is accelerated,
the reliability of the ReRAM-based PIM accelerator is improved, and the training cost
is reduced. Experimental results demonstrate that, using this data pruning framework,
GNN training can be accelerated, the reliability of ReRAM-based PIM architectures can
be improved by up to 1.6 times, and the overall training cost can be reduced by 100 times
compared to state-of-the-art data pruning techniques.

Another study in [9] proposes a fault-aware framework for training graph neural
networks (GNNs) on edge platforms using resistive random-access memory (ReRAM)-
based processing-in-memory (PIM) architecture. ReRAM-based PIM architectures have
gained popularity for high-performance and energy-efficient neural network training on
edge devices. They leverage the crossbar array structure of ReRAMs for efficient matrix-
vector multiplication operations.

However, ReRAMs are prone to hardware faults, particularly stuck-at-faults (SAFs),
which make the resistance of ReRAM cells unchangeable. These faults can lead to unreliable
training and poor test accuracy. The fault-tolerant methods for neural networks, such as
weight pruning and retraining, are not effective in addressing faults in ReRAM-based
architectures storing both adjacency and weight matrices. Ref. [9] introduces FARe, a novel
fault-tolerant framework specifically designed for ReRAM-based PIM architectures. FARe
considers the distribution of SAFs in ReRAM crossbars and maps the graph adjacency
matrix accordingly. It also utilizes weight clipping to address faults in the GNN weight
matrix. Experimental results demonstrate that FARe outperforms existing approaches in
terms of both accuracy and timing overhead. It can restore GNN test accuracy by 47.6%
on faulty ReRAM hardware with only a ~1% timing overhead compared to the fault-free
counterpart. FARe is model- and dataset-agnostic, making it applicable to different types
of GNN workloads and graph datasets.

Graph processing is important for various applications such as social networks, rec-
ommendation systems, and knowledge graphs. Traditional architectures face difficulties
in handling the irregular data structure of graphs and memory-bound graph algorithms.
The authors of [13] discuss the challenges and solutions related to processing large-scale
graphs using processing-in-memory (PIM) architectures. They propose a degree-aware
graph partitioning algorithm called GraphB for balanced partitioning and introduce tile
buffers with an on-chip 2D-Mesh for efficient inter-node data transfer. GraphB also in-
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corporates datalow design for computation–communication overlap and dynamic load
balancing. In performance evaluations, GraphB achieves significant speedups compared to
state-of-the-art PIM-based graph processing systems.

3.4.2. NN Inference

Utilizing processing-in-memory (PIM) architectures offers significant potential for
enhancing both the performance and energy efficiency of neural network (NN) inference.
PIM architectures integrate computational capabilities directly into the memory units,
enabling computations to be performed in close proximity to the data. This proximity
minimizes data movement and communication overhead, which are typically the major
bottlenecks in traditional computing systems. A similar study in [6] analyzes three state-
of-the-art PIM architectures: UPMEM, Mensa, and SIMDRAM. The analysis reveals that
PIM architectures significantly benefit memory-bound NNs. UPMEM shows 23 times the
performance of a high-end GPU when the GPU requires memory oversubscription for a
general matrix-vector multiplication kernel. Figure 7 displays the design of the Mensa-G
accelerator as depicted in [6]. It provides a visual representation of the architecture and
components of the accelerator. Mensa improves energy efficiency and throughput by
3.0 times and 3.1 times, respectively, compared to the Google Edge TPU for 24 Google Edge
NN models. SIMDRAM outperforms a CPU/GPU by 16.7 times and 1.4 times for three
binary NNs. It concludes that the ideal PIM architecture for NN models depends on the
specific attributes of the model, considering the inherent design choices. It emphasizes the
need for programming models and frameworks that can unify the benefits of different PIM
architectures into a single heterogeneous system. PIM is identified as a promising solution
to improve the performance and energy efficiency of various NN models.
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In [17], the paper focuses on the exploration and characterization of a commercial
processing-in-memory (PIM) technology called UPMEM-PIM. It highlights the need for
PIM architectures to address the growing demand for memory-intensive workloads in
areas such as scientific computing, graph processing, and machine learning. It mentions the
challenges faced by PIM, including programmability and flexible parallelization. UPMEM-
PIM is identified as a general-purpose PIM technology that offers programmability and
flexibility for parallel programming. General-purpose PIM designs, like UPMEM-PIM,
have the potential to become important computing devices as their hardware and software
stack matures.

In [21], the focus is on accelerating reinforcement learning (RL) algorithms using
processing-in-memory (PIM) systems. RL algorithms often face performance challenges due
to memory-bound bottlenecks and high execution latencies when dealing with extensive
and diverse datasets. To address these issues, the paper introduces SwiftRL, a framework
that explores the potential of real-world PIM architectures for accelerating RL workloads
and training phases. The study presents a roofline model highlighting the memory-bound
nature of RL workloads, demonstrates the benefits of in-memory computing systems,
conducts scalability tests on thousands of PIM cores, compares performance with traditional
CPU and GPU implementations, and provides open-source PIM implementations of RL
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training workloads. By showcasing the advantages and scalability of PIM architectures, the
study contributes to advancing RL research and applications in memory-bound scenarios,
offering new possibilities for efficient RL algorithm execution.

4. Necessity of Cyber Security in PIM

Deep neural networks (DNNs) have revolutionized various fields, including com-
puter vision, natural language processing, and pattern recognition. However, with the
increasing adoption of DNNs in critical applications, cybersecurity has emerged as a sig-
nificant concern. This section explores the challenges and opportunities in enhancing
cybersecurity in deep neural networks, drawing insights from recent research papers and
industry practices.

The rapid advancement of artificial intelligence (AI) algorithms, such as large language
models, has led to increased computing demands in data centers. This growth in AI
capabilities has expanded the attack surface for cybercriminals, who exploit vulnerabilities
in DNN architectures and training processes. Understanding the evolving threat landscape
is crucial for developing effective cybersecurity measures.

Adversarial attacks pose a significant threat to the integrity and reliability of DNNs.
These attacks involve manipulating input data through imperceptible perturbations, caus-
ing DNNs to make incorrect predictions or misclassify inputs. Defending against adver-
sarial attacks requires robust training methodologies, such as defensive distillation and
adversarial training, and the development of adversarial defense mechanisms.

Deep neural networks trained on proprietary datasets can be vulnerable to model
stealing attacks. Malicious actors can extract sensitive information from deployed models,
including proprietary algorithms, training data, and trade secrets. Protecting intellectual
property within DNN models necessitates the implementation of secure model sharing and
deployment techniques, such as watermarking and encryption.

Deep learning models often require large amounts of data for training, raising con-
cerns regarding privacy and data leakage. Adversaries may attempt to extract sensitive
information by exploiting vulnerabilities in the training process or by intercepting data
during inference. Implementing privacy-preserving techniques, such as differential privacy
and secure multi-party computation, can mitigate these risks and ensure the confidentiality
of user data.

As deep neural networks continue to advance and find widespread adoption, address-
ing cybersecurity challenges becomes paramount. Enhancing cybersecurity in DNNs re-
quires a multi-faceted approach, encompassing robust training methodologies, adversarial
defense mechanisms, secure model sharing, privacy preservation, continuous monitoring
and patching, and explainable AI techniques. By proactively addressing these challenges
and leveraging the opportunities presented in recent research papers and industry prac-
tices, the potential of deep neural networks can be harnessed while mitigating the risks
associated with cyber threats.

In [22], the paper discusses the use of heterogeneous chiplets as a solution for enabling
large-scale computing in data centers, driven by the increasing demands of artificial intelli-
gence (AI) algorithms, particularly large language models. It emphasizes the advantages
of heterogeneous computing with domain-specific architectures (DSAs) and chiplets in
scaling up and scaling out computing systems while reducing design complexity and costs
compared to traditional monolithic chip designs. The key challenges of interconnecting
heterogeneous chiplets, addressing diverse AI workloads, and ensuring chiplet interface
standards, packaging, security, and software programming are explored. The paper also
highlights infrastructure challenges related to communication and computation in AI task
acceleration and introduces metrics to characterize different AI algorithms. Chiplets are
presented as a solution for rapid development, offering performance, energy efficiency,
cost, and time-to-market advantages. The success of chiplet technology is exemplified
through the AMD EPYC CPU processor and other chiplet-based products. Overall, the
paper provides insights into the opportunities and benefits of heterogeneous chiplets for
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large-scale computing in AI workloads, addressing challenges in system integration and
driving advancements in data center computing.

In [23], the paper addresses the significance of social network security and introduces
the application of deep convolutional neural networks (DCNN) for topic mining and
security analysis. It addresses the increasing concerns regarding network information
security in social networks, such as network attacks, data leakage, and theft of confidential
information. The research aims to develop a Weibo security topic detection model using
DCNN and big data technology. The model utilizes the long short-term memory (LSTM)
structure in the memory intelligence algorithm to extract Weibo topic information, while
the DCNN learns the grammar and semantic information of Weibo topics for in-depth
data features. Comparative analysis of the improved DCNN model with other models,
such as AlexNet, convolutional neural networks (CNN), and deep neural networks (DNN),
shows superior accuracy, recall, and F1 values. The experimental results demonstrate
that the improved DCNN model achieves a recognition accuracy peak of 96.17% after
120 iterations, outperforming the other models by at least 5.4%. The intrusion detection
model also exhibits high accuracy, recall, and F1 values. Furthermore, the improved DCNN
security detection model shows lower training and testing time consumption compared
to similar approaches in the literature. The research concludes that the improved DCNN
model, based on deep learning, exhibits lower delay and good network data security
transmission. Overall, the paper emphasizes the significance of timely and effective social
network security topic mining and analysis models for ensuring data and information
security in social networks. The utilization of DCNN and big data technology in this context
provides valuable insights for enhancing network security performance and improving the
security and transmission of social network data.

In [24], the paper explores the application of deep learning techniques in the field of
cybersecurity. It highlights the challenges faced by computer systems in terms of security
and explores how advancements in machine learning, particularly deep learning, can
address these challenges. The paper presents three distinct cybersecurity problems: spam
filtering, malware detection, and adult content filtering. It describes the use of specific
deep learning techniques such as long short-term memory (LSTMs), deep neural networks
(DNNs), and convolutional neural networks (CNNs) combined with transfer learning to
tackle these problems. The experiments conducted show promising results, with an area
under ROC curve greater than 0.94 in each scenario, indicating excellent performance. The
paper emphasizes the importance of creating future-proof cybersecurity systems in the face
of the evolving threat landscape, particularly with the rise of the internet of things (IoT). It
discusses the potential of deep learning techniques to enhance the effectiveness of security
solutions by leveraging artificial intelligence and machine learning advancements. In the
related works section, the paper reviews previous research on malicious software detection,
spam filtering, adult content filtering, and neural network architecture. It highlights
the use of neural networks, including convolutional neural networks, in detecting and
classifying malware. Various machine learning algorithms such as decision trees, logistic
regression, random forests, AdaBoost, artificial neural networks, and convolutional neural
networks are discussed in the context of spam detection. Overall, the document provides a
comprehensive overview of applying deep learning in cybersecurity, evaluates the status
of experiments conducted in spam filtering, malware detection, and adult content filtering,
and discusses their simplicity and applicability in real-world environments. It aims to
inspire more individuals to explore and utilize the potential of deep learning techniques in
addressing cybersecurity challenges.

In [25], the paper aims to detect and protect cloud systems from malicious attacks by
introducing a new deep learning model. The research recognizes the increasing importance
of safeguarding cloud systems against various forms of cyber threats. To address this,
the paper proposes a novel deep learning approach specifically designed for detecting
and mitigating malicious attacks in cloud environments. The proposed model utilizes
transfer learning and deep neural networks for intelligent detection of attacks in network
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traffic. It converts the network traffic into 2D preprocessed feature maps, which are then
processed using transferred and fine-tuned convolutional layers. The model achieves high
classification accuracies, with 89.74% for multiclass and 92.58% for binary classification, as
evaluated on the NSL-KDD test dataset. The paper also provides an overview of various
state-of-the-art studies and techniques in the field of intrusion detection systems (IDS)
using deep learning. These include models based on CNN, LSTM, autoencoders, and
other deep learning architectures. Different datasets such as NSL-KDD, KDD Cup’99,
and UNSW-NB15 have been utilized for training and evaluating the performance of these
models. In addition, the paper mentions the use of techniques like data preprocessing,
reinforcement learning, information gain (IG) filter-based feature selection, and swarm-
based optimization to enhance the performance of IDS systems. It also discusses the
effectiveness of deep learning approaches in improving the accuracy and efficiency of
intrusion detection. Overall, the research article highlights the significance of deep transfer
learning in addressing the challenges of cyber security, particularly in cloud systems. The
proposed model demonstrates promising results in detecting and classifying various types
of attacks, contributing to the advancement of cyber security technologies.

In [26], the paper addresses the challenges associated with improving the efficiency
of malware detection using machine learning techniques and proposes potential solu-
tions. The authors address the increasing security threats posed by malware in embedded
systems and the need for robust detection methods. The paper introduces the concept
of processing-in-memory (PIM) architecture, where the memory chip is enhanced with
computing capabilities. This architecture minimizes memory access latency and reduces
the computational resources required for model updates. The authors propose a PIM-based
approach for malware detection, incorporating precision scaling techniques tailored for
convolutional neural network (CNN) models.

The proposed PIM architecture (as shown in Figure 8) demonstrates higher through-
put and improved energy efficiency compared to existing lookup table (LUT)-based PIM
architectures. The combination of PIM and precision scaling enhances the performance of
malware detection models while reducing energy consumption. This approach offers a
promising solution to the resource-intensive nature of malware detection model updates
and contributes to more efficient and sustainable cybersecurity practices. The paper high-
lights the three-fold contributions of the research: memory-efficient malware detection
using in-memory computation, precision scaling to decrease power consumption, and scal-
ing malware samples to lower bit integer types while maintaining high detection accuracy.
The related work section discusses various malware detection techniques, including static
and dynamic analysis, image processing, and the use of neural networks, emphasizing the
advantages and limitations of each approach. It also provides an overview of processing-in-
memory (PIM) designs and their benefits in terms of throughput and energy efficiency for
deep learning applications. Overall, the paper presents a novel approach to improving the
efficiency of malware detection through the integration of processing-in-memory architec-
ture and precision scaling techniques. The proposed methodology shows promising results
and addresses the challenges associated with training models on evolving malware data.

In [27], the paper explores the security implications associated with processing-in-
memory (PIM) architectures. PIM architectures aim to enhance performance and energy
efficiency by enabling direct access to main memory, but this convenience can potentially
introduce vulnerabilities. The research introduces a set of high-throughput timing attacks
called IMPACT, which exploit PIM architectures to establish covert and side channels. It
highlights two covert-channel attack variants that leverage PIM architectures to achieve
high-throughput communication channels. It also presents a side-channel attack on a DNA
sequence analysis application that leaks private characteristics of a user’s sample genome.
The results show significant improvements in communication throughput compared to
existing covert-channel attacks. It discusses the challenges and limitations of traditional
defense mechanisms against PIM-based attacks and proposes potential countermeasures. It
evaluates two defense mechanisms and analyzes their performance and security trade-offs.
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Refer to Table 3 for an overview of papers addressing the importance of cyber-
security in processing-in-memory (PIM) systems. It offers insights into different ap-
proaches and perspectives taken by researchers to tackle security challenges associated
with PIM technologies.

Table 3. Analysis of papers on cybersecurity in PIM.

Paper Methodology Advantages Challenges

[22] Heterogeneous chip-lets
- Scaling up and scaling out computing systems
- Reduced design complexity and costs

- Chip-let interface
standards

- Packaging and security
issues

- Software programming

[23] Deep convolutional neural
networks (DCNN)

- Superior accuracy and performance
- Timely and effective social network security topic

mining and analysis models
--

[24]

Deep learning techniques
(LSTMs, DNNs, CNNs)
combined with transfer
learning

- Effective application in cybersecurity
- Promising experimental results

- Challenges in spam
filtering, malware
detection, and adult
content filtering

[25] Deep neural networks and
transfer learning

- High classification accuracies
- State-of-the-art techniques in intrusion detection

systems using deep learning
--

[26] Processing-in-memory
(PIM) architecture

- Efficient malware detection
- Higher throughput and improved

energy efficiency

[27]
Processing-in-memory
(PiM) architectures and
timing attacks

--

- Security implications of
PiM architectures

- High-throughput timing
attacks exploiting PiM
architectures

Overall, this section provides insights into the challenges, opportunities, and benefits
associated with cybersecurity measures in various domains, including deep neural net-
works, large-scale computing, social media platforms, and cloud systems. It highlights the
importance of robust techniques and advanced technologies in protecting against cyber
threats and preserving data security.

5. Summary of the Review

This article provides a comprehensive review of the latest advancements in processing-
in-memory (PIM) techniques for deep learning applications. It addresses the limitations of



Computers 2024, 13, 174 22 of 26

traditional von Neumann architectures and highlights the benefits of chiplet-based designs
and PIM in terms of scalability, modularity, flexibility, performance, and energy efficiency.

This article begins by discussing the challenges faced by monolithic chip architectures
and how chiplet-based designs offer improved scalability and resource utilization. It then
delves into the concept of processing-in-memory, which aims to overcome the memory
bottleneck by integrating computational units directly into the memory subsystem. PIM
architectures reduce data movement, minimize latency, and improve energy efficiency by
performing computations in close proximity to the data. Various memory technologies,
such as SRAM, DRAM, ReRAM, and PCM, can be leveraged in PIM architectures.

This review emphasizes the significance of dataflow-awareness, communication opti-
mization, and thermal considerations in designing PIM-enabled manycore architectures. It
explores different machine learning workloads and their specific dataflow requirements.
The document also presents a heterogeneous PIM system for energy-efficient neural net-
work training and discusses thermally efficient dataflow-aware monolithic 3D NoC archi-
tectures for accelerating CNN inferencing.

There are several areas of future research and development in the field of processing-in-
memory architectures for deep neural networks. Some potential future directions include:

1. Exploring advanced memory technologies: further investigation into emerging mem-
ory technologies, such as memristors or spintronics, can offer new opportunities for
enhancing the performance and energy efficiency of PIM architectures.

2. Optimizing communication and interconnectivity: continued research on efficient
on-chip interconnection networks and communication protocols can further reduce
data movement and latency in PIM architectures.

3. Integration with emerging technologies: exploring the integration of PIM architectures
with other emerging technologies, such as neuromorphic computing or quantum
computing, can lead to novel and more efficient computing systems.

4. Security and privacy considerations: addressing the cybersecurity challenges associ-
ated with deep neural networks and PIM architectures, including adversarial attacks,
model stealing attacks, and privacy concerns, is crucial for the widespread adoption
of these technologies.

5. Hardware–software co-design: further exploration of hardware–software co-design
approaches can enable better optimization and utilization of PIM architectures, con-
sidering the unique characteristics of deep learning workloads.

6. Real-world application deployment: conducting practical experiments and case stud-
ies to evaluate the performance, energy efficiency, and scalability of PIM architec-
tures in real-world deep learning applications can provide valuable insights for
their adoption.

Table 4 provides a comprehensive collection of papers that delve into the topic of
processing-in-memory (PIM). It encompasses discussions on architecture, challenges, pro-
posed solutions, and future scope, as explored in this review.

Table 4. Compilation of papers on PIM: architecture, challenges, proposed solutions, and
future scope.

Paper Architecture Challenges Proposed Solutions Future Scope

[2] Chiplet-based 2.5D
architectures

Communication limitations,
energy efficiency, cost
advantages

Integration of multiple smaller
dies through a
network-on-interposer (NoI)

Exploring advanced
interconnect technologies,
optimizing power
efficiency further

[3]

Thermally optimized
dataflow-aware
monolithic 3D (M3D)
NoC architecture

Efficient communication,
thermal challenges of
ReRAMs

Space-filling curves (SFCs) for
dataflow-awareness, avoiding
thermal hotspots, distributing
high-power consuming cores

Investigating advanced
thermal management
techniques, extending to new
memory technologies
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Table 4. Cont.

Paper Architecture Challenges Proposed Solutions Future Scope

[11]
ReRAM-based
processing-in-memory
(PIM) architectures

Model accuracy,
performance, noise, hard
faults, process variations,
limited write endurance

ReRAM-based heterogeneous
manycore PIM designs

Enhancing error tolerance,
exploring novel training
algorithms for PIM
architectures

[14]
Network-on-package
(NoP) architecture for
DL workloads

Communication
requirements, fabrication
costs

SWAP architecture based on
DL traffic characteristics

Exploring advanced
packaging technologies,
optimizing for
heterogeneous workloads

[15]

Mixed-precision
RRAM-based
compute-in-memory
(CIM) architecture

Higher weight precision,
ADC resolution

MINT architecture with analog
computation inside memory
array

Investigating novel analog
computing schemes,
optimizing for large-scale
deployment

[16]

Multi-accelerator
systems,
hardware-mapping
co-optimization

Latency, energy
consumption, cost

MOHaM framework for
multi-objective
hardware-mapping
co-optimization

Exploring dynamic workload
allocation, optimizing for
emerging DL algorithms

[18]

TEFLON: A Design
Space Exploration
Framework for
Hardware Accelerators

Design space exploration,
accelerator architectures

TEFLON framework for
exploring accelerator designs
with customizable datapath
and memory hierarchy

Enhancing design
exploration capabilities,
incorporating new
architectural innovations

[21]
Deep Learning
Accelerators: A
Comprehensive Survey

Deep learning accelerator
architectures, performance,
energy efficiency

Survey of various deep
learning accelerator
architectures and their
characteristics

Investigating
hardware–software
co-design, exploring
heterogeneous computing
platforms

[23]
Efficient Processing of
Deep Learning Models:
A Tutorial and Survey

Deep learning model
compression, quantization,
hardware-friendly
optimization

Tutorial and survey on various
techniques for efficient
processing of deep learning
models

Exploring federated learning
approaches, optimizing for
edge and IoT devices

[27]
Hardware
Architectures for Deep
Learning: A Survey

Hardware architectures for
deep learning, accelerators,
memory systems

Comprehensive survey on
hardware architectures for
deep learning, including
accelerators and memory
systems

Investigating neuromorphic
computing, exploring
advanced memory
technologies

6. Conclusions

In conclusion, this comprehensive review has explored the advancements in processing-
in-memory (PIM) techniques for deep learning applications. The limitations of monolithic
chip designs in deep learning, such as area, yield, and on-chip interconnection costs, have
been addressed, and chiplet-based architectures have emerged as a promising solution.
These architectures offer improved scalability, modularity, and flexibility, allowing for better
yield and reduced costs. Furthermore, chiplet-based designs enable efficient utilization of
resources by distributing the computational workload across multiple chiplets, resulting in
enhanced performance and energy efficiency.

Processing-in-memory (PIM) techniques have gained significant attention as they aim
to overcome the memory bottleneck in deep learning. By integrating processing units
directly into the memory subsystem, PIM architectures minimize data movement, reduce
latency, and improve energy efficiency. This review has highlighted the potential of PIM
architectures in leveraging emerging memory technologies like resistive random-access
memory (ReRAM) to achieve high-performance and energy-efficient acceleration of deep
learning tasks.

The importance of dataflow-awareness and communication optimization in the design
of PIM-enabled manycore platforms has been emphasized. Different machine learning
workloads require tailored dataflow-awareness to minimize latency and improve energy
efficiency. Additionally, the challenges associated with on-chip interconnection networks,
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thermal constraints, and scalable communication in chiplet-based architectures have been
discussed.

A heterogeneous PIM system for energy-efficient neural network training has been
presented, combining fixed-function arithmetic units and programmable cores on a 3D
die-stacked memory. This approach provides a unified programming model and run-
time system for efficient task offloading and scheduling. The significance of program-
ming models that accommodate both fixed-function logics and programmable cores has
been highlighted.

This review has also explored thermally efficient dataflow-aware monolithic 3D (M3D)
NoC architectures for accelerating CNN inferencing. By integrating processing-in-memory
cores using ReRAM technology and designing efficient network-on-chip (NoC) architec-
tures, data movement can be reduced. The advantages of TEFLON (thermally efficient
dataflow-aware 3D NoC) over performance-optimized space-filling curve (SFC)-based
counterparts in terms of energy efficiency, inference accuracy, and thermal resilience have
been highlighted.

Overall, the advancements in processing-in-memory techniques have the potential to
revolutionize deep learning hardware. These approaches offer scalability, flexibility, im-
proved performance, and energy efficiency, addressing the challenges faced by traditional
monolithic chip designs. By leveraging the benefits of processing-in-memory techniques,
researchers and engineers can pave the way for enhanced deep learning capabilities and
contribute to the development of efficient and powerful AI hardware.
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