
Citation: Farajpour, A.; Ingman, W.V.

Flexural Eigenfrequency Analysis of

Healthy and Pathological Tissues

Using Machine Learning and

Nonlocal Viscoelasticity. Computers

2024, 13, 179. https://doi.org/

10.3390/computers13070179

Academic Editor: Hersh Sagreiya

Sagreiya

Received: 19 June 2024

Revised: 12 July 2024

Accepted: 17 July 2024

Published: 19 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Flexural Eigenfrequency Analysis of Healthy and Pathological
Tissues Using Machine Learning and Nonlocal Viscoelasticity
Ali Farajpour 1,2 and Wendy V. Ingman 1,2,*

1 Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital,
Woodville South, SA 5011, Australia; ali.farajpourouderji@adelaide.edu.au

2 Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
* Correspondence: wendy.ingman@adelaide.edu.au; Tel.: +61-8-8222-6141

Abstract: Biomechanical characteristics can be used to assist the early detection of many diseases,
including breast cancer, thyroid nodules, prostate cancer, liver fibrosis, ovarian diseases, and tendon
disorders. In this paper, a scale-dependent viscoelastic model is developed to assess the biomechani-
cal behaviour of biological tissues subject to flexural waves. The nonlocal strain gradient theory, in
conjunction with machine learning techniques such as extreme gradient boosting, k-nearest neigh-
bours, support vector machines, and random forest, is utilised to develop a computational platform
for biomechanical analysis. The coupled governing differential equations are derived using Hamil-
ton’s law. Transverse wave analysis is conducted to investigate different normal and pathological
human conditions including ovarian cancer, breast cancer, and ovarian fibrosis. Viscoelastic, strain
gradient, and nonlocal effects are used to describe the impact of fluid content, stiffness hardening
caused by the gradients of strain components, and stiffness softening associated with the nonlocality
of stress components within the biological tissues and cells. The integration of the scale-dependent
biomechanical continuum model with machine learning facilitates the adoption of the developed
model in practical applications by allowing for learning from clinical data, alongside the intrinsic
mechanical laws that govern biomechanical responses.

Keywords: flexural eigenfrequency response; nonlocal stress; strain gradient; machine learning;
ovarian cancer; breast cancer; ovarian fibrosis

1. Introduction

The mechanical properties of cells, as well as the mechanical characteristics of their
microenvironment, affect cell behaviour, differentiation, and cell fate [1]. Understanding
the interaction between mechanical signals and biological properties plays a vital role in
the appropriate design of tissue engineering scaffolds and the advancement of regenerative
medicine [2,3]. It has been revealed that the regenerative characteristics of mesenchymal
stem cells can be enhanced by means of mechanical conditioning [4]. Moreover, due to
the importance of mechanical stimuli in the tumour microenvironment, understanding
the mechanobiological characteristics of cancer cells would enhance more targeted cancer
treatments and enable strategies for cancer management [5]. In the clinic, the mechanical
response of human tissue under wave propagation induced by external transducers has
recently been utilised to assist in the detection of liver fibrosis [6], cardiovascular risk [7],
breast cancer [8], and ovarian diseases [9].

To assess the biomechanical and mechanobiological properties of both biological tis-
sues and individual cells, mathematical models are of high importance, as they bridge the
gap between experimental observations and theoretical predictions [10]. These models
provide valuable insights into the behaviour and responses of complex biological systems
subject to mechanical stimuli. Particularly important to disease detection, continuum
theories such as poroelasticity, elasticity, and viscoelasticity enable us to develop accurate
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computational and analytical platforms to extract intrinsic biomechanical features, which
are essential for early disease diagnosis where tissue stiffness hardening or softening is
involved [11,12]. In addition to continuum mechanics-based models, molecular dynam-
ics approaches have been widely used to assess the dynamic behaviour of sub-cellular
components such as proteins, lipid membranes, organelles, and the cytoskeleton [13]. The
application of an appropriate theoretical framework is highly dependent on the scale at
which the mechanical properties are examined. At small-scale levels, such as nanoscale
and microscale, molecular dynamics is used [14], while at the tissue level, finite element
methods [15] and mathematical models of continuum mechanics [16] are applicable. In
molecular dynamics, the motions of individual molecules over time are simulated and
monitored by simulating their interactions with other molecules [13]. This simulation
allows us to understand the influence of various factors and signals on the deformation
and mechanical behaviour of proteins, biomolecules, and organelles. In contrast, at larger
scales, including tissue and organ levels, classical continuum theories are used to develop
analytical mathematical models to investigate biomechanical properties such as stiffness,
vibrational frequency, and wave propagation response. Finite element techniques, in which
the organ is divided into small, interconnected pieces, are commonly used where there
is complexity in the analysis due to geometrical and material nonlinearities, as well as
structural irregularities [17].

Size-dependent models of nonlocal continuum mechanics have shown great promise
for understanding mechanical behaviour at intermediate small-scale levels between the
molecular level and large-scale levels, and in bridging the gap between molecular dynamics
and traditional continuum theories [18]. In advanced nonlocal theories of elasticity, extra
mathematical terms are introduced, allowing for the incorporation of a broader spectrum
of phenomena at small-scale levels, which are omitted in classical elasticity theories [19].
These phenomena include, but are not limited to, deformations due to higher gradients of
strain components [20] and stiffness hardening associated with couple stresses [21], as well
as stiffness softening induced by nonlocal mechanical stresses [22].

Gao and Lei [23] developed a size-dependent Timoshenko beam model based on
the nonlocal elasticity theory to investigate the buckling behaviour of a single protein
microtubule in a viscoelastic surrounding cytoplasm. Furthermore, Heireche et al. [24]
introduced a modified beam model to analyse the vibrational characteristics of protein
microtubules in living cells by incorporating the influences of nonlocal stress, rotary inertia,
and shear deformation. Civalek and Demir [25] developed a scale-dependent finite element
technique to assess the mechanical response of protein microtubules embedded in an elastic
matrix. Moreover, Akgöz and Civalek [26] presented a higher-order shear deformation
model of microtubules based on the modified strain gradient theory. They found that
the influence of shear deformation was more pronounced when the aspect ratio of the
microtubule was smaller, and nonlocal effects were higher for smaller lengths. Furthermore,
the torsional and axial frequency responses of microtubules have been investigated accord-
ing to a nonlocal continuum rod model [27]. In addition to classical nonlocal continuum
mechanics [28], other scale-dependent models, including those based on nonlocal strain
gradient theory [29,30], nonlocal couple stress theory [31], and surface elasticity theory [32],
as well as nonlocal integral models [33], have been utilised to explore the biomechanical
behaviour of biological components at small-scale levels. Moreover, a nonlocal thermoe-
lasticity approach [34], a higher-order nonlocal theory [35], a nonlinear nonlocal elasticity
model [36], and a coarse-grained differential-tension technique [37] have recently been
developed for analysing the biomechanics of different biological tissues, indicating the
validity and great promise of nonlocal scale-dependent models in biomechanical modelling.

In the present paper, we aim to develop a scale-dependent viscoelastic model for
flexural wave propagation within biological cells and tissues. The proposed modified
continuum model is capable of describing flexural wave characteristics at different scales,
as both stiffness hardening and softening are considered within the framework of the
nonlocal strain gradient model. The strain gradient parameter is responsible for the stiffness
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hardening response under external mechanical stimuli at larger scales, while the nonlocal
stress parameter accounts for stiffness softening at smaller scales. The Kelvin–Voigt model
of structural viscoelasticity is employed to incorporate the influence of the fluid content of
biological tissue. Differential equations of wave dispersion are derived based on Hamilton’s
law. To overcome the limitations of the nonlocal continuum mechanics approach caused
by fundamental assumptions, a machine learning algorithm is developed and trained
on the flexural wave characteristics of ovarian tissue with different fibrosis conditions
as well as ovarian cancer and breast cancer. This work introduces the first viscoelastic
higher-order nonlocal model to investigate flexural wave propagation in ovarian tissue.
The machine learning algorithm demonstrates great potential in accurately identifying the
eigenfrequencies and damping ratios of ovarian and breast tissues under flexural waves,
even with a limited number of samples. Using the viscoelastic model of nonlocal elasticity,
significant differences are identified between fibrous ovarian tissue and normal tissue,
as well as between the ovarian cancerous and healthy condition, demonstrating that the
eigenfrequency parameter and damping ratio can serve as indicators of ovarian diseases.

2. Scale-Dependent Continuum Approach of Nonlocal Viscoelasticity

Assuming in-plane displacements are small, the strain components of a biological
sample (εij) can be expressed in terms of the transverse displacement (w) as

εxx(x, y, z, t) = −z ∂2w(x,y,t)
∂x2 ,

εyy(x, y, z, t) = −z ∂2w(x,y,t)
∂y2 ,

εxy(x, y, z, t) = −z ∂2w(x,y,t)
∂x∂y ,

(1)

where x, y, and z are the components of the Cartesian coordinate system and t is time.
Based on nonlocal strain gradient continuum mechanics [20], the components of the couple
stress resultants (Mij) are obtained:
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where

∇2 f =
d2 f
dx2 +

d2 f
dy2 +

d2 f
dz2 , Mij =
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−h/2

zσijdz,
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(3)

in which ∇2 f is the Laplacian operator of an arbitrary given function f. The thickness of
the rectangular-shaped biological sample is indicated by h. The elasticity modulus, shear
modulus, and Poisson’s ratio of the sample are denoted by Eij, Gij and vij, respectively. λnls

0
and λnls

1 represent the scale parameters of the first and second stress nonlocalities, which
are defined by λnls

0 = (κ0↕cell)
2 and λnls

1 = (κ1↕cell)
2, respectively [20,30]. In addition,

Θ2
stg is the strain gradient parameter, which is also indicated by ↕2

s (i.e., Θ2
stg = ↕2

s ). κ0
and κ1 are two calibration parameters used to better mimic experimental data. ↕cell is a
cellular-level geometrical parameter used to incorporate the effect of the inner structural
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organisation of the biological sample. Based on the Kelvin–Voigt model of viscoelasticity,
Young’s modulus Eij is replaced by Eij[(∗) + g(∂/∂t)(∗)], and consequently, the stiffness
component Dij is replaced by Dij[(∗) + g(∂/∂t)(∗)], where g is the viscoelastic damping co-
efficient [38]. The final couple stress resultants of the scale-dependent continuum approach
with viscoelasticity are given by(
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Using Hamilton’s law, the equation of the time-dependent transverse deformation of
the biological sample can be written as

∂2 Mxx
∂x2 +

∂2 Myy
∂y2 + 2 ∂2 Mxy
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(5)

where m0 and m2 are the mass inertia terms and are related to the mass density of the
biological sample (ρbio) by the following relationships:

m0 =

h/2∫
−h/2

ρbiodz, m2 =

h/2∫
−h/2

z2ρbiodz. (6)

It is assumed that the sample is embedded in a viscoelastic medium with normal,
shear, and structural viscoelasticity. The external transverse load per unit area (fz) due to
the surrounding viscoelastic medium is

fz = −kww + ks
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Here, kw, ks, and cf are the Winkler constant, shear constant, and viscoelastic coefficient
of the surrounding medium, respectively. Substituting the couple stress components from
Equation (4) into Equation (5), and using Equation (7), one obtains
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The transverse deflection of the biological sample induced by the propagation of
flexural waves can be expressed as

w(x, y, t) = W exp
[
i
(
kxx + kyy − ωt

)]
, (9)

where W is a constant associated with the transverse deflection amplitude. kx and ky
are wave numbers in the x and y directions, respectively. ω represents the dimensional
frequency parameter. Substituting Equation (9) into the time-dependent equation of defor-
mation leads to
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For generalisation and simplification, a set of dimensionless geometrical and physical
parameters is introduced as
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where ω is the dimensionless frequency parameter. In this analysis, viscoelastic effects
associated with the fluid content of both the biological sample and the surrounding medium
are incorporated. In viscoelasticity, the frequency parameter is divided into real and
imaginary parts as

iω = Ω
(

ζ ± i
√

1 − ζ2
)

, (13)

where ζ is the general damping ratio and Ω is the undamped frequency parameter of the
biological system.

Table 1 lists the limitations of the proposed viscoelastic model of nonlocal strain gradi-
ent theory compared to other continuum models. The classical elasticity model is commonly
used in its linear form, which is restricted to small deformations. Furthermore, classical
elasticity models are not able to describe fluid-related effects such as viscoelastic damping
and fluid–solid interactions. The boundary conditions of biological tissues in practical
situations are complex, making their implementation challenging and computationally
expensive. Classical poroelasticity theory assumes a simplified fluid flow model within
a porous structure, which might not be able to completely model complex fluid–matrix
interactions in biological tissues. The classical poroelasticity theory lacks scale effects,
restricting its capability for detecting tumours to small-scale levels. The application of local
viscoelasticity models in the detection of abnormalities is limited due to homogeneity and
scale invariance assumptions. The nonlocal elasticity theory incorporates a scale parameter
that is associated with stiffness softening caused by stress nonlocality. The present model
of nonlocal strain gradient viscoelasticity contains three scale parameters, allowing for
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the comprehensive incorporation of scale effects. However, the computational cost of the
present model is higher than those available in the literature. Furthermore, the precise
determination of these scale parameters from experimental data can be challenging and
costly in healthcare applications.

Table 1. Limitations of the current modelling approach for the estimation of biomechanical character-
istics compared to available models.

Model Model’s Biomechanical
Parameters Limitations Scale Effects

Classical
elasticity

Elastic constants,
Poisson’s ratio

Linearity, homogeneity,
homogeneity,
boundary conditions

Not incorporated

Classical
poroelasticity

Elastic moduli, Poisson’s
ratio, fluid-related
parameters

Simplified fluid
interaction, homogeneity,
coupling complexity

Not incorporated

Local
viscoelasticity

Elastic moduli, Poisson’s
ratio, viscoelastic
damping coefficient

Linear assumption,
homogeneity, boundary
conditions

Not incorporated

Nonlocal
elasticity

Elastic moduli, Poisson’s
ratio, stress nonlocality

Parameter identification,
homogeneity, viscoelastic
effects

Zeroth-order
nonlocal effect

Present model

Elastic moduli, Poisson’s
ratio, viscoelastic
damping, strain gradient,
stress nonlocality

Computational
complexity, parameter
identification,
homogeneity

Three different
scale effects

3. Finite Element Approach

COMSOL Multiphysics Simulation software version 5.5 was employed to build a finite
element model (FEM) to simulate the mechanical behaviour of biological tissues under
flexural wave propagation at large-scale levels and to generate more data for training a
machine learning model. The three-dimensional shell interface of the structural mechanics
module was utilised to create and analyse the tissue. Shells are thin structures with
flexural stiffness that can be either flat or curved. In this analysis, the shell structure was
assumed to be flat and of a rectangular shape. Geometrical nonlinearity was assumed
to be negligible due to the application of light flexural waves in healthcare. To solve the
FEM-based governing of differential equations, a multifrontal massively parallel sparse
direct (MUMPS) technique was implemented. The sequence type to create finite elements
was set to the physics-controlled mesh with an extra fine element size. The four edges of
the section were assumed to be simply supported. The initial displacements and velocity
components were set to zero. The length, width, and thickness were taken as 30 cm, 30 cm,
and 1 cm, respectively. The effects of the shear modulus on the flexural wave response
were negligible, as the length-to-thickness ratio was considerably high.

4. Machine Learning Approach

In this section, several machine learning algorithms are developed for analysing
the biomechanical flexural wave characteristics of biological tissues. The advantages of
machine learning approaches, with respect to other techniques such as scale-dependent
continuum mechanics, molecular dynamics, and finite element methods, include, but are
not limited to, scalability [39], computational efficiency [40], (bio-) complexity handling [41],
cyber threat management [42], and the ability to analyse large datasets in real time [43].
Each mathematical model developed based on continuum mechanics comes with its own
assumptions that restrict its application in practical situations. Moreover, simulation tech-
niques such as the finite element method (suitable for large-scale modelling) and molecular
dynamics (suitable for small-scale modelling) are particularly expensive, restricting their
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applications in the clinic. By contrast, the use of a properly trained machine learning model
in healthcare for the extraction of biomechanical features of biological samples at different
scales is rapid and scalable to large datasets [44,45]. In addition, machine learning excels
in the incorporation of complexities such as nonlinear responses, non-uniform loading
conditions, and imperfections. These capabilities and benefits make machine learning a
desirable approach to study the flexural wave characteristics of biological samples.

Figure 1 provides a brief overview of the proposed machine learning (ML) method-
ology for studying the biomechanical characteristics of biological samples. The ML tool
utilises a hybrid dataset for training, including scale-dependent data derived from the
nonlocal strain gradient model of viscoelasticity, experimental data, and flexural wave
characteristics based on the FEM. The biomechanical properties of various biological sam-
ples, including both control samples and pathological conditions, are used during the
training process to fit a regression-based ML algorithm. A prediction is made to simulate
the frequencies of various samples under flexural waves. To verify the methodology’s
accuracy and efficacy, mean squared errors (MSE) are obtained by comparing the predicted
frequencies with those of the test dataset. Train/test splitting is performed considering 70%
of the data for training and 30% for testing.
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Figure 1. Schematic representation of the proposed ML approach for analysing the biomechanical
characteristics of biological tissue subject to flexural wave propagation. A hybrid dataset is used
for the training data, consisting of scale-dependent data, experimental data, and flexural wave data
obtained by the FEM. The hybrid dataset of various biological samples is used to train a machine
learning model of regression to predict the frequency of transverse waves.

Different ML regressors are developed and tested, including Ridge, ElasticNet, Lasso,
random forest [46], and extreme gradient boosting (XGBoost), as well as the regressors
of the support vector machine (SVM) technique [47] and k-nearest neighbours (KNN).
The present integrated methodology harnesses the advantages of ML regressors in con-
junction with fundamental scale-dependent principles of viscoelasticity and experimental
observation, providing a comprehensive framework for understanding tissue behaviour
under transverse waves. The KNN, SVM, and random forest regressors, together with
Ridge, Lasso, and ElasticNet, are imported from scikit-learn library 1.2.2 [48]. To normalise
the features, they are divided by their corresponding maximum value. The target is set
as the frequency parameter of the biological tissue under flexural wave propagation. A
biomechanical dataset with 201 biological samples for each case study is employed. In
healthcare and biomedical applications, providing a large dataset with different types
of malignancy and healthy conditions for training is often a challenge. Therefore, data
augmentation techniques and machine learning models with the capability of handling
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small datasets effectively are of high importance. The integration of the ML model with
the FEM and nonlocal strain gradient model of viscoelasticity would further enhance the
diversity of the dataset and help prevent overfitting.

5. Results
5.1. Validation Study

FEM simulations were conducted to verify the results of the scale-dependent viscoelas-
tic model considering three different case studies: (1) human ovarian cancer at the cellular
level, (2) human breast cancer at the cellular level, and (3) mouse ovarian fibrosis associ-
ated with aging. The mechanical properties of OVCAR-3 (ovarian cancer cells), HO-8910
(ovarian cancer cells), and HOSEpiC (ovarian healthy cells) were extracted from the first
FEM analysis in Ref. [49]. Two types of human breast cells, including MCF-7 as cancer cells
and MCF-10A as healthy cells with a known Young’s modulus [50], were considered in
the FEM simulations of the second case study. Furthermore, the eigenfrequencies of the
flexural waves within different ovarian mouse tissues were investigated with a particular
focus on ovarian fibrosis with aging. The following ovarian mouse tissues were simulated:
old, young, and old with collagenase treatment. The Young’s moduli of these mouse
tissues were experimentally measured using instrumental indentation [51]. Nonlocal and
strain gradient effects were not incorporated, since COMSOL Multiphysics Simulation
software version 5.5 did not encompass the nonlocal strain gradient theory. Table 2 lists
the eigenfrequencies obtained by the present scale-dependent viscoelastic model and those
estimated by the FEM. The percentage error was defined as 100 × (FEM − NSGT)/FEM,
where NSGT is an abbreviation for nonlocal strain gradient theory. A close match was
found between the FEM and the NSGT for the eigenfrequencies of vibrations induced by
the propagation of flexural waves in all three case studies.

The results of the present viscoelastic model are compared with those reported in the
literature on the scale-dependent eigenfrequency response of small-scale structures [38] in
Figure 2. The present scale-dependent viscoelastic model contains three different scale pa-
rameters, including two nonlocal parameters and one strain gradient parameter. When the
strain gradient effects are ignored and the scale influence of the second nonlocal parameter
is neglected, the present model is reduced to the classical nonlocal viscoelastic model [38].
To perform a reasonable comparison, the dimensionless material and geometrical prop-
erties available in the model are set the same as in Ref. [38]. The dimensionless Winkler
coefficient of the surrounding medium is taken as 100, while its shear coefficient is set to
zero. The validation study is conducted for two different values of the nondimensional
damping coefficients (NDCs) of the surrounding medium (i.e., NDC = 20 and NDC = 28).
It is found that the results of the present viscoelastic model are in excellent agreement with
those reported in the open literature on small-scale structures.

Table 2. Comparison study: FEM versus the present scale-dependent viscoelastic model. Ovarian
cancer cells of type OVCAR-3 and HO-8910, breast cancer cells of type MCF-7, as well as healthy
ovarian (HOSEpiC) and breast (MCF-10A) cells are taken into account. Furthermore, a comparison
study is conducted between the eigenfrequencies of different ovarian mouse tissues.

Type
Young’s
Modulus
(Pa)

Dimensionless
Flexural Wave
Number

FEM Present
Model

Percentage
Error (%)

OVCAR-3 (ovarian
cancer cells) 1195.72 1 0.1297 0.1305 0.6168

1195.72 2 0.5104 0.5218 2.2335

HO-8910 (ovarian
cancer cells) 996.27 1 0.1184 0.1191 0.5912

996.27 2 0.4659 0.4763 2.2322
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Table 2. Cont.

Type
Young’s
Modulus
(Pa)

Dimensionless
Flexural Wave
Number

FEM Present
Model

Percentage
Error (%)

HOSEpiC (ovarian
healthy cells) 2160.94 1 0.1744 0.1754 0.5734

2160.94 2 0.6861 0.7015 2.2446

MCF-7 (breast
cancer cells) 487.44 1 0.0828 0.0833 0.6039

487.44 2 0.3259 0.3332 2.2400

MCF-10A (breast
healthy cells) 1231.07 1 0.1316 0.1324 2.2400

1231.07 2 0.5179 0.5295 2.2398

Young mouse
ovary 1980 1 0.1669 0.1679 0.5992

2 0.6567 0.6715 2.2537

Old mouse ovary 4360 1 0.2477 0.2491 0.5652

2 0.9746 0.9964 2.2368

Old mouse ovary
with collagenase
treatment

2280 1 0.1791 0.1801 0.5583

2 0.7047 0.7205 2.2421

Computers 2024, 13, x FOR PEER REVIEW 10 of 31 
 

Young mouse ovary 1980 1 0.1669 0.1679 0.5992 
  2 0.6567 0.6715 2.2537 
Old mouse ovary 4360 1 0.2477 0.2491 0.5652 
  2 0.9746 0.9964 2.2368 
Old mouse ovary 
with collagenase 
treatment 

2280 1 0.1791 0.1801 0.5583 

  2 0.7047 0.7205 2.2421 

The results of the present viscoelastic model are compared with those reported in the 
literature on the scale-dependent eigenfrequency response of small-scale structures [38] 
in Figure 2. The present scale-dependent viscoelastic model contains three different scale 
parameters, including two nonlocal parameters and one strain gradient parameter. When 
the strain gradient effects are ignored and the scale influence of the second nonlocal pa-
rameter is neglected, the present model is reduced to the classical nonlocal viscoelastic 
model [38]. To perform a reasonable comparison, the dimensionless material and geomet-
rical properties available in the model are set the same as in Ref. [38]. The dimensionless 
Winkler coefficient of the surrounding medium is taken as 100, while its shear coefficient 
is set to zero. The validation study is conducted for two different values of the nondimen-
sional damping coefficients (NDCs) of the surrounding medium (i.e., NDC = 20 and NDC 
= 28). It is found that the results of the present viscoelastic model are in excellent agree-
ment with those reported in the open literature on small-scale structures. 

 
Figure 2. Validation of the present scale-dependent viscoelastic model with the available reported 
results on the frequency behaviour of small-scale structures [38]. The imaginary part of the eigen-
frequency is visualized versus the change in the dimensionless nonlocal coefficient of zeroth order 
(e0a/Lx) for different nondimensional damping coefficients (NDCs) of the surrounding medium. 

5.2. Ovarian Cancer 
The first case study involves the biomechanical analysis of ovarian cancer. Recently, 

it has been shown that the biomechanical features of ovarian cells can be used as indicators 
of ovarian cancer state and progression [49]. Three different biological conditions are 
taken into account: (1) OVCAR-3 human ovarian cancer cells, (2) HO-8910 ovarian cancer 
cells, and (3) human ovarian surface epithelial cells (HOSEpiC) as the healthy (control) 

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

Im
ag

in
ar

y 
pa

rt
 e

ig
en

fr
eq

ue
nc

y 
(H

z)

Dimensionless nonlocal coefficient

Reported results
(NDC = 20)
Reported results
(NDC = 28)
Present viscoelastic
model (NDC = 20)
Present viscoelastic
model (NDC = 28)

Figure 2. Validation of the present scale-dependent viscoelastic model with the available reported
results on the frequency behaviour of small-scale structures [38]. The imaginary part of the eigen-
frequency is visualized versus the change in the dimensionless nonlocal coefficient of zeroth order
(e0a/Lx) for different nondimensional damping coefficients (NDCs) of the surrounding medium.

5.2. Ovarian Cancer

The first case study involves the biomechanical analysis of ovarian cancer. Recently, it
has been shown that the biomechanical features of ovarian cells can be used as indicators
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of ovarian cancer state and progression [49]. Three different biological conditions are taken
into account: (1) OVCAR-3 human ovarian cancer cells, (2) HO-8910 ovarian cancer cells,
and (3) human ovarian surface epithelial cells (HOSEpiC) as the healthy (control) condition.
The viscoelastic and Young’s moduli of these cells are extracted from the available data
reported in the literature [49], which had been experimentally obtained using scanning force
microscopy. The average elasticity moduli of the OVCAR-3, HO-8910, and HOSEpiC cells
are 1195.72, 996.27, and 2160.94 Pa, respectively. The structural viscoelasticity coefficient
of the ovarian cancer cells is 11.38 Pa·s for OVCAR-3 and 10.70 Pa·s for HO-8910, while
the healthy ovarian cells (HOSEpiC) have a viscoelasticity coefficient of 30.00 Pa·s. The
Poisson’s ratio and mass density are, respectively, set to 0.495 and 945 kg/m3 [15,52,53]. It is
assumed that the biomechanical properties of the ovarian cells are isotropic. The ratio of the
side length of the sample to the sample thickness is set to 10 while the ratio of the sample
length to its width is equal to one. The wave numbers in the x and y directions are assumed
to be the same. For visualisation, the non-dimensional wave numbers in the x and y
directions are obtained by kxLx/π and kyLy/π, respectively. It is assumed that the ovarian
cell samples are embedded in a viscoelastic medium made of engineered dextran-based
hydrogels with an elasticity modulus of 16 kPa and a viscoelastic coefficient of 4 kPa·s [54].
The ratio of the thickness of the viscoelastic surrounding medium to the thickness of the
sample is taken as 0.1. An intermediate value of 0.05 is used for all dimensionless scale
parameters in the nonlocal strain gradient model.

Figure 3 indicates the imaginary part of the eigenfrequency for the HOSEpiC, HO-8910,
and OVCAR-3 cells versus the flexural wave number. The imaginary part of the eigenfre-
quency gradually reduces as the flexural wave number increases until it reaches its critical
point, in which the imaginary part is zero. The healthy ovarian cells are the first sample
that reach their critical point, at around the dimensional wave number 7.4. By contrast, the
critical wave number where the imaginary part of the eigenfrequency of ovarian cancer
cells becomes zero is around 10. Figure 4 depicts the real part of the eigenfrequency of
different ovarian samples versus the dimensionless wave number. It is observed that, at
larger wave numbers, the difference between the frequency response of ovarian cancer and
healthy cells is more pronounced. Before the critical point, there is only one trajectory for
the real part of the eigenfrequency of flexural waves within ovarian cells, while it divides
into two branches after the critical point. In all pathological cases, the lower branch is
marked with an asterisk. The structural damping ratio and undamped frequency parameter
are also plotted in Figures 5 and 6 against the flexural wave number for the ovarian healthy
cells (HOSEpiC) and ovarian cancer cells (HO-8910 and OVCAR-3), respectively. The
damping ratios of both healthy and cancer cells increase with the increase in wave number.
Furthermore, the difference between the damping ratios of healthy cells and ovarian cancer
cells becomes greater by increasing the wave number from 0 to 10. At the dimensionless
wave number of 10, the damping ratio of HOSEpiC is about 2.5 times higher than that
of the ovarian cancer cell HO-8910. The damping ratio of OVCAR-3 is close to that of
HO-8910. The undamped frequency of ovarian cells decreases when the wave number
increases, until it reaches a minimum value between 8 and 13, from which the undamped
frequency starts increasing.

The undamped eigenfrequency of different continuum models is visualised in Figure 7.
To plot this figure, the ovarian sample is assumed to be of the OVCAR-3 cell line. The
nonlocal strain gradient theory (NSGT), traditional classical elasticity theory (TCET), strain
gradient elasticity theory (SGET), and classical nonlocal elasticity theory (CNET) are taken
into account. It can be concluded that the effect of the choice of the continuum model
is more important at higher flexural wave numbers. The SGET predicts the highest un-
damped frequency while the eigenfrequency of the CNET is the lowest. The undamped
eigenfrequency of the NSGT is lower than that of the TCET. In the NSGT, only the effect of
strain gradient is considered, and both the first and second nonlocal parameters are set to
zero. As nonlocal parameters are linked to structural softening, ignoring nonlocal effects
leads to a significant increase in structural stiffness, leading to higher eigenfrequencies.
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Furthermore, strain gradients are strongly associated with stiffness hardening, thus further
enhancing the tissue’s structural stiffness. The combined influence of stress nonlocality
elimination and strain gradient results in a sharp increase in eigenfrequency in the SGET.
Figure 8 shows the frequency parameter of flexural waves propagated within the ovarian
samples when the dimensionless wave number is set to 20. The undamped frequencies of
the ovarian cancer cells (both OVCAR-3 and HO-8910) are significantly lower than those of
the healthy normal cells (HOSEpiC).
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Figure 3. Imaginary part of eigenfrequency (Hz) versus flexural wave number for different human
ovarian cells, including HOSEpiC as the control, as well as HO-8910 and OVCAR-3 as ovarian
cancerous cells.
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Figure 4. Real part of the eigenfrequency (Hz) of different human ovarian cells—including HOSEpiC
as the control, as well as HO-8910 and OVCAR-3 as ovarian cancer cells—for (a) dimensionless
flexural wave numbers between 0 and 20, and (b) for wave numbers between 9 and 12. After the
critical point, there are two trajectories for the real part of the eigenfrequency. The lower trajectory is
marked with an asterisk.
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Figure 6. Undamped eigenfrequency (Hz) versus flexural wave number for different human ovarian
cells, including HOSEpiC as the control, and HO-8910 and OVCAR-3 as ovarian cancer cells.
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Figure 7. Undamped eigenfrequency (Hz) of OVCAR-3 versus flexural wave number for various
viscoelastic continuum models, including scale-dependent models such as NSGT, SGET, and CNET,
and the classical local model of viscoelasticity known as TCET.
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‘****’: p ≤ 0.0001).

5.3. Breast Cancer

In the second case study, the frequency response of breast cancer cells to flexural
waves is investigated in detail. Recent studies have demonstrated that the biomechanical
properties of breast cells can be used as clues for breast cancer diagnosis and treatment
efficacy assessments [50]. Two different biological conditions are considered: (1) MCF-7
human breast cancer cells; (2) MCF-10A healthy cells. The viscoelastic features of the breast
cancer and healthy cells were obtained by Wang et al. [50] using scanning force microscopy.
The average elasticity moduli of the MCF-7 and MCF-10A cells are 487.44 Pa and 1231.07 Pa,
respectively. The structural viscoelasticity coefficient of the breast cancer cells (MCF-7) is
17.31 Pa·s, while the healthy breast cells (MCF-10A) have a viscoelasticity coefficient of
22.37 Pa·s. The Poisson’s ratio and mass density are set to 0.495 and 945 kg/m3, respectively.
The biomechanical properties of the breast cells are assumed to be isotropic. The ratio of the
side length of each breast sample to its thickness is set to 10, while the ratio of the sample
length to its width is equal to one. The wave numbers in the x and y directions are assumed
to be the same. Unless mentioned otherwise, a value of 0.05 is used for the dimensionless
scale parameters. All breast cell samples are embedded in a viscoelastic medium made
of dextran-based hydrogels with known viscoelastic properties. The elasticity modulus
and viscoelastic coefficient of the surrounding medium are taken as 16 kPa and 4 kPa·s,
respectively [54]. The ratio of the medium thickness to the sample thickness is 0.1.

In Figure 9, the imaginary part of the eigenfrequencies of MCF-10A and MCF-7
against the dimensionless flexural wave number is illustrated. The imaginary part of
the eigenfrequency gradually decreases as the wave number increases until it reaches its
critical value, where the imaginary part of the frequency vanishes. The healthy breast cells
(MCF-10A) reach their critical value at the dimensional wave number 7.9. The critical wave
number where the imaginary part of the eigenfrequency of breast cancer cells becomes zero
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is higher than that of the healthy cells at around 8.5. Figure 10 shows the real part of the
eigenfrequency for the two breast samples versus the dimensionless wave number. It can
be concluded that larger wave numbers are associated with greater differences between the
real parts of the frequencies of the breast cancer and healthy cells. Before the critical point,
there is only one curve for the real part of the eigenfrequency of the flexural waves, whereas
there are two potential curves (branches) after the critical point. In both healthy and
cancerous conditions, the lower branch is marked with an asterisk. The structural damping
ratio and undamped frequency parameter are also visualised in Figures 11 and 12 for the
healthy breast cells (MCF-10A) and breast cancer cells (MCF-7), respectively. The damping
ratios of both healthy and cancer cells enhance when the flexural wave number increases.
Furthermore, the difference between the damping ratio of healthy and cancer cells is greater
at higher wave numbers. For example, when the dimensionless wave number is set to
10, the damping ratio of MCF-10A is about 19% higher than that of the breast cancer cell
MCF-7. Increasing the flexural wave number decreases the undamped frequency of breast
cells until it reaches a minimum value between 11 and 16, depending on the pathological
condition of the breast tissue. From the minimum point, the undamped frequency begins to
increase with further increases in flexural wave number. The undamped eigenfrequencies
of various continuum-based models are shown in Figure 13. The breast sample is assumed
to be MCF-7. The influence of the underlying continuum model becomes more significant at
higher flexural wave numbers. The SGET is linked to the highest undamped eigenfrequency,
while the eigenfrequency of the CNET is the lowest. The NSGT estimates lower undamped
eigenfrequencies than those predicted by the TCET. In Figure 14, the eigenfrequencies of the
flexural waves propagated within the healthy breast cells and breast cancer cells are shown.
The dimensionless flexural wave number is set to 20. The undamped eigenfrequency of the
breast cancer cells (MCF-7) is lower than that of the healthy breast cells (MCF-10A).
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Figure 9. Imaginary part of the eigenfrequency (Hz) versus flexural wave number for different human
breast cells, including MCF-10A as the control and MCF-7 as breast cancer cells.
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Figure 10. Real part of the eigenfrequency (Hz) of different human breast cells—including MCF-10A
as the control and MCF-7 as breast cancer cells—for (a) dimensionless flexural wave numbers between
0 and 20, and (b) for wave numbers between 7 and 9. After the critical point, there are two trajectories
for the real part of the eigenfrequency; the lower one is marked with an asterisk.
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Figure 11. Damping ratio versus flexural wave number for two different human breast cells: MCF-10A
(healthy cells) and MCF-7 (a type of breast cancer cell).
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breast cells: MCF-10A and MCF-7.
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Figure 13. Undamped eigenfrequency (Hz) of MCF-7 versus flexural wave number for various
viscoelastic continuum models, including scale-dependent models such as NSGT, SGET, and CNET,
and the classical local model of viscoelasticity known as TCET.
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Figure 14. Undamped eigenfrequency (Hz) for both healthy (MCF-10A) and cancerous (MCF-7)
human breast cells. The dimensionless flexural wave number is set to 20, as higher wave numbers
are associated with large differences between the eigenfrequency response of human breast cancer
cells and normal healthy cells under flexural wave propagation.

5.4. Ovarian Fibrosis Associated with Ageing

The third case study is conducted on the flexural wave behaviour of ovarian fibrosis
associated with ageing. Three different biological conditions are taken into consideration:
(1) young mouse ovary, (2) old mouse ovary, and (3) old mouse ovary that has undergone
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collagenase treatment. The elasticity moduli of these ovaries are extracted from the avail-
able data reported in Ref. [51], which had been experimentally determined through an
instrumental indentation technique. The mean elasticity constants of the young, old, and
old collagenase ovaries are 1.98 kPa, 4.36 kPa, and 2.28 kPa, respectively. The structural
viscoelasticity coefficient of the mouse ovaries is neglected in this case study. The Poisson’s
ratio and mass density are set to 0.495 and 945 kg/m3, respectively. Unless stated otherwise,
an amount of 0.05 is selected for all dimensionless scale parameters in the scale-dependent
continuum model. The length-to-thickness ratio is set to 10 for all samples, whereas the
aspect ratio of samples (i.e., length-to-width ratio) is equal to one. The wave number along
the x axis is the same as the wave number in the y direction. The dimensionless definitions
of the wave numbers in the x and y directions are given by kxLx/π and kyLy/π, respec-
tively. The effects of the Winkler, shear, and viscoelastic coefficients of the surrounding
medium are not taken into account.

In the classical nonlocal model, the first nonlocal parameter is set to 0.05, while
the second nonlocal parameter and the strain gradient parameter are set to zero. The
eigenfrequency parameters of the mouse ovaries with different fibrosis conditions are
shown in Figure 15a based on the classical nonlocal model. The frequency parameters
of the young ovary are significantly lower than those of the old ovary. The difference
is more pronounced at higher flexural wave numbers. It has been indicated that the
collagenase treatment of the old mouse ovary has the potential to remarkably lower the
eigenfrequency parameter, almost recovering the magnitude of the young ovary (Figure 16).
Figure 15b illustrates the eigenfrequency of the different mouse ovaries, including old,
young, and old with collagenase treatment, versus the flexural wave number for the strain
gradient model. The nonlocal parameters are set to zero, while a value of 0.025 is used
for the dimensionless strain gradient parameter. The frequency parameter of the young
mouse ovary is the lowest, while the old ovary has the highest frequency parameter. The
frequency of the old ovary that underwent collagenase treatment is close to that of the
young mouse ovary, highlighting the importance of collagen in the frequency response
of ovaries to transverse waves. Furthermore, the frequency responses of the old, young,
and old collagenase ovaries under flexural waves for the traditional local model and the
nonlocal strain gradient model are plotted in Figures 15c and 15d, respectively. In the
traditional local model, all scale parameters are neglected, while the nonlocal strain gradient
model simultaneously incorporates the effects of the first nonlocal parameter (0.05), strain
gradient (0.025), and the second nonlocal parameter (0.05). Compared to the classical
nonlocal model, the frequency response predicted by the traditional local model is in a
linear form, lacking the ability to mimic nonlinear responses.

5.5. Comparison Study of Different Machine Learning Models

In this sub-section, the results of various machine learning regressors are compared
and discussed. These ML regressors include Ridge, Lasso, ElasticNet, SVM, and KNN,
as well as random forest and the extreme gradient boosting technique. For more details
about the ML approach and the training dataset, refer to Section 3 of this paper (machine
learning approach). Table 3 shows the best parameters of each ML model obtained by the
hyper-parameter tuning using the grid-search cross-validation technique. The ranking is
conducted based on the negative mean squared error (MSE). The MSE of the test dataset
is also listed in the table for the best estimator. It is found that linear regressors such as
Lasso, Ridge, and ElasticNet fail to predict the frequency response of biological samples
due to the complexity and intrinsic nonlinearity of the response. By contrast, the random
forest and extreme gradient boosting models are capable of accurately predicting the
frequency behaviour of biological samples under flexural wave propagation. In addition,
the regressors of SVM and KNN give highly accurate estimations of the frequency response
with a small MSE.



Computers 2024, 13, 179 20 of 29

Computers 2024, 13, x FOR PEER REVIEW 21 of 31 
 

 
(a) 

 
(b) 

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Ei
ge

nf
re

qu
en

cy
 (H

z)

Flexural wave number

Classical nonlocal model

Young
Old
Old collagenase

0

5

10

15

20

25

0 5 10 15 20

Ei
ge

nf
re

qu
en

cy
 (H

z)

Flexural wave number

Strain gradient model

Young
Old
Old collagenase

Figure 15. Cont.



Computers 2024, 13, 179 21 of 29

Computers 2024, 13, x FOR PEER REVIEW 22 of 31 
 

 
(c) 

 
(d) 

Figure 15. Undamped eigenfrequencies of different mouse ovaries—including young, old, and old 
collagenase ovaries—versus flexural wave number for (a) the classical nonlocal model, (b) the strain 
gradient model, (c) the traditional local model, and (d) the nonlocal strain gradient model. 

0

2

4

6

8

10

0 5 10 15 20

Ei
ge

nf
re

qu
en

cy
 (H

z)

Flexural wave number

Traditional local model

Young
Old
Old collagenase

0

1

2

3

4

5

6

0 5 10 15 20

Ei
ge

nf
re

qu
en

cy
 (H

z)

Flexural wave number

Nonlocal strain gradient model

Young
Old
Old collagenase

Figure 15. Undamped eigenfrequencies of different mouse ovaries—including young, old, and old
collagenase ovaries—versus flexural wave number for (a) the classical nonlocal model, (b) the strain
gradient model, (c) the traditional local model, and (d) the nonlocal strain gradient model.



Computers 2024, 13, 179 22 of 29
Computers 2024, 13, x FOR PEER REVIEW 23 of 31 
 

 
Figure 16. Undamped eigenfrequency (Hz) for young mouse ovary, old mouse ovary, and old 
mouse ovary with collagenase treatment. The dimensionless flexural wave number is set to 20, as 
higher wave numbers are linked to large differences between the scale-dependent eigenfrequency 
responses of different ovarian mouse ovaries under flexural wave propagation. Here, ‘ns’ means not 
significant and shows there is no statistically significant difference between the two groups. ‘*’ indi-
cates that the two groups are significantly different (p < 0.05).  

5.5. Comparison Study of Different Machine Learning Models 
In this sub-section, the results of various machine learning regressors are compared 

and discussed. These ML regressors include Ridge, Lasso, ElasticNet, SVM, and KNN, as 
well as random forest and the extreme gradient boosting technique. For more details 
about the ML approach and the training dataset, refer to Section 3 of this paper (machine 
learning approach). Table 3 shows the best parameters of each ML model obtained by the 
hyper-parameter tuning using the grid-search cross-validation technique. The ranking is 
conducted based on the negative mean squared error (MSE). The MSE of the test dataset 
is also listed in the table for the best estimator. It is found that linear regressors such as 
Lasso, Ridge, and ElasticNet fail to predict the frequency response of biological samples 
due to the complexity and intrinsic nonlinearity of the response. By contrast, the random 
forest and extreme gradient boosting models are capable of accurately predicting the fre-
quency behaviour of biological samples under flexural wave propagation. In addition, the 
regressors of SVM and KNN give highly accurate estimations of the frequency response 
with a small MSE. 

In Table 4, the effects of two important parameters of the XGBoost model, namely the 
learning rate and number of estimators in the train and test MSEs, are investigated. It is 
found that the number of estimators plays a crucial role in the performance of the ML 
regressor. As the number of estimators increases, the MSEs of both the training and test 
data significantly decrease. Particularly, for the learning rate of 0.01, at least 300 estimators 
are required for a reasonable prediction, while 100 estimators are sufficient when the 
learning rate is either 0.1 or 0.2. The best estimation with the minimum MSE is achieved 
for a learning rate of 0.1 and 300 estimators. It should be noted that a higher number of 
estimators are associated with higher computational time, and thus, depending on the 
application and the required precision, a trade-off is considered between model accuracy 
and computational costs. Table 5 lists the eigenfrequencies of the ovarian cancer cell line 

Figure 16. Undamped eigenfrequency (Hz) for young mouse ovary, old mouse ovary, and old mouse
ovary with collagenase treatment. The dimensionless flexural wave number is set to 20, as higher
wave numbers are linked to large differences between the scale-dependent eigenfrequency responses
of different ovarian mouse ovaries under flexural wave propagation. Here, ‘ns’ means not significant
and shows there is no statistically significant difference between the two groups. ‘*’ indicates that the
two groups are significantly different (p < 0.05).

Table 3. The optimised hyperparameters of different ML algorithms used for the prediction of the
viscoelastic frequencies of biological tissues at diverse scales under flexural wave propagation.

Machine Learning
Model Best Hyper-Parameters Best Cross-

Validation Score
Test Mean Square
Error

Random Forest

bootstrap: True, max_depth: None,
min_samples_leaf: 1,
min_samples_split: 2,
n_estimators: 200

9.2463 × 10−6 4.2856 × 10−6

XGBoost

colsample_bytree: 0.7, gamma: 0,
learning_rate: 0.1, max_depth: 3,
min_child_weight: 3,
n_estimators: 300, reg_alpha: 0.01,
reg_lambda: 1.5, subsample: 0.8

4.9260 × 10−5 1.4257 × 10−5

Lasso alpha: 0.1 0.00935 0.00829

Ridge alpha: 0.1 0.00700 0.00642

ElasticNet alpha: 0.1, l1_ratio: 0.1 0.00872 0.00770

SVR
C: 1, coef0: 0.5, degree: 4,
epsilon: 0.01, gamma: scale,
kernel: poly

4.8440 × 10−5 5.7263 × 10−5

KNN regressor metric: Euclidean,
n_neighbors: 3, weights: distance 9.1557 × 10−6 4.3665 × 10−6

In Table 4, the effects of two important parameters of the XGBoost model, namely
the learning rate and number of estimators in the train and test MSEs, are investigated. It
is found that the number of estimators plays a crucial role in the performance of the ML
regressor. As the number of estimators increases, the MSEs of both the training and test data
significantly decrease. Particularly, for the learning rate of 0.01, at least 300 estimators are
required for a reasonable prediction, while 100 estimators are sufficient when the learning
rate is either 0.1 or 0.2. The best estimation with the minimum MSE is achieved for a learning
rate of 0.1 and 300 estimators. It should be noted that a higher number of estimators are
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associated with higher computational time, and thus, depending on the application and the
required precision, a trade-off is considered between model accuracy and computational
costs. Table 5 lists the eigenfrequencies of the ovarian cancer cell line OVCAR-3 for different
wave numbers obtained by various machine learning techniques. The actual target values
are also presented for comparison purposes. Fifteen different dimensionless wave numbers
are randomly chosen between 0 and 20 to show the prediction capability of each model.
It is observed that the results of the random forest technique and the KNN regressor
closely match those of the actual data. A reasonable agreement is also found between the
predictions made by the extreme gradient boosting algorithm and the actual data, and
between the SVM regressor and the actual target frequencies.

Table 4. The MSEs of the extreme gradient boosting algorithm developed for the flexural wave
propagation analysis. Different numbers of estimators and various learning rates are considered.

XGBoost Learning Rate Number of
Estimators

Train Mean
Square Error

Test Mean
Square Error

0.01 5 0.00847 0.00757

10 0.00776 0.00692

100 0.00166 0.00143

300 7.3643 × 10−5 6.5005 × 10−5

0.1 5 0.00376 0.00327

10 0.00155 0.00131

100 2.7657 × 10−6 1.4365 × 10−5

300 2.5017 × 10−6 1.4257 × 10−5

0.2 5 0.00141 0.00122

10 0.00024 0.00020

100 5.5292 × 10−6 2.7804 × 10−5

300 4.8781 × 10−6 2.6121 × 10−5

Table 5. Comparison between various ML regressors, including extreme gradient boosting (XGBoost),
random forest, SVM, KNN, Ridge, and ElasticNet. The eigenfrequency is estimated for different
randomly selected wave numbers between 0 and 20.

Wave
Number

Actual
Frequency

Machine Learning Model

XGBoost Random
Forest SVR KNN Ridge ElasticNet

9.5 147.574 147.838 147.774 149.102 147.760 169.803 169.261

1.5 203.385 203.789 203.560 201.862 203.582 183.613 171.555

3 193.528 195.141 192.738 191.800 193.114 181.024 171.125

15.8 158.819 158.086 158.721 156.928 158.608 158.927 167.455

12.8 147.036 146.806 147.020 145.629 147.139 164.106 168.315

11.5 145.255 145.576 145.261 144.969 145.249 166.351 168.688

6.9 160.642 163.082 159.783 162.628 159.503 174.291 170.007

17.1 166.337 165.108 166.301 165.409 166.007 156.683 167.082

17.5 168.863 167.011 169.498 168.344 169.223 155.993 166.967

4.5 180.543 181.449 181.026 180.306 180.183 178.434 170.695

6.6 162.816 163.082 164.206 164.650 163.557 174.809 170.093

18.3 174.185 173.428 174.007 174.563 174.463 154.612 166.738

16.5 162.713 161.495 162.852 161.276 163.023 157.719 167.254

7.8 154.864 155.492 154.882 157.062 154.583 172.738 169.749

18.7 176.961 176.331 176.565 177.804 177.242 153.921 166.623
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6. Discussion
6.1. Ovarian Cancer

The imaginary part of the eigenfrequency is associated with damping, energy loss, and
amplitude attenuation within the biological tissue during vibrations. The imaginary part
can serve as an indicator of the viscoelastic damping coefficient. Any change in the patterns
of the imaginary part of the eigenfrequency indicates alterations in the viscoelastic damping
coefficient of the tissue. Recent experimental studies demonstrate that the tissue viscoelastic
coefficient is significantly correlated with disease conditions, including cancer [55,56].
The visualisation of the imaginary part enables the detection of regions with abnormal
damping properties, and consequently the identification of potential malignancy and
diseased conditions. In this paper, both real and imaginary eigenfrequency parts have
been plotted and discussed to allow for the comprehensive vibrational analysis of different
biological tissues.

For all three different types of human ovarian cells, the imaginary part of the eigenfre-
quency decreases when the flexural wave number is increased (Figure 3). This is potentially
associated with the fact that higher wave numbers lead to higher damping ratios, which
gradually decrease the imaginary part, as can be seen from Equation (13). Healthy normal
ovarian cells (HOSEpiC) reach their critical point, where their imaginary eigenfrequencies
vanish, at lower flexural wave numbers than those of ovarian cancer cells (HO-8910 and
OVCAR-3). This is associated with the faster growth of the damping ratio of healthy
ovarian cells with an increase in the flexural wave number (Figure 5).

Another important finding is that the difference between the frequency responses of
the ovarian cancer and healthy conditions is more pronounced at larger wave numbers
(Figure 4). This enhanced difference indicates the significance of considering wave num-
ber in the detection of abnormalities based on biomechanical features. Areas of higher
difference in flexural wave propagation behaviour would provide useful insights into the
biomechanical response of ovarian cells, leading to more accurate detection methodologies.
Strain gradient effects are associated with higher undamped eigenfrequencies, while stress
nonlocality causes ovarian cells to behave in a softer manner (Figure 7). This is because
strain gradients are linked to enhanced structural stiffness, while nonlocal effects lead to
lower structural stiffness [20,28,30]. The flexural wave characteristics of the ovarian cancer
cell line OVCAR-3 are similar to those of HO-8910 (Figures 6 and 8), highlighting that these
characteristics cannot be used to differentiate between different types of ovarian cancer.
However, the undamped frequencies of ovarian cancer cells (both OVCAR-3 and HO-8910)
are significantly lower than those of healthy normal ones (HOSEpiC) (refer to Figure 8),
indicating that flexural wave characteristics could be used as diagnostic indicators at the
cellular level for distinguishing between ovarian cancer and healthy ovarian tissue.

Overall, the proposed model has the potential to be used in biomechanical-based
imaging techniques, such ultrasound elastography and MRI elastography, to detect tumours
of different sizes. This capability is evidenced by incorporating the scale effects associated
with cellular features. The incorporation of stress nonlocality and strain gradient allows
for the accurate estimation of deformation behaviour at small-scale levels. However, these
effects gradually decrease as the size of the tumour increases, and vanish after a certain
size. For large tumours, the current model of viscoelasticity reduces to that of the classical
model, which has been widely used for cancer detection [11,12]. Therefore, the present
model could be helpful in the detection of solid tumours at different stages from early
pre-malignancy to metastasis.

6.2. Breast Cancer

The imaginary part of the eigenfrequency decreases as the flexural wave number is
enhanced for both breast cancer and normal healthy cells (Figure 9). This is because of the
strong link between higher wave numbers and higher damping ratios. As mathematically
demonstrated by Equation (13), the imaginary part of the eigenfrequency decreases with
the increase in the structural damping ratio. Healthy normal breast cells (MCF-10A) reach
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their critical point of imaginary eigenfrequency at a lower flexural wave number than breast
cancer cells (MCF-7). This is due to the faster growth of the damping ratio of healthy breast
cells with increases in flexural wave number (Figure 11). Furthermore, it can be concluded
that the difference between the frequency response of the breast cancer and healthy breast
cells is enhanced when the flexural wave number increases (Figures 10 and 11). This
enhanced difference highlights the importance of wave number in elastography modelling
for the detection of breast abnormalities. Regions of higher difference in flexural wave
propagation behaviours would facilitate the detection of breast tumours at small-scale
levels, such as microscales and cellular levels.

Strain gradient effects significantly enhance the undamped eigenfrequencies of trans-
verse waves, while nonlocal stresses make clumps of breast cells behave in a softer manner
(Figure 13). This is rooted in the fact that strain gradients are linked to enhanced structural
stiffness, while nonlocal stresses yield lower structural stiffness [36]. The undamped fre-
quencies of breast cancer cells (MCF-7) are considerably lower than those of healthy normal
cells (MCF-10A) (Figures 12 and 14). This finding further supports the fact that flexural
wave characteristics at the cellular level can serve as an early indicator of breast cancer. The
present non-classical viscoelasticity model contains three different scale parameters that
enable the comprehensive incorporation of scale effects associated with cellular-level struc-
tures and features of biological tissues. This facilitates the development of scale-dependent
elastography imaging techniques for the early detection of cancer by the visualisation of
solid tumours at smaller scales, which are not visible with present imaging technologies.
For more detail, refer to Table 1, which compares the capability of different continuum
models used in elastography imaging to simulate scale effects.

6.3. Ovarian Fibrosis Associated with Ageing

In addition to ovarian and breast cancer detection, flexural wave characteristics can be
used in the detection of ovarian fibrosis. The frequency parameters of the young mouse
ovary are significantly lower than those of the old mouse ovary with increased fibrosis
(Figures 15 and 16). This is best evidenced by the fact that the old ovary has a higher
amount of collagen, which consequently leads to higher structural stiffness. The difference
is more pronounced at higher flexural wave numbers, highlighting the importance of
the choice of wave number in the frequency behaviour of the ovary. Moreover, it has
been shown that treating an aged mouse ovary with collagenase significantly lowers its
eigenfrequency, restoring it to the magnitude observed in young mice. This highlights
the importance of the collagen extracellular matrix in the frequency response of ovarian
tissue subjected to flexural waves. Compared to the scale-dependent continuum models
(NSGT, CNET, and SGT), the frequency response predicted by the traditional local model
with no scale effects is in a linear form, indicating that the local continuum models are
not able to describe complex nonlinear eigenfrequency responses (Figure 15). Nonlocal
effects are associated with lower eigenfrequencies for all types of mouse ovaries, as stress
nonlocality reduces structural stiffness [57]. By contrast, higher strain gradients lead to
higher vibrational eigenfrequencies induced by the propagation of flexural waves, since
there is strong correlation between strain gradient and structural stiffness at small-scale
levels [20].

6.4. Comparison Study of Different Machine Learning Models

The application of linear regression models, including Lasso, Ridge, and ElasticNet, for
the prediction of flexural wave propagation response in biomedical engineering and biome-
chanics is challenging (Tables 3 and 5). The frequency responses of breast cancer, ovarian
cancer, and ovarian tissue with enhanced fibrosis to flexural waves are inherently nonlinear
at small-scale levels, making linear machine learning models ineffective. This finding
is well aligned with the fact that biological systems often display nonlinear behaviours
that are not fully captured through simple linear modelling techniques [58]. However,
ML approaches such as random forest (Tables 3 and 5) and extreme gradient boosting
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(Tables 3–5), with appropriate configuration and optimised hyper-parameters, are capable
of the accurate prediction of the viscoelastic eigenfrequency responses of various biological
samples, including healthy and cancerous ovary and breast lesions, as well as ovarian
fibrosis. Furthermore, the SVM regressor with a polynomial kernel function and a gamma
hyperparameter equal to ‘scale’ can make precise predictions with very small MSE values
that are comparable to the random forest and extreme gradient boosting algorithms. The
KNN regressor, with consideration of three neighbouring points and the weighting type
of ‘distance’, also yielded highly accurate estimations of the viscoelastic eigenfrequency
response (Tables 3 and 5). However, the computational cost of this instance-based model
could be high, as every time a new data point is analysed, the distances between the given
points and all other points are required to be measured.

In ensemble algorithms such as XGBoost and random forest, the number of estimators
plays a crucial role in the model’s precision and significantly affects the performance of the
ML model [59]. Overall, it is concluded that higher numbers of estimators lead to lower
MSEs in tasks such as the eigenfrequency analysis of human breast cancer, ovarian cancer,
and even ovarian fibrosis by aging (Table 4). It should be noted that the choice of the
number of estimators depends on the learning rate. For a learning rate of 0.01, a minimum
of 300 estimators is needed to assure accurate forecasts. Nevertheless, 100 estimators are
sufficient when higher learning rates of 0.1 and 0.2 are used. These findings demonstrate the
importance of the hyperparameter adjustment process for obtaining a reasonable balance
between the ML algorithms’ computational cost and precision. In scenarios where real-time
predictions or rapid execution are required while maintaining computational resources,
fewer number of estimators may be selected. By contrast, in applications focused on the
accurate forecast of the flexural wave responses of breast and ovarian cells, a higher number
of estimators is a sensible choice, despite the higher computational time and cost.

7. Conclusions

In this paper, a scale-dependent viscoelastic model has been developed to predict the
flexural wave response of various pathological conditions, such as ovarian cancer, breast
cancer, and ovarian fibrosis. The Kelvin–Voigt model of viscoelasticity, nonlocal strain
gradient theory, and Hamilton’s law were used to derive the partial differential equations
related to the time-dependent deformation of biological systems. The real and imaginary
parts of the eigenfrequency, as well as the undamped frequency and the structural damping
ratios, were obtained and analysed in detail. Different types of pathological conditions,
including ovarian cancer, ovarian fibrosis associated with ageing, and breast cancer, as well
as their healthy control counterparts, were taken into account. Several machine learning
algorithms were developed and integrated with the nonlocal continuum approach, provid-
ing scalability, computational efficiency, and flexibility with the underlying assumptions of
the continuum model. Using the grid-search cross-validation technique, hyper-parameter
tuning was conducted to obtain the optimal configuration for each ML regressor. A com-
prehensive comparison study was performed on the SVM regressor and KNN regressor,
on linear regression algorithms such as Lasso, Ridge, and ElasticNet, and on regressors of
ensemble learning techniques like random forest and extreme gradient boosting.

The imaginary part of the eigenfrequency of both cancerous and healthy ovarian cells
decreases when the flexural wave number increases, since higher wave numbers lead to
higher damping ratios. HOSEpiC cells reach their critical point at lower flexural wave
numbers than HO-8910 and OVCAR-3 cells. The difference between the eigenfrequency
behaviour of ovarian cancer and healthy cells is more pronounced at larger wave numbers.
Strain gradient effects are associated with higher undamped eigenfrequencies, while stress
nonlocality causes ovarian cells to behave in a softer manner. Furthermore, the undamped
frequencies of OVCAR-3 and HO-8910 cells are significantly lower than those of HOSEpiC
cells, indicating that flexural wave characteristics can be used as diagnostic clues for the
detection of ovarian cancer at the cellular level. In addition, it has been demonstrated
that flexural wave characteristics can be utilised in the detection of other diseases such as
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breast cancer and ovarian fibrosis. Compared to the scale-dependent continuum models,
the frequency response predicted by the traditional local model is almost linear, indicating
that local models are not able to describe the complex eigenfrequency responses of biolog-
ical systems. Furthermore, linear machine learning models fail to accurately predict the
frequency responses of breast cancer, ovarian cancer, and ovarian fibrosis under flexural
waves. However, machine learning approaches such as random forest and extreme gradi-
ent boosting with appropriate configuration and optimised hyper-parameters are highly
effective in the flexural wave propagation analysis of biological systems.
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