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Abstract: Quantum computing has emerged as a transformative paradigm, with revolutionary poten-
tial in numerous fields, including quantum image processing and compression. Applications that
depend on large scale image data could benefit greatly from parallelism and quantum entanglement,
which would allow images to be encoded and decoded with unprecedented efficiency and data
reduction capability. This paper provides a comprehensive overview of the rapidly evolving field of
quantum image compression, including its foundational principles, methods, challenges, and poten-
tial uses. The paper will also feature a thorough exploration of the fundamental concepts of quantum
qubits as image pixels, quantum gates as image transformation tools, quantum image representation,
as well as basic quantum compression operations. Our survey shows that work is still sparse on the
practical implementation of quantum image compression algorithms on physical quantum computers.
Thus, further research is needed in order to attain the full advantage and potential of quantum image
compression algorithms on large-scale fault-tolerant quantum computers.

Keywords: quantum computing; quantum image compression; quantum image processing

1. Introduction

In recent years, in accordance with Moore’s law [1], the computing ability of elec-
tronic computers has exponentially increased. However, the growth in power of CPUs
has plateaued in over the last few years due to various constraints, prompting the search
for alternative methods to boost computational performance. In 1982, Richard Feynman,
an American theoretical physicist, introduced the concept of quantum computing. This
innovative model leverages quantum mechanics principles like superposition and entangle-
ment to enhance data storage, processing, and transmission capabilities far beyond those
of traditional computers [2]. The potential of quantum computing was further underscored
by Peter Shor’s introduction of a quantum algorithm for prime number factorization in
1994 [3], and by Lov Grover’s quantum search algorithm in 1996 [4].

As the field of digital image processing evolves, it faces the challenge of handling
an ever-growing volume and complexity of images, propelled by advances in pattern
recognition, image understanding, and the development of sophisticated image sensors.
Traditional image processing algorithms, foundational to numerous applications within
information science, are inherently parallel in nature, demanding extensive computational
resources for execution. The surge in image quantity and resolution has rendered these
classical algorithms increasingly time-consuming and hardware-intensive. In response to
these challenges, the integration of quantum computing into image processing emerges as
a promising solution. Quantum computing utilizes qubits for data storage and leverages
the properties of quantum physics, such as superposition and entanglement, to offer
unparalleled parallel processing capabilities. This shift in paradigm provides a significant
improvement in efficiency for tasks related to image processing.

The quantum approach to image processing significantly reduces the computational
complexity associated with storing and manipulating large sets of image data. While a
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classical computer requires exponential resources O(n × 2n) to store sequences of n-bit
length, a quantum computer can achieve this with linear complexity O(n) [5]. Moreover,
operations that are inherently sequential and resource-intensive on classical computers,
such as bitwise inversion, can be executed more efficiently on quantum computers. This
is due to the quantum computer’s ability to perform operations on entangled qubits in
parallel, dramatically reducing the time and resources needed for complex image processing
tasks. This innovative method of leveraging quantum computing for image processing
not only accelerates classical algorithms but also paves the way for the development of
novel quantum image processing algorithms. These improvements have the potential to
completely transform the field by greatly decreasing time it requires to analyze data and
the amount of hardware needed. This will allow for the development of more advanced
image processing applications that need a lot of resources. Hence, how can we use the
quantum computing technique for image processing is crucial for surpassing the constraints
of conventional computational techniques. This advancement presents a novel opportunity
to efficiently and effectively process digital images.

To process images in quantum state, we need to follow three steps as Figure 1, (i) prepare
the image and store it into quantum state, (ii) process quantum image, (iii) processed dig-
ital image from quantum state. The quantum image compression and encryption tech-
niques lie in the preparation of the image into quantum state. Similar to the traditional
digital image compression, the quantum image compression methods have lossy and
lossless compression.
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The early 21st century witnessed several pivotal advancements aimed at enhancing
the efficiency and quality of image compression techniques. In 2002, Lewis et al. introduced
a method that utilized a two-dimensional orthogonal wavelet transform for compressing
digital images. This innovative approach enabled the decomposition of images into coeffi-
cients that are localized both spatially and spectrally, offering a nuanced balance between
preserving image quality and achieving substantial compression [6]. Another notewor-
thy development came in the form of an advanced bit plane coding strategy specifically
designed for quantizing discrete cosine transform (DCT) coefficients [7]. This technique
was lauded for its ability to deliver superior decoding quality compared to the JPEG2000
standard [8], which was the benchmark at the time. Kouda et al. introduced a hierarchical
quantum neural network-based image compression scheme, assessing the utility of large
quantum neural networks in tackling complex image compression scenarios [9]. This
approach underscored the potential of quantum computing to revolutionize traditional
practices by offering novel solutions that could outperform conventional algorithms in both
efficiency and effectiveness. A significant challenge in image compression has always been
the time-consuming nature of traditional image coding methods. To address this issue,
Yang R. introduced a cutting-edge algorithm that employed a quantum BP (backpropaga-
tion) network for image compression [10]. This method not only accelerated the encoding
process but also enhanced the quality of the reconstructed images, showcasing the synergy
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between quantum computing and neural network methodologies in improving computa-
tional processes. In 2016, Yuen et al. unveiled an algorithm that combined discrete cosine
transform (DCT) with the Secure Hashing Algorithm (SHA-1) for both compressing and en-
crypting images [11]. This dual-purpose algorithm highlighted the growing need for secure
and efficient image processing techniques in an increasingly digital and interconnected
world. In the same year, based on hyper-chaotic system Zhou et al. proposed an image
encryption-compression scheme [12]. The same authors also published image encryption
and compression scheme based on Mellin transform and compressive sensing [13]. In 2018,
an image compression–encryption algorithms by combining hyper-chaotic system with
discrete fractional random transform was introduced by Gong et al. [14].

While the above work is on the traditional images, as the field of quantum computing
is advancing rapidly many of these classical techniques have been expanded to encompass
the quantum realm. In this paper, we will focus on the quantum image processing and will
discuss about the recent advancements in the field of quantum image compression. We
start in Section 2 with a brief introduction to quantum computing. Readers already familiar
with these fundamental concepts can skip Section 2 and proceed directly to Section 3.

2. Brief Introduction to Quantum Computing
2.1. Vector

Quantum states are mathematically expressed as vectors in a complex vector space
called Hilbert space. Hilbert space is a fundamental framework in quantum mechanics
because it can effectively capture the probabilistic and superpositional characteristics
of quantum systems. The nomenclature used to represent vectors in Hilbert space is
a distinctive and sophisticated formalism, generally known as Dirac notation, or more
informally, the “bra-ket” notation [15].

|ψ⟩ =


a1
a2
...

an

, (1)

In Dirac notation, a vector (representing a quantum state) in Hilbert space is sym-
bolized by a ket, denoted as |ψ〉, where |·〉 signifies the ket and ψ is a label that identifies
the specific quantum state. The ket is a column vector that encompasses all the essential
information required to completely explain the quantum state within the mathematical
framework of quantum mechanics. Complementary to the ket is the bra, denoted as 〈ϕ|,
where 〈·| represents the bra, and ϕ is a label for the vector. The bra is essentially the conju-
gate transpose of the ket. In more concrete terms, if the ket represents a column vector, then
the bra represents a row vector, with its complex elements conjugated. The usage of this bra
vector is essential in the construction of quantum mechanical algorithms, particularly in
the computation of probabilities and expectation values, which are key aspects of quantum
mechanics.

The implementation of bra-ket notation brought about a significant transformation in
the mathematical handling of quantum mechanics, providing a potent and intuitive mecha-
nism for managing the abstract concepts essential to the theory. It simplifies the depiction of
quantum processes, such as measurements and transformations, and offers a standardized
framework for discussing and evaluating quantum states. It also enables the succinct defi-
nition of quantum mechanical processes, such as unitary transformations and observables.
In summary, the bra-ket notation encapsulates the abstract and counterintuitive nature of
quantum mechanics in a mathematically rigorous yet accessible language, enabling the
exploration and exploitation of quantum phenomena for computational purposes.
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2.2. Tensor Products

The tensor product is a mathematical operation that combines vector spaces to create
a bigger vector space.

1. Assume, we have a scaler α. |v〉 is an element in V space and |w〉 is an element in W
space. Then we can write:

α(|v⟩⊗|w⟩) = (α|v⟩⊗|w⟩)=|v⟩ ⊗ α(|w⟩), (2)

2. Now if we have two elements, |v1〉, |v2〉 in V space and an element |w〉 in W space

(|v1⟩+ |v2⟩)⊗ |w⟩ = |v1⟩ ⊗ |w⟩+ |v2⟩ ⊗ |w⟩ (3)

3. Similarly, |v〉 in V space and |w1〉 and |w2〉 in W space

|v⟩ ⊗ (|w1⟩+ |w2⟩) = |v⟩ ⊗ |w1⟩+ |v⟩ ⊗ |w2⟩ (4)

We can find the tensor product of two matrices X (dimension m × n) and Y (dimension
i × j) as

X ⊗ Y =


x11Y x12Y · · · X1nY
x21Y x22Y · · · x2nY

...
...

. . .
...

xm1Y xm2Y · · · xmnY

 (5)

2.3. Quantum Bit

In a classical computer bit is the core component, which functions inside a binary
system, alternating between two distinct states: 0 and 1. The binary system serves as the
foundation for classical computing architectures, allowing for the representation, manipu-
lation, and retention of data. Quantum computing, in contrast, presents a sophisticated
and intricate alternative to the classical bit, known as the quantum bit or qubit. Qubits are
fundamental units that encapsulate the laws of quantum physics, forming the essential
foundation for both the theoretical and practical aspects of quantum computing. Qubits,
unlike traditional bits, exist inside a mathematical domain that is more flexible and abstract,
rather than being limited to the binary certainties of 0 and 1. This abstraction enables the
conceptualization and advancement of quantum computing theory without being limited
by the physical implementation in specific hardware platforms. Qubits, being very versatile
mathematical entities, allow for extensive study of the potential of quantum computing,
without being restricted by the limits of physical systems.

A qubit is characterized by its capacity to exist in states that extend beyond the binary
values of 0 and 1. The ability to simultaneously exist in several states is demonstrated by
the phenomenon called quantum superposition, in which a qubit occupies a state that is a
combination of |0〉 and |1〉. Mathematically, the superposed state can be represented as:

|ψ⟩= α|0⟩+β|1⟩ (6)

where α and β denote the probability amplitudes. The amplitudes represent the probability
of the qubit collapsing into either the |0〉 or |1〉 state when measured. A qubit’s state is
represented as a vector in a two-dimensional complex vector space, with |0〉 and |1〉 being
the basis states used for computation. The basis states constitute an orthonormal basis set,
serving as a structured framework for the definition and manipulation of qubits.

The superposition principle grants qubits the ability to exist in several states simulta-
neously, which is in striking contrast to the binary restriction of conventional bits. Quantum
computers have the ability to process and interpret data in ways that are fundamentally
distinct from traditional computing methods due to their multi-state nature. When a
measurement is performed on a superposed qubit state |ψ〉, it collapses into one of its
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component states, either |0〉 or |1〉. The probability of each event is defined by the square
of the associated probability amplitude (|α|2 for |0〉 and |β|2 for |1〉). The stochastic
character of qubit measurement forms the basis for the quantum mechanical phenomena
that quantum algorithms utilize for purposes such as encryption, search optimization, and
simulation of quantum systems. Also,

|α|2 + |β|2 = 1 (7)

In quantum computing, |0〉 is expressed as:

|0⟩ =
[

1
0

]
(8)

In quantum computing, |1〉 is expressed as:

|1⟩ =
[

0
1

]
(9)

|ψ⟩ = α|0⟩+ β|1⟩ =
[
α

β

]
(10)

Let us consider a pair of qubits. From a classical perspective, a pair of bits has the
capability to represent four unique values (00, 01, 10, 11) simultaneously. However, within
a quantum system, two qubits have the ability to simultaneously exist in a superposition
of all four of these states. Consequently, the two-qubit system can be characterized by a
state vector that encompasses this superposition, denoting a quantum state that is a linear
combination of its four fundamental states: |00〉, |01〉, |10〉, and |11〉. So, the quantum
state for two qubit system can be written as:

|ψ⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩ (11)

where
|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1 (12)

These four states can be represented as:

|00⟩ = |0⟩ ⊗ |0⟩ =


1
0
0
0

 (13)

|01⟩ = |0⟩ ⊗ |1⟩ =


0
1
0
0

 (14)

|10⟩ = |1⟩ ⊗ |0⟩ =


0
0
1
0

 (15)

|11⟩ = |1⟩ ⊗ |1⟩ =


0
0
0
1

 (16)
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2.3.1. Qubit Measurements and Unit Circle Theory

The basic states of a qubit in quantum computing are represented by the states |0〉
and |1〉 in quantum physics. In a two-dimensional coordinate system, where the state |0〉
aligns with the X-axis and the state |1〉 aligns with the Y-axis, these states can be visually
depicted. Every state has a basis vector: the vector for |0〉 is [1 0]T, indicating that it is a
unit vector along the X-axis; the vector for |1〉 is [0 1]T, indicating that it is a unit vector
along the Y-axis.

We can take into consideration additional vectors that create different angles with the
X-axis in order to investigate the idea of superposition. For example, the vector [1/

√
2

1/
√

2]T can be used to represent a vector that forms a 45-degree angle with the X-axis.
According to this vector, there is an equal chance that this qubit will be measured and found
in the states of |0〉 or |1〉. This indicates that the quantum state is an equal superposition
of |0〉 and |1〉. In addition, another vector that forms a 60-degree angle with the X-axis can
be represented by the column vector [1/2

√
(3/2)]. This vector represents a quantum state

that is not an equal superposition of |0〉 and |1〉. Instead, it has distinct probabilities for
being observed in each state, with a greater likelihood for the state |1〉 due to the larger
coefficient in the vector representation.

Thus, a qubit can be mathematically described as a unit vector within a two-dimensional
complex vector space (Figure 2). When we apply this principle to the geometric model
known as the “Bloch sphere”, the state |0〉 correlates to the X-axis, whereas the state |1〉
aligns with the Y-axis on this sphere. It is crucial to emphasize that any point on the surface
of the Bloch sphere represents a qubit in a state of superposition, which is a weighted com-
bination of the states |0〉 and |1〉. In the practice of quantum measurement, two primary
approaches are utilized. The first is the measurement in the standard basis, also known as
the computational basis, which corresponds precisely to the previously mentioned states
|0〉 and |1〉. The second methodology incorporates measurements taken on an arbitrary
basis, enabling the evaluation of the qubit’s state across various Bloch sphere orientations.
The selection of these arbitrary bases is not obligatory and can be chosen to accommodate
particular quantum computing tasks or algorithms, thereby offering a versatile structure
for the assessment and application of quantum states.
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Figure 2. Unit circle representation on various angles. The vector [1/
√

2 1/
√

2]T can be used to
represent a vector that forms a 45-degree angle with the X-axis and there is an equal chance that
qubit will be measured and found in the states of |0〉 or |1〉. Another vector that forms a 60-degree
angle with the X-axis can be represented by the column vector [1/2

√
(3/2)]. This vector represents a

quantum state that is not an equal superposition of |0〉 and |1〉.

2.3.2. Measuring on Standard Basis

Let us assume, state |S〉 has an angle θ with |0〉 state in X axis. The figure is drawn in
a 2D real space (Figure 3), and all of its amplitudes are real.

|S⟩ = a|0⟩+ b|1⟩ =
(

cos θ
sin θ

)
(17)
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From the figure, the state |0〉 has the probability cos2 θ and state |1〉 has the probability
sin2 θ, which can be written as cos2 (π/2 − θ). Thus, depending on the stated above
probabilities, the state S is projected onto either the |0〉 state or |1〉 state.

2.3.3. Measuring on Arbitrary Basis

In this case, measurement is completed on any orthogonal basis rather than onto |0〉
and |1〉 basis. From Figure 4, state |S〉 is measure using |u〉 and |u′〉 basis. Here |u〉 has
the probability cos2 θ and |u′〉 has the probability sin2 θ. The amplitude of |u〉 and |u′〉
given by:

|u⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ (18)

|u′⟩ = − 1√
2
|0⟩+ 1√

2
|1⟩ (19)
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These concepts will come in handy when we will talk about the FRQI (flexible repre-
sentation of quantum images) representation of quantum images where rotation operation
will be required.

2.4. Circuit and Gates

Logic gates are essential components in traditional digital circuits, responsible for ma-
nipulating and transforming information. They serve as the fundamental building blocks
for complicated computing functions. Similarly, quantum circuits utilize a distinct set of
logic gates that are specifically intended to function based on the principles of quantum me-
chanics. Quantum logic gates enable the manipulation of quantum information by applying
unitary transformations to quantum states, allowing for the execution of logical operations.
The mathematical description of these changes is commonly conveyed by matrices, which
accurately capture the specific operation being applied to the quantum state.

One significant category of quantum logic gates is the single quantum gate (Figure 5).
As the name implies, it only requires the participation of one qubit to perform its action. In
contrast, multi-qubit gates are capable of performing quantum operations and interactions
that are more intricate, as they involve two or more qubits. Quantum circuits employ
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horizontal lines to represent qubits in their graphical depiction. The lines depicted in
the schematic of a quantum circuit, commonly known as wires, represent the pathway
through which quantum information travels. The symbol “U” is used to represent a single
quantum gate on these wires. This symbol indicates the unitary operation that the gate
performs on the qubit it interacts with. When |ψ〉 state is used as an input to this gate it
gives U|ψ〉 as an output. Unitary transformations play a crucial role in the functioning
of quantum gates. These transformations are invertible and maintain the norm of the
quantum state, a necessity for quantum operations based on the principles of quantum
physics. The utilization of a matrix representation for a quantum gate offers a potent
means of comprehending and formulating quantum algorithms, as it enables the accurate
computation of the gate’s impact on a certain quantum state.
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The single quantum gate can be expressed in a matrix form:

|ψ⟩ =
[
α

β

]
, U =

[
a b
c d

]
(20)

U|ψ⟩ =
[

a b
c d

][
α

β

]
=

[
aα+ bβ
cα+ dβ

]
(21)

It is impossible to overstate the significance of single quantum gates in quantum
computation. Although they are the most basic form of quantum gates, single quantum
gate executes critical operations that are indispensable for quantum computation, including
the initialization, manipulation, and preparation of measurements of qubits. The Pauli
gates (X, Y, Z), which alter the state of a qubit in multiple dimensions, and the Hadamard
gate, which generates superposition states, are both instances of single quantum gates.
These gates function as the quantum equivalents of classical logic gates such as NOT and
XOR, albeit within a domain where quantum states can be superimposed and entangled.

Hadamard gate:

H =

[ 1√
2

1√
2

1√
2

− 1√
2

]
=

1√
2

[
1 1
1 −1

]
(22)

Applying the Hadamard gate to |0〉 state or |1〉 state:

H|0⟩ = 1√
2

[
1 1
1 −1

][
1
0

]
=

1√
2
|0⟩+ 1√

2
|1⟩ = |+⟩ (23)

H|1⟩ = 1√
2

[
1 1
1 −1

][
0
1

]
=

1√
2
|0⟩ − 1√

2
|1⟩ = |−⟩ (24)

So, by using the Hadamard H gate, the state |0〉 and |1〉 can be convert into a
superposition state. The new state is known as |+〉 state and |−〉 state, respectively.

Pauli-X:

X =

[
0 1
1 0

]
(25)

The Pauli-X gate has the ability to change the state of a single qubit. That is why this
gate is also called bit-flip or Not gate.

Table 1 shows some common single quantum gates.
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Table 1. Example of some single quantum gates.

Gate Name/Operator Circuit Diagram Matrix Representation

Hadamard
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Within the sophisticated realm of quantum computing, in addition to the simplicity
and grace of individual quantum gates, there exists a more intricate category of quantum
gates that require the participation of several qubits for their functioning. Multi-qubit
quantum gates enhance the complexity and functionality of quantum circuits, allowing
for a wider range of computational operations that exploit the distinct characteristics of
quantum mechanics, such as entanglement and superposition, to perform tasks that are
beyond the capabilities of single-qubit gates.

One prominent example of multi-qubit gates is the Controlled-NOT (CNOT) gate,
which represents the idea of quantum control dynamics. The CNOT gate functions by
manipulating two qubits, with one qubit acting as the control and the other as the target.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (26)

The CNOT gate operates by flipping the state of the target qubit, changing it from
|0〉 to |1〉 or vice versa, only when the control qubit is in the state |1〉 as shown in the
Equations (27)–(30). The conditional operation described here is the quantum equivalent
of the conventional XOR gate. It showcases how quantum computing may imitate and
expand upon traditional logic operations within a quantum context.

CNOT|00⟩ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1
0
0
0

 =


1
0
0
0

 = |00⟩ (27)

CNOT|01⟩ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0
1
0
0

 =


0
1
0
0

 = |01⟩ (28)

CNOT|10⟩ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0
0
1
0

 =


0
0
0
1

 = |11⟩ (29)

CNOT|11⟩ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0
0
0
1

 =


0
0
1
0

 = |10⟩ (30)
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Expanding on the concept of conditional operations, the quantum computing also has
the 0-Controlled-NOT (0CNOT) gate. This gate inverts the target qubit only when the con-
trol qubit is in the state |0〉. This gate expands the spectrum of quantum logic operations.

The Toffoli gate, also referred to as the CCNOT gate, is a significant expansion of the
CNOT gate. It involves the use of two control qubits and one target qubit. The Toffoli
gate performs a bit-flip operation on the target qubit exclusively when both control qubits
are in the state |1〉. The significance of this gate in quantum computing lies in its ability
to facilitate reversible computation, which is essential for the development of universal
quantum computers. Also, as we explore farther into the domain of multi-qubit operations,
the idea of scalability becomes apparent with the introduction of the n-CNOT gate. The
gate expands the concept of conditional operation to n control qubits, providing a flexible
method for coordinating intricate quantum processes that may be customized to meet the
specific needs of advanced quantum algorithms.

Another important example of multi-qubit gate is the Swap gate. It facilitates the
exchange of states between two qubits. The function of this gate is crucial in quantum
algorithms as it allows for the reorganization of qubit states without impacting the overall
quantum state of the system. This facilitates operations that necessitate particular qubit
configurations.

Table 2 shows some common multiple quantum gates.

Table 2. Example of multiple quantum gates and their matrix representation.

Gate Name/Operator Circuit Diagram Matrix Representation

CNOT or CX
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Having a basic understanding of these gates and how these work is very important 
because these gates are useful to build a quantum circuit. For instance, if we are working 
with the FRQI representation of quantum images, we need to understand the use of the 
Hadamard gate, Identity gate, Pauli-X gate, CNOT gate [16], etc. Another popular quan-
tum image representation technique is NEQR (short for Novel Enhanced Quantum Rep-
resentation) in which an image can be defined as: 
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To implement this, we need to use Hadamard gate, Toffoli gate, Swap gate [17], etc. 
We discuss this technique in detail in the next section. So, before jumping into the image 
processing part, knowing the basic concept of these gates are important because these will 
be required to represent the images in quantum state. 
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∣∣∣ci
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〉
|yx⟩ (31)
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To implement this, we need to use Hadamard gate, Toffoli gate, Swap gate [17], etc.
We discuss this technique in detail in the next section. So, before jumping into the image
processing part, knowing the basic concept of these gates are important because these will
be required to represent the images in quantum state.

3. Quantum Image Representations

Before we delve into quantum image compression, we need to understand how an
image can be represented in quantum state, since a number of quantum image representa-
tions have been proposed. The first attempt to represent an image in quantum system was
proposed after introducing Qubit Lattice in 2003 [18]. Then in 2005 quantum superposition
was introduced in Real Ket [19] to represent image. In 2010, Venegas et al. proposed
entangled image which used quantum entanglement [20]. Le et al. also published their
work FRQI or flexible representation of quantum images [16] in the same year. Here, they
utilized an n-qubit sequence to represent the coordinate information. To store the color
information of the image they used angle. An image in FRQI model can be represented as
follows [16]:

|I(θ)⟩ = 1
2n

22n−1

∑
i=0

(cosθi|0⟩+ sinθi|1⟩)⊗ |i⟩ (32)

θi ∈
[
0,

π

2

]
, i = 0, 1, . . . , 22n − 1 (33)

Here, |i〉 (=0, 1, . . ., 22n − 1) are 22n computational basis quantum states and θ = (θ0,
θ1, . . ., θ2

2n − 1) is the vector of angles encoding colors. Here the coordinate information is
represented with |i〉 and the grey scale information is represented using cosθi |0〉 + sinθi
|1〉. This model can represent the greyscale information as well as the coordinate system of
an image in quantum state properly.

This FRQI model was extended further in the following year and a new model called
Multi-Channel Representation for Quantum Image (MCRQI) [21] was proposed, which
also consider the RGB space. This model represents images as follows:

|I(θ)⟩ = 1
2n+1

22n−1

∑
i=0

∣∣∣ci
RGBα

〉
⊗ |i⟩ (34)

∣∣ci
RGBα

〉
= cos θRi|000⟩+ cos θGi|001⟩+ cos θBi|010⟩+ cos θαi|011⟩

+ sin θRi|100⟩+ sin θGi|101⟩+ sin θBi|110⟩+ sin θαi|111⟩ (35)

As we can see, in MCRQI to store RGB channels and opacity, three qubits are required.
Here, θRi, θGi, θBi vectors represent the RGB colors and θαi represents the channels.

In FRQI scheme while encoding the image pixels, normalized superposition state is
utilized, allowing simultaneous operations on all pixels, thereby addressing the need for
real-time processing in image applications. A number of algorithms have been introduced
based on this principle. However, FRQI’s restriction to one qubit per pixel for grayscale
information makes certain complex color operations challenging.

The NEQR model for digital images representation, was introduced in 2013 by Zhang
et al. [17], uses entangled qubit sequences to encode an image’s grayscale and spatial
information in a quantum superposition. This method converts grayscale values into binary
using q qubits, improving simplicity and accessibility. The binary-encoded grayscale data
are stored in a q-qubit sequence, whereas the coordinates for a 2n-by-2n pixel image are
retained in a 2n-qubit sequence. To better illustrate the algorithm, let us consider a 2-by-2
image as shown in Figure 6. In order to apply NEQR to an image, first q + 2n qubits
needs to be initialized to the |0〉 state. This is followed by applying identity (I) gates and
Hadamard (H) gates to this initial state. Subsequently, the grayscale values for all pixels
are established using 2n-CNOT gates. So, in the figure, to store the coordinate information
H-gate needs to be applied to two of the ten |0〉 qubits. Then, 2-CNOT gates need to be
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used to store the grayscale information. The quantum circuit for the NEQR preparation is
shown in Figure 7.
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The NEQR model is a substantial improvement over the FRQI model. NEQR requires
more qubits than FRQI but solves the problem of reliably measuring grayscale information
with a limited number of measurements. NEQR simplifies color operations, giving it a more
practical and often useful framework in quantum image processing. However, both NEQR
and FRQI have a constraint in that they are designed to store images that are strictly square
because their horizontal and vertical coordinate lengths are equal. This limitation presents
an issue for depicting images that are not square or rectangular, which are prevalent. To
address this issue, the improved novel enhanced quantum representation (INEQR) [22]
was introduced in 2015 by Jiang et al. INEQR allows for storing and processing rectangular
images by supporting uneven horizontal and vertical coordinates. This improvement
broadens the applicability of quantum image representations, making them more suitable
for real-world scenarios where images may not have square dimensions.

GQIR or Generalized Quantum Image Representation was presented to represent
non-square, rectangular images of arbitrary dimension by utilizing logarithmic coordi-
nates [23]. Despite its versatility, GQIR adds redundancy to the representation process. The
Novel Quantum Representation for Log-Polar Images (QUALPI) offers a framework for
image representation in polar coordinates, diverging from conventional Cartesian-based
methods [24]. In 2014, Li et al. introduced a new encoding approach for multi-dimensional
color images called the n-qubit normal arbitrary superposition state (NASS). This method
creatively encodes grayscale values using quantum states’ angles and assigns certain states
to represent different dimensions, enabling the compression of multi-dimensional color
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images on a quantum computer [25]. In 2016, the FRQI method was improved, and a
new model called the FRQCI or Flexible Representation for Quantum Color Image, which
improved the management of color in quantum image representations [26]. Sang et al.
developed the Novel Quantum Representation of Color Digital Images (NCQI) by integrat-
ing enhancements from MCRQI and NEQR within a similar period [27]. The new model
modifies the qubits in NEQR from q to 3q to symbolize the RGB color channels, making
color operations, such as intricate color transformations, much simpler to perform. Yet, a
downside of the NCQI paradigm is the heightened need for qubits.

In 2018, Liu et al. introduced an Optimized Quantum Representation for Color Digital
Images (OCQR) to tackle this problem [28]. OCQR requires fewer qubits, about one-third of
what NCQI uses, to hold pixel values, while having a similar time complexity for preparing
quantum pictures. OCQR optimizes computational resources by minimizing qubit usage
and improves the efficiency of specific color changes. In 2017, the NEQR model was
expanded to include Red–Green–Blue (RGB) color schemes by creating the Quantum Multi-
Channel RGB Representation (QMCR) [29]. Although this new method demands more
qubits than the MCRQI model, it streamlines the picture preparation process and allows
for accurate image retrieval. In the same year, Jiang et al. introduced a new framework
for three-dimensional imaging in the quantum realm, called the quantum point cloud [30].
This novel approach expands quantum image processing to 3D visual data, providing new
opportunities for manipulating and analyzing digital images in quantum computing.

In the following year, BRQI (Bitplane Representation of Quantum Images) was pub-
lished by Li et al. [31], which allows for altering color complements, reversing, and trans-
lating bitplanes within the BRQI framework. This BRQI method divides the grayscale
values into eight different binary bits, converting a grayscale image into eight distinct bit
planes. It requires three qubits to express the bitplane index, while n qubits are assigned to
encode the spatial coordinates of the image. Moreover, Wang et al. in 2019, published a
model where a bitplane is used to represent color digital images. They named this model
QRCI [32]. An improved FRQI model called FRQCI was proposed by Li et al. [33]. Interest-
ingly, in this model they talked about some image processing operators for pixel coordinate
information and color representation. Khan explored FRQI and NEQR model further
and came up with an improved flexible representation of quantum images (IFRQI) [34].
In this model, every pair of bits was represented using angle, enabling single qubit to
store information equivalent to 2-bit grayscale values. This method significantly enhances
the precision in retrieving the original image data. In the following year Grigoryan et al.
published a new algorithm to store the images in quantum state by using Fourier transform
representation [35]. In the same year, Wang et al. came up with a method called DQRCI
(double quantum color images encryption scheme) in which two color images are stored
into quantum superposition state simultaneously [36].

4. Quantum Image Compression

In this section, we provide a review of the literature in quantum image compression.
To make it understandable for the readers this section is divided into two subsections. In
the first subsection we talk about the papers focusing on direct methods and algorithms
for compressing images using quantum computing techniques. These typically involve
novel quantum algorithms that enhance or replace classical compression methods. In the
second one, we give an overview of the papers that explore not only the quantum image
compression technique but also quantum image representation, storage and retrieval.

4.1. Quantum Image Compression Techniques

In 2006, Yang et al. proposed a quantum vector quantization encoding algorithm for
image compression [37]. This study presents a hybrid quantum-classical vector quanti-
zation (VQ) encoding algorithm that is more efficient than the pure quantum version. It
requires fewer than

√
N (N = number of pixels) operations for most images and achieves

close to a 100% success rate. The same group also published another work on image
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compression by using the quantum discrete cosine transform (QDCT) [38]. The proposed
algorithms for 1-D and 2-D DCT decrease the time complexity to O(

√
N) for 1-D and O(N)

for 2-D, in contrast to the classical complexities of O(N log2N) for 1-D and O(N2 log2N) for
2-D. it also expands Grover’s algorithm, known for its effectiveness in quantum searching,
to tackle more complex unstructured search problems.

Nodehi et al. in 2009, proposed an image compression method for fractal images
based on Functional Sized population Quantum Evolutionary Algorithm (FSQEA) [39].
The Quantum Evolutionary Algorithm (QEA) represents an emerging optimization tech-
nique that adopts probabilistic solution representation, proving to be especially effective
for combinatorial challenges such as the Knapsack problem. Given that fractal image
compression falls under the NP-Hard category, genetic algorithms (GAs) have traditionally
been the go-to approach for such issues. However, the application of QEA to fractal image
compression remains unexplored territory. In the paper, not only FSQEA for fractal image
compression is proposed but also optimized by fine-tuning different parameters to enhance
the performance, where it was shown that the PSNR of the proposed algorithm is better, i.e.,
27.44 dB instead of 27.27 dB for GA. Notably, the time complexity of the FSQEA mirrors that
of the original QEA, attributed to the fact that the average population size for the FSQEA is
equivalent to that of the conventional QEA, and the number of function evaluations remains
constant across both algorithms. Given the inherently time-intensive nature of fractal image
compression, and the need for multiple iterations to ascertain optimal parameters, the study
utilizes benchmark functions as a preliminary step. However, the temporal complexity of
the FSQEA is similar to that of the original QEA because the average population size and
the number of function evaluations are the same in both algorithms.

Qi et al. proposed an algorithm that uses Quantum Backpropagation (QBP) for image
compression [40]. They showed a quantum neuron model that uses a combination of
quantum gates, especially phase-shift and controlled-NOT gates as the basic building
block for the operation. Incorporating the principles of traditional backpropagation (BP)
they showed that the QBP network outperforms its classical BP counterpart. The work
demonstrates a quicker learning rate (η = 0.09 compared to QNN with η = 3.6) as well as
superior image compression capabilities (with a compression rate of R = 0.16 compared to
QNN with 0.15).

Another work on fractal image compression (FIC) was presented by Du et al. in
2015 [41]. Grover’s quantum search algorithm (QSA) was applied to accelerate the encoding
process of FIC. Both theoretically and experimentally they showed that substantial amount
of speedup was achieved by this method over the traditional FIC. Additionally, in terms
of preserving the quality of retrieved images, the proposed QAFIC outperforms other
contemporary FIC methods. A quantum image compression scheme based on JPEG
was proposed by Jiang et al. in 2017 [42]. Figure 8 depicts the workflow of the JPEG
based quantum image compression algorithm. As depicted in the workflow, first, the
image is quantized, then the quantized JPEG coefficients are inputted into qubits and
finally converted into pixel values. Compared with the Boolean expression compression
(BEC) method, this scheme is less complicated and faster (with a running time of 0.164 s
compared to 5.54 h in BEC), with high compression ratios (84.66% for the “cameraman”
image compared to 69.07% in BEC).
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Pang et al. proposed a signal and image compression technique using the quantum
discrete cosine transform (QDCT) [43]. In order to compress images and signals, this study
introduces a quantum algorithm for the discrete cosine transform (DCT) that is specifically
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engineered to be computationally more efficient than its classical counterpart. This is ac-
complished by the algorithm calculating the DCT coefficients concurrently and identifying
the most significant coefficients. The conventional Grover’s iteration is improved through
the incorporation of a novel iteration method called the quantum DCT iteration (GDCT),
which is specifically designed for DCT operations and compression tasks.

The construction of the 1D-DCT using this method demonstrates an O(
√

N) com-
plexity for a vector of size N. Conversely, the 2D-DCT computation for an N-by-N matrix
manifests an O(N) complexity. The quantum DCT algorithm was developed by taking
advantage of two inherent properties of the DCT: its energy conservation capability and
the fact that numerous DCT coefficients are insignificant and can therefore be excluded
with minimal degradation to the quality of the reconstructed image. A study by Dai et al.
introduces a quantum technique that utilizes the quantum DCT along with a 4-dimensional
hyper chaotic Henon map to compress multiple images simultaneously [44]. Using QDCT,
this method combines four grayscale images into a single quantum image, resulting in an
efficient compression ratio that reduces the requirements for data transmission. Encryption
involves using the 4D hyper-chaotic Henon map to manipulate the quantum image, uni-
formly spreading pixel values to create a large key space for increased security. A logistic
map-guided quantum image cycle shift technique is used to scatter pixel data for improved
encryption. The authors also showed by simulation that their model seems to be efficient
with lower computational complexity (O(n)) than traditional picture encryption approaches
(O(n23n) and O(26n)).

In 2023, Ma er al. proposed a scheme to apply compression to quantum RGB images
by using the quantum Haar wavelet transform (HQWT) and iterative quantum Fibonacci
transform (IQFT) [45]. They converted multiple RGB images into a unified hybrid image.
This hybrid image then undergoes compression at varying ratios using a measurement
matrix built from Hadamard gates. The compressed image is then encrypted by using the
Generalized Inverse Quantum Fourier Transform (IQFT), resulting in a compacted image
form. The proposed scheme has total computation complexity of O(n3). In the following
year, Wang et al. published a quantum version of autoencoder based on parameterized
quantum circuits for image compression [46]. They combined quantum image processing
with the machine learning, especially the autoencoder to apply image compression on the
quantum images. Ji et al. proposed an image compression and reconstruction algorithm
by leveraging the quantum network (QN) in 2024 [47]. QN is a network structure where
the fundamentals of quantum mechanics are used to transmit and process information.
In their approach, first the image is converted to a quantum state from classical state.
Then this quantum state is used as an input for the quantum compression network. The
measurements of the output state are converted into compressed image which are utilized to
train the QN based on the gradient descent algorithm. Lastly, the simulation of compression
of grayscale images is realized by this quantum algorithm. Haque et al. proposed a
block-wise lossy SCMNEQR (state connection modification novel enhanced quantum
representation) compression scheme for quantum gray-scale images [48]. Their algorithm
was able to minimize the total computational time by 99.66% and 7.36% compared to JPEG
and DCT-EFRQI (Direct Cosine Transform Efficient Flexible Representation of Quantum
Image) approaches, respectively.

4.2. Quantum Image Storage, Representation, Compression, and Retrieval Techniques

In 2011, one of the pioneering works on quantum image processing was published
by Le et al. [16]. A flexible representation of quantum images (FRQI) was proposed in
this paper. Quantum image compression (QIC) aims to decrease the quantum resources
necessary for preparing and reconstructing quantum images by lowering the number of
simple quantum gates needed, which is crucial in both the theoretical and practical realms
of quantum computing, as seen in the FRQI model, where simplifying basic gates such as
controlled rotation gates is critical.
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A way is suggested to combine these gates with identical rotation angles by leveraging
the limited ability of the human visual system to differentiate between numerous colors,
which enables a distinct range of color values for representation. Grouping controlled
rotation operators with the same angles and combining their conditions can greatly decrease
the required number of gates. We can consider an 8 × 8 pixel image as shown in Figure 9
with only two colors: blue and red. This image would need 64 C6(·) controlled-rotation gates
for its initial quantum state preparation. Here the dot (·) in these notations is a placeholder
indicating that the gate can be applied to any arbitrary target gate. Categorizing these gates
into two groups based on color can significantly decrease the total number. The 64 gates
can be simplified to 4 as shown in Figure 10, resulting in a 93.75% reduction, by using
simpler gates such as one C1(·) and two C2(·) gates for the red locations.
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The controlled-rotation gate is given by the following equation:

Ry(2θi) =

(
cos θi −sin θi
sin θi cos θi

)
(36)

A key step in this process involves translating binary strings that represent pixel
positions into Boolean minterms. Each binary digit is treated as a Boolean variable, with
“1” represented by the variable (x) and “0” represented by its negation (x). After organizing
the gates by color, we can condense them by merging the binary strings of each color group
into a unified Boolean expression. This phrase includes all the necessary conditions for the
controlled-rotation gates of that group. An 8-position group in the blue color category as
shown in Figure 11, which would have needed 8 individual gates, can be depicted by a
single term in a simplified Boolean expression. This suggests that replacing the original
eight gates with a single controlled-rotation gate can simplify the quantum circuit and
decrease the quantum resources required for image representation.
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tains. Each color relates to a quantum state from the QSMC set, and these states are lined 
up in a quantum queue. The compression procedure involves scanning the “newImage” 
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Figure 11. Boolean expression and its minimized expression for an 8-position group.

The QIC algorithm aims to decrease the number of controlled rotation gates within
color groups by minimizing their Boolean expression, as depicted in Figure 12. The
process begins with identifying places within the group of similar color and concludes with
simplified Boolean expression.
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Figure 12. Quantum image compression flow chart.

In 2013, Li et al. proposed a method to store, retrieve and compress images in a
quantum system [49]. More specifically, the authors proposed a compression algorithm
where they achieve a lossless compression ratio of 2.058. In this algorithm, to compress an
image, termed “newImage”, we first determine the number m of unique colors the image
contains. Each color relates to a quantum state from the QSMC set, and these states are lined
up in a quantum queue. The compression procedure involves scanning the “newImage” in
a certain direction as shown in Figure 13, either row-wise starting from the second pixel
of the first row (1,2) or column-wise starting from the second row’s first pixel (2,1). We
record only the initial pixel of each continuous sequence of pixels with identical colors as
we scan. When the scan encounters a pixel of a different color, it stops to record the color
and sequence length before continuing from the last pixel of the uniform sequence. s is the
length of the longest sequence of pixels with matching color. n is the number of pixels in
the compressed “newImage”.
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Figure 13. Scanning a 3-color 8 × 8 image by rows (indicated by the purple line) starting from the
second pixel of the first row (1,2), and by columns (indicated by the yellow line) starting from the
second row’s first pixel (2,1).
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Next, a bijective function is created as:

F4 : posNum ⇆ γ, (37)

where posNum = {1, 2, . . ., m, m + 1, m + s} and γ = {γ1, γ2, . . ., γm+s}(γi = π(i−1)
2(m+s−1) , i ϵ {1, 2,

. . ., m + s}). Ry(2γi), which is rotation operator given by Equation (38), converts state |0〉 to
m+s states.

Ry(2γi) =

[
cos γi −sin γi
sin γi cos γi

]
, (i = 1, 2, . . . , m + s) (38){

|ωi⟩ = cos γi|0⟩+ sin γi|1⟩, iϵ{1, 2, . . . , m}
|xi⟩ = cos γm+i|0⟩+ sin γm+i|1⟩, iϵ{1, 2, . . . , m} (39)

Here
∣∣ω j
〉

is the jth position of queue Q1 and |xi〉 represents an integer i.
∣∣ψi
〉

represents the ith pixel and can be defined as:

∣∣ψi
〉
=


∣∣ω j
〉
⊗ |ux⟩, i = 1, |ux⟩ϵQSNC, xϵ{1, 2, . . . , N}∣∣ω j
〉
⊗
∣∣uy
〉
, i = n,

∣∣uy
〉
ϵQSNC, yϵ{1, 2, . . . , N}∣∣ω j

〉
⊗ |xk⟩, iϵ{2, 3, . . . , n − 1}, k ≥ 2∣∣ω j
〉
, iϵ{2, 3, . . . , n − 1}, k = 1

(40)

where ux is the coordinate of the first pixel and uy is the coordinate of the last pixel of the
newImage, k represents consecutive pixels of same color depending on the direction of
the scanning. After that

∣∣ψi
〉

is stored in another quantum queue Q2 and the process is
repeated. Suppose three colors in Figure 13 are represented, respectively, by |υr〉, |υg〉,
|υb〉 and saved in Q1. Q2 has five states as follows:

∣∣ψ1
〉
= |ω1⟩⊗|u1⟩,

∣∣ψ2
〉
= |ω1⟩⊗|x8⟩,∣∣ψ3

〉
= |ω2⟩,

∣∣ψ4
〉
= |ω3⟩⊗|x53⟩,

∣∣ψ5
〉
= |ω3⟩⊗|u120⟩. The compressed image stored in Q1

and Q2 is shown in Figure 14.
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Another milestone in quantum image processing was the NEQR model [17] proposed
in 2013 by Zhang et al., in which 15X compression ratio on quantum images was achieved.
While FRQI relies on one qubit per pixel to store grayscale data, which restricts compression
to areas with consistent grayscale values, NEQR stores grayscale data by distributing it
among a series of qubits, enabling optimization of each qubit separately. By employing
Boolean expression minimization, NEQR can obtain higher compression ratios for quantum
images by simplifying the preparation of each qubit individually. An operation set Φ
consists of all the quantum operations of quantum image preparation can be expressed as

ϕ =
2n−1⋃
Y=0

2n−1⋃
X=0

q−1⋃
i=0

ϕi
YX , ϕi

YX ∈ {I, 2n − CNOT} (41)
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where ϕi
YX represents the quantum operation for the ith qubit. These operations can be

categorized into q groups as shown in the following equation:

ϕ =
2n−1⋃
Y=0

2n−1⋃
X=0

q−1⋃
i=0

ϕi
YX =

q−1⋃
i=0

(
2n−1⋃
Y=0

2n−1⋃
X=0

ϕi
YX

)
=

q−1⋃
i=0

ϕi (42)

Depending on the value of Ci
YX, the style of the operation ϕi

YX will change such that,
when Ci

YX = 0, ϕi
YX will be the identity gate I. Otherwise, it will be 2n − CNOT qubit gate.

This will invert the ith qubits in the color qubit sequence when the pixel position is (Y, X).
Thus ϕ can be written as:

ϕ =
2n−1⋃
Y=0

2n−1⋃
X=0

ϕi
YX

ϕ =

2n−1⋃
Y=0

2n−1⋃
X=0, Ci

YX=0
I

 ∪

2n−1⋃
Y=0

2n−1⋃
X=0, Ci

YX=1
(2n − CNOT)YX

 (43)

The identity operation will not affect the quantum state; hence, the operation can be ig-
nored from the first part in the ith group of quantum operation. The espresso algorithm [50]
which is used in the second part of the operation, compresses the control information of
controlled not gates. The espresso algorithm is a program use to reduce the complexity of
digital logic gate circuits by using heuristic and specific algorithms.

2n−1⋃
Y=0

2n−1⋃
X=0, Ci

YX=1

YX
→

Espresso
⋃
Ki

Ki (44)

The expression builds a new quantum controlled-not gates
⋃
Ki

Ki − CNOT for the new

ith group ϕ′
i by providing the equivalent and compact control information sets

⋃
Ki

Ki. So,

the new circuit will be given by,

ϕ′ =
q−1⋃
i=0

ϕ′
i =

q−1⋃
i=0

⋃
Ki

Ki − CNOT (45)

Figure 15 shows the workflow for image compression in the NEQR algorithm.
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A study from 2014 shows the multidimensional color image compression based on 
quantum amplitudes and phases [25]. Both the lossless and lossy quantum image com-
pression algorithms were developed. About 72.6 compression ratio was achieved by this 
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A study from 2014 shows the multidimensional color image compression based on
quantum amplitudes and phases [25]. Both the lossless and lossy quantum image com-
pression algorithms were developed. About 72.6 compression ratio was achieved by this
algorithm. For lossless compression, the process is divided into two steps. The first step is
dimensionality reduction and sorting algorithm for a k-dimensional color image (called
DRS). In the second step, the lossless compression algorithm was applied for quantum
images (LCQI). For lossy image compression Quantum Fourier Transform (QFT) was used
to generate a NASS (n-qubit normal arbitrary superposition state) state |ψA⟩. About 1.4
quantum compression ratio was achieved in this case. They also applied QWT (Quan-
tum Wavelet Transform) instead of QFT and achieved 1.5 quantum compression ratio.
In 2022, Amankwah et al. published a paper that introduced quantum compression for
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N-dimensional images [51]. They applied their algorithm to prepare an FRQI state, which
reduced the number of necessary gates by up to 90%, without lowering the image qual-
ity. Haque et al. published a peper on quantum image representation and compression
technique using DCT-EFRQI (Direct Cosine Transform Efficient Flexible Representation
of Quantum Image) in 2023 [52]. Both experimental and theoretical results showed that
the proposed DCT-EFRQI had better compression ratio compared with EFRQI (Efficient
Flexible Representation of Quantum Image). For example, for the “cameraman” image,
the proposed algorithm had compression ratio of 8.4543:1 compared to 2.5864:1 for EFRQI.
The work showed that DCT-EFRQI provided twice as much compression on medium-size
images (512 × 512) than on large-size images (1024 × 1024).

5. Conclusions

Quantum image compression applies the laws of quantum mechanics to improve the
effectiveness of image data reduction and compression. It utilizes qubits to encode image
data by taking advantage of superposition and entanglement to process and compress
images in a way that the classical algorithms cannot match. By leveraging quantum paral-
lelism, these methods can theoretically achieve compression tasks at speeds unattainable
by classical computers, with potentially higher compression ratios and lower losses of
quality. Moreover, the inherent properties of quantum systems, like the ability to handle
vast amounts of data simultaneously, make quantum image compression particularly suited
for high-resolution and high-dimensional imaging applications, such as medical imaging,
satellite imagery, and large-scale video data. However, the practical application of quantum
image compression is still in its nascent stages. The field faces substantial challenges that
stem primarily from the limitations of current quantum technology. These include the
instability of quantum states (decoherence), the high error rates of quantum operations, the
complexity of quantum circuit design, and the need for robust quantum error correction
methods. We believe that rapid advances in quantum systems and hardware in the coming
years will help address these constraints. Moreover, there are plenty of opportunities to
conduct further research on quantum algorithms that mimic the classical transform coding
methods like Fourier transforms or wavelet transforms, where we utilize the properties of
quantum bits to perform quantum-specific transformations on quantum states representing
images. This could lead to more efficient transformations, reducing the time and resources
needed for encoding and decoding images. Moreover, if quantum entanglement can be
utilized to compress correlated regions within an image by entangling qubits that represent
similar or related image features (like colors or edges), it might be possible to reduce the
overall number of qubits needed to represent an image, effectively compressing the image
data. Furthermore, quantum machine learning models can be designed to learn optimal
compression strategies based on the image content. These models could identify patterns
and features in image data that classical algorithms might overlook and use these insights
to compress images more effectively. Also, a hybrid algorithm can be developed where the
initial stages of image processing and feature extraction are performed using classical tech-
niques, and the heavy lifting of actual data compression is conducted on quantum hardware.
This could make quantum image compression more practical and accessible with current
technology. But it is needless to say, the development of scalable quantum computers that
can handle real-world image compression tasks remains a significant hurdle. Work is still
sparse on the practical feasibility in the implementation of quantum image compression
algorithms on physical quantum computers, where a huge of amount of quantum gates will
present challenges on achieving fidelity by dealing with noise and decoherence [53]. Ac-
cording to IBM’s quantum road map “https://www.ibm.com/roadmaps/quantum/2024/
(accessed on 14 July 2024)”, in about ten years or so, quantum computers will be able
to support 2000 qubits working in a distributed 100,000-qubit machine, with distributed
software tools that enable noise-free quantum computations working seamlessly with
classical computations. While there seems to be a long way to go before we can attain
the full advantage and potential of the many algorithms we have discussed above, the

https://www.ibm.com/roadmaps/quantum/2024/
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future of quantum image compression is bright as we are entering into the new age of
quantum-centric computing.
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