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Abstract: This paper explores the performance of ChatGPT and GeoGebra Discovery when dealing
with automatic geometric reasoning and discovery. The emergence of Large Language Models has
attracted considerable attention in mathematics, among other fields where intelligence should be
present. We revisit a couple of elementary Euclidean geometry theorems discussed in the birth of
Artificial Intelligence and a non-trivial inequality concerning triangles. GeoGebra succeeds in proving
all these selected examples, while ChatGPT fails in one case. Our thesis is that both GeoGebra and
ChatGPT could be used as complementary systems, where the natural language abilities of ChatGPT
and the certified computer algebra methods in GeoGebra Discovery can cooperate in order to obtain
sound and—more relevant—interesting results.

Keywords: computer algebra; automatic geometric reasoning; automatic geometry theorems discovery;
Euclidean geometry; mathematics education; dynamic geometry; ChatGPT; GeoGebra Discovery

1. Introduction

Since the birth of Artificial Intelligence (AI), special attention has been given to math-
ematics as a suitable field for testing related systems and programs. One of the earliest
computer programs in automatic mathematical reasoning, if not the first, was The Logic
Theorist [1]. This program proved 38 out of the 52 theorems in Chapter 2 of the Russell and
Whitehead’s Principia Mathematica [2], returning shorter proofs for some theorems. Re-
garding automatic geometry reasoning, H. Gelernter presented, back in 1959, at a UNESCO
meeting in Paris, the first geometry-theorem-proving machine [3]. And, one year later, he
described in this way its performance [4]:

In early spring, 1959, an IBM 704 computer, with the assistance of a program
comprising some 20,000 individual instructions, proved its first theorem in
elementary Euclidean plane geometry. Since that time, the geometry theorem-
proving machine (a particular state configuration of the IBM 704 specified by
the afore-mentioned machine code) has found solutions to a large number of
problems taken from high school textbooks and final examinations in plane
geometry . . . the theorem-proving program relies upon heuristic methods to
restrain it from generating proof sequences that do not have a high a priori
probability of leading to a proof for the theorem in question . . . At this stage
in its development, the geometry machine was capable of producing proofs
that were quite impressive. . . Three years ago, the dominant opinion was that
the geometry machine would not exist today. And today, hardly an expert
will contest the assertion that machines will be proving interesting theorems in
number theory three years hence.. . .
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Sixty (not three!) years later, interest in AI tools for dealing with mathematical issues
seems to be exploding. See, for instance, the general reflection in [5] or the more recent and
specific papers [6–8] addressing such different topics as solving mathematical olympiad
problems with AlphaGeometry, a neural language model, or using ChatGPT [9], a chatbot
tool, to prepare lesson plans in primary school mathematics courses. In particular, the gen-
eral availability of Large Language Models (LLMs) has facilitated their dissemination and
exploration in different contexts. Thus, the suitability and accuracy of one of these LLMs,
for example, through the widely known, LLM-based, ChatGPT chatbot, released at the end
of 2022, has been rapidly tested in several fields of knowledge (e.g., see [10] for references).
Regarding mathematics, the main point of attention we observe in the scientific literature is
on teaching and learning issues; see, for instance, [8,11,12].

Here, continuing with the approach we started in [10], we focus on describing—through
two traditional Euclidean geometry problems historically related to the AI context and a
challenging problem from the American Mathematical Monthly—the performance of the
automated geometric reasoning and discovery tools we implemented in GeoGebra Discov-
ery, comparing it with ChatGPT’s automated answers on the same examples and reflecting
on the potential cooperation of GeoGebra Discovery with AI bots. This goal is differ-
ent from, and complementary to, the one in [10] that focused such a comparison on loci
computation (e.g., envelopes of curves).

Let us remark that a similar goal, the comparison of and potential cooperation between
AlphaGeometry and a computer algebra tool such as Xcas/Giac (remarking that Giac, see
https://www-fourier.ujf-grenoble.fr/~parisse/giac.html, accessed on 22 July 2024, is also
the computer algebra system implemented in GeoGebra and GeoGebra Discovery), was
quite recently performed and described in [7], concluding that both approaches are not yet
fully automatized, requiring human concourse (translation by the authors from the original
text in French):

It is then essential here to parameterize the problem to make the calculations
efficient, otherwise with Olympiad problems, the calculations quickly become
impractical. This is where the intelligence of the human being comes in, guiding
the calculations with the help of a few rules cited below. We could perhaps
replace this step with artificial intelligence, with probably significantly less
power required, but for the moment AIs do not seem to be coupled with efficient
formal calculation engines.

. . . AlphaGeometry (AG) is more automated than Xcas, but not completely
yet. Xcas solves almost twice as many Olympiad problems. Some problems are
probably out of reach for the current version of AG because they require prior
calculation to perform a construction, AG does not seem capable of reasoning
about an approximate figure, unlike a human being in synthetic geometry or
Xcas who can calculate in analytical geometry. AG provides a certificate (the
details of the proof steps) which allows a human being to verify (if the number
of steps is not too large), the calculations of Xcas are on the other hand often too
technical to be verified at the main (therefore, closed source software should
not be used to provide a proof in analytical geometry).

To achieve our goal of exemplifying the benefits of the cooperation of two fully
automated but fundamentally different tools for dealing with geometry statements, we
will describe here both the performance of GeoGebra Discovery and ChatGPT on the
selected examples, as well as the singular features, recently included in GeoGebra Discovery
reasoning tools, which provide enhanced information (certificates and grades of difficulty)
and facilitate the exploration by the user, in an algorithmic but still not fully automatic
way, of some involved geometric situations. We consider that these features are relevant (to
understand, to conjecture, to generalize. . . ) when addressing a geometry statement with
the complementary help of ChatGPT and GeoGebra Discovery.

GeoGebra (http://www.geogebra.org, accessed on 22 July 2024) is a freely available
educational software with over 100 million users in the world (data confirmed by Ge-

https://www-fourier.ujf-grenoble.fr/~parisse/giac.html
http://www.geogebra.org
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oGebra’s CEO, personal communication, June 2024), operative over smartphones, tablets,
and computers or just accessible through a web page. It includes computer algebra and
dynamic geometry features and can also be used as a versatile numerical and statistical
calculator. Concerning automated reasoning features, let us highlight that GeoGebra is
capable of automatically finding an equality relation between two given geometric objects
{a, b} in a construction (i.e., of discovering, as the output of the Relation(a, b) command,
a thesis involving such elements and holding under the set of hypotheses describing the
geometric construction), of checking the truth/failure of a user-conjectured property (us-
ing the Prove or the ProveDetails commands), or finding—through the LocusEquation
command—missing hypotheses for a given relation to hold true.

GeoGebra Discovery (see https://kovzol.github.io/geogebra-discovery/, accessed
on 22 July 2024, for further details) is a fork version of GeoGebra that enlarges GeoGebra
reasoning tools by including new features. It is available through several offline releases
for different OS (Mac, Windows, Linux, RaspberryPi; see https://github.com/kovzol/
geogebra/releases, accessed on 22 July 2024) as well as an online version (see https://www.
autgeo.online/geogebra-discovery/, accessed on 22 July 2024). GeoGebra Discovery is
able to find the relation between two given geometric objects in a construction, including,
in the case of lengths, the discovery of relations that are not of equality: obtaining algebraic
number ratios, or inequality relations, through comparison. It is also capable of checking
the truth/failure of a conjectured (by the user) relation involving inequalities and of
discovering automatically all possible relations of a certain kind (co-circularity, parallelism,
perpendicularity, etc.) among the elements of a construction involving a chosen element
or all elements of a construction.

In what follows, we will devote the next two sections to addressing two theorems
from the early days of AI: namely, those considered back in 1959 in [4], analyzing the
performance of ChatGPT and GeoGebra Discovery for solving them. Thus, in Section 2,
we show how the theorem in Appendix 1 of [4] (labeled as Theorem 1 in what follows) is
easily solved—in the case of ChatGPT, if formulated closely to the statement in [4]—with
both tools, providing an adequate context to describe in detail the performance and the
algorithmic approach of the novel command ShowProof from GeoGebra Discovery, which
provides the user with a proof certificate (that can be verified through any Computer
Algebra software, or by hand) and the proposal of an estimation of the difficulty of the
statement. The section ends by remarking on some differences in the behavior of ChatGPT
if the statement is formulated differently; for instance, if the input hypotheses are described
just through an image, referring the reader to Appendix A in this article for further details.

Section 3 deals with the theorem in Appendix 2 of [4], labeled as Theorem 2 in what
follows. In Appendix 2, after describing the six premises and the thesis of this theorem,
the “Geometry Machine” declares “I Am Stuck, Elapsed Time = 8.12 Minutes” ([4], p. 148).
Then, in the same Appendix 2, some auxiliary elements (points and segments) are intro-
duced, and a couple of new premises involving such elements are added, yielding the
“Geometry Machine” to be able to solve the problem in about 30 min. Again, both Chat-
GPT and GeoGebra Discovery are able to confirm the truth of the statement (although
Appendix A shows, again, the problematic answers of ChatGPT if the statement is intro-
duced with a different formulation). It is remarkable to mention here some singular features
of GeoGebra Discovery concerning this statement:

• The automatic completion of the given set of hypotheses without requiring the formu-
lation of the thesis;

• A warning sign suggesting the user to consider “exporting the CAS view as Maple,
Mathematica. . . to the clipboard” to explore the inherent difficulties to deal with
through the implemented complex algebraic geometry algorithms with statements
involving lengths of segments.

As in the previous theorem, we will profit from the special behavior that GeoGebra
Discovery exhibits in this statement to introduce the required (but not yet fully imple-
mented, see Appendices B and C for the related computations, performed by us on Maple

https://kovzol.github.io/geogebra-discovery/
https://github.com/kovzol/geogebra/releases
https://github.com/kovzol/geogebra/releases
https://www.autgeo.online/geogebra-discovery/
https://www.autgeo.online/geogebra-discovery/
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https://www.maplesoft.com, accessed on 22 July 2024)) algorithmic issues dealing with
such difficulties (concepts of “True on Parts” [13] or of the “Minimal Extended Polynomial”
(MEP) [14]).

Section 4 addresses, both with ChatGPT and GeoGebra Discovery, the proof of an
inequality proposed in the Problem Section of the American Mathematical Monthly [15]:
“If a, b, c are the side lengths of a triangle with inradius r, then the following inequality
holds: a6 + b6 + c6 ≥ 5184 r6”. We will show that ChatGPT fails at proving this inequality,
while GeoGebra Discovery succeeds. But the relevant contribution of this section is the
use of GeoGebra Discovery to verify some of the intermediate statements introduced by
ChatGPT towards solving this problem.

Finally, we describe, in the Conclusions, the lessons learned from the experience of
proving the above-mentioned Theorems 1 and 2 with current automated methods from two
very diverse methodologies. And we argue—through the last example, the proof of a highly
non-trivial triangle inequality—about the potential relevance of establishing cooperation,
for an enhanced understanding of geometry statements, between ChatGPT and GeoGebra
Discovery. Of course, the basic idea of confirming the truth of a statement, providing a
kind of (e.g., algebraic) proof, etc., to complement/confirm/refute ChatGPT answers could
as well be exemplified through other geometry-theorem-proving programs (e.g., JGEX
(https://github.com/yezheng1981/Java-Geometry-Expert, accessed on 22 July 2024), or
Open Geometry Theorem Prover (https://github.com/opengeometryprover, accessed on
22 July 2024)), each with different advantages and disadvantages regarding GeoGebra
Discovery, but it is out of the scope of this article to perform such a comparative study.

2. Revisiting Gelernter et al. Theorem 1

The theorem was originally stated as follows:

Premises
Quad-lateral ABCD
Point E midpoint segment AB
Point F midpoint segment AC
Point G midpoint segment CD
Point H midpoint segment BD

To Prove
Parallelogram EFGH

and was successfully proven by Gelernter et al., in 1.03 min, more than sixty years ago. See
Figure 1. We will use ChatGPT and GeoGebra Discovery to prove it, both being successful.

Figure 1. Statement of Theorem 1 (taken from [4]).

https://www.maplesoft.com
https://github.com/yezheng1981/Java-Geometry-Expert
https://github.com/opengeometryprover
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2.1. Gelernter et al. Theorem 1: ChatGPT

Concerning ChatGPT, with the input “Let ABCD be a quadrilateral and E, F, G, and
H be the midpoints of AB, AC, CD, and BD, respectively. Prove that EFGH is a paral-
lelogram”, very close to Gelernter et al.’s formulation, the chatbot gives the following
answer:

To prove that quadrilateral EFGH is a parallelogram, we need to show that
both pairs of opposite sides of EFGH are parallel. We will use the midpoint
theorem, which states that the line segment joining the midpoints of two sides
of a triangle is parallel to the third side and half as long.

1. Consider triangle ABD:
E and H and are the midpoints of AB and BD respectively. By the midpoint

theorem, the line segment EH is parallel to AD and EH = 1
2 AD.

2. Consider triangle ACD:
F and G are the midpoints of AC and CD respectively. By the midpoint

theorem, the line segment FG is parallel to AD and FG = 1
2 AD.

Since EH and FG are both parallel to AD and have the same length ( 1
2 AD ),

it follows that EH ∥ FG and EH = FG.
3. Consider triangle ABC:
E and F are the midpoints of AB and AC respectively. By the midpoint

theorem, the line segment EF is parallel BC to and EF = 1
2 BC.

4. Consider triangle BCD:
H and G are the midpoints of BD and CD respectively. By the midpoint

theorem, the line segment HG is parallel to BC and HG = 1
2 BC.

Since EF and HG are both parallel to BC and have the same length ( 1
2 BC), it

follows that EF ∥ HG and EF = HG.
Therefore, we have shown that EH ∥ FG and EF ∥ HG with EH = FG and

EF = HG. This means that EFGH has both pairs of opposite sides parallel and
equal in length, which is the definition of a parallelogram.

Hence, EFGH is a parallelogram.

Let us remark that the synthetic proof given by the chatbot, and based on the well-
known midpoint theorem, is correct. In Appendix A, we included ChatGPT answers to
the same Theorem 1 when we introduced it through two very different prompts: first, via
a completely descriptive geometry statement (without labeling points), and second, for-
mulating the premises of the statement just graphically through an image of the geometric
configuration. For both formulations, ChatGPT provides a proof using vectors between
points in the construction to check parallelism and vector congruency. The reasoning
sequences are correct for both prompts; but, in the second case, when the input is an image,
ChatGPT fails in the interpretation of the configuration, as it begins the proof by consider-
ing, as the vertices of the sought quadrilateral, the midpoints of the four sides instead of
the midpoints of two opposite sides and the midpoints of the diagonals, the correct ones,
as displayed in the figure.

2.2. Gelernter et al. Theorem 1: GeoGebra Discovery

On the other hand, GeoGebra Discovery also proves that EFGH is a parallelogram
by checking the parallelism of lines EF and GH and of EH and FG. Let us describe here
the verification of the parallelism of EF and GH since the other one is similar.

First, we remark that, with GeoGebra Discovery, after writing

Execute({"A = (-1.57, 1.6)", "B = (-.53, 3.64)", "C = (1.95, 5.09)",
"D = (2.18, 1.44)", "E = Midpoint(A, B)", "F = Midpoint(A, C)",
"G = Midpoint(C, D)", "H = Midpoint(B, D)", "f = Line(E, F)",
"g = Line(G, H)"})
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in the input bar, we do not even need to state the thesis (i.e., that f , g are parallel). Indeed,
we can ask GeoGebra Discovery to find out what the Relation between the lines EF and
GH is. The system replies immediately that the two lines are numerically parallel. Then,
clicking on the More... icon, we obtain the formal answer that both lines are parallel
(Figure 2).

Figure 2. Using Relation to check the parallelism of lines EF and GH.

Another option for GeoGebra Discovery to address this statement is just to ask
to Discover properties (formally) holding on geometric objects involving a point, say
E. The answer, in Figure 3, shows the automatic finding of the parallelism of EF, GH
and EH, FG; thus, we conclude that the polygon EFGH is a parallelogram.

Figure 3. Discovering properties on E to conclude that EFGH is a parallelogram.
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Finally, GeoGebra Discovery, through the ShowProof command [16], provides the
steps of the algebraic proof by contradiction using computer algebra methods; that is,
collecting the different equations that represent each of the hypotheses and the negation of
the thesis, namely f and g are not parallel, and then showing that one is a combination of
these equations, multiplied by some polynomials that we call syzygies, see [16] for details
and references. Thus, the negation of the thesis yields an absurdity, and the statement holds
by contradiction.

Moreover, GeoGebra Discovery internally computes the degrees of the syzygies and
finds that the maximum degree is two, grading—following the definition introduced
in [16]—in this way the complexity of the statement, considering such a degree as a kind of
measure of the difficulty of expressing that one is a combination of the hypotheses and the
negation of the thesis. See Figure 4 and the following verbatim reproduction of the output
of the ShowProof command for this particular statement.

Figure 4. Final steps of ShowProof when proving the parallelism of f = EF and g = GH.

# Let A, B, C, D be arbitrary points.
# Let E be the midpoint of A, B.
# Let F be the midpoint of A, C.
# Let G be the midpoint of C, D.
# Let H be the midpoint of B, D.
# Let f be the line E, F.
# Let h be the line G, H.
# Prove that AreParallel(f, h).
# The statement is true under some non-degeneracy conditions (see below).
# We prove this by contradiction.
# Let free point A be denoted by (v1,v2).
# Let free point B be denoted by (v3,v4).
# Let free point C be denoted by (v5,v6).
# Let free point D be denoted by (v7,v8).
# Considering definition E = Midpoint[A, B]:
# Let dependent point E be denoted by (v9,v10).
e1:=(2 * v9) - v3 - v1 = 0;
e2:=(2 * v10) - v4 - v2 = 0;
# Considering definition F = Midpoint[A, C]:
# Let dependent point F be denoted by (v11,v12).
e3:=(2 * v11) - v5 - v1 = 0;
e4:=(2 * v12) - v6 - v2 = 0;
# Considering definition G = Midpoint[C, D]:
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# Let dependent point G be denoted by (v13,v14).
e5:=(2 * v13) - v7 - v5 = 0;
e6:=(2 * v14) - v8 - v6 = 0;
# Considering definition H = Midpoint[B, D]:
# Let dependent point H be denoted by (v15,v16).
e7:=(2 * v15) - v7 - v3 = 0;
e8:=(2 * v16) - v8 - v4 = 0;
# Thesis reductio ad absurdum (denied statement):
e9:=-1 - ((v17 * v15) * v12) + ((v17 * v13) * v12) +
((v17 * v16) * v11) - ((v17 * v14) * v11) + ((v17 * v15) * v10)
- ((v17 * v13) * v10) - ((v17 * v16) * v9) + ((v17 * v14) * v9) = 0;

# Without loss of generality, some coordinates can be fixed:
{v1 = 0, v2 = 0, v3 = 0, v4 = 1};
# All hypotheses and the negated thesis after substitutions:
s1:=(2 * v9) = 0;
s2:=-1 + (2 * v10) = 0;
s3:=(2 * v11) - v5 = 0;
s4:=(2 * v12) - v6 = 0;
s5:=(2 * v13) - v7 - v5 = 0;
s6:=(2 * v14) - v8 - v6 = 0;
s7:=(2 * v15) - v7 = 0;
s8:=-1 + (2 * v16) - v8 = 0;
s9:=-1 - ((v17 * v15) * v12) + ((v17 * v13) * v12) + ((v17 * v16) * v11)
- ((v17 * v14) * v11) + ((v17 * v15) * v10) - ((v17 * v13) * v10)
- ((v17 * v16) * v9) + ((v17 * v14) * v9) = 0;

# Now we consider the following expression:
(s1 * (((1 / 2 * v14) * v17) - ((1 / 2 * v16) * v17))) +
(s2 * (((-1 / 2 * v13) * v17) + ((1 / 2 * v15) * v17))) +
(s3 * (((-1 / 2 * v14) * v17) + ((1 / 2 * v16) * v17))) +
(s4 * (((1 / 2 * v13) * v17) - ((1 / 2 * v15) * v17))) +
(s5 * (((1 / 4 * v17) * v6) - (1 / 4 * v17))) +
(s6 * ((-1 / 4 * v17) * v5)) + (s7 * (((-1 / 4 * v17) * v6) +
(1 / 4 * v17))) + (s8 * ((1 / 4 * v17) * v5)) + (s9 * (-1));
# Contradiction! This proves the original statement.
# The statement has a difficulty of degree 2.

Let us succinctly explain the different items in this reproduction of the GeoGebra
Discovery CAS view. Notice, first of all, that equation e9 above expresses, using the
“dummy variable” v17, that vectors EF and GH are parallel. Indeed, this parallelism can be
expressed (following the notation of the ShowProof output) as (v9 − v11) ∗ (v14 − v16)−
(v10 − v12) ∗ (v13 − v15) = 0. And it is easy to check that e9 is exactly the equation
1− v17 ∗ ((v9− v11) ∗ (v14− v16)− (v10− v12) ∗ (v13− v15)) = 0, i.e., 1 minus v17 times
the expanded form of the left term of the thesis equation.

Next, the ShowProof output shows the result of fixing, in order to simplify the compu-
tations, the free points A = (0, 0), B = (0, 1). This does not affect the general validity of the
considered statement since the fact that lines f , g are parallel is kept through any rotation,
translation, and homothecy, which takes any given A, B to (0, 0), (0, 1). The new collection
of hypotheses equations, after replacing v1 = 0, v2 = 0, v3 = 0, v4 = 1, are s1, . . . , s8, while
s9 := 1− v17 ∗ ((v9− v11) ∗ (v14− v16)− (v10− v12) ∗ (v13− v15)) = 0 represents, again,
the negation of the thesis thesis := (v9− v11) ∗ (v14− v16)− (v10− v12) ∗ (v13− v15) = 0.
Let us remark that s9 is equal to e9 since it is not affected by the specialization of v1, . . . , v4.

The last expression in the ShowProof output is the key to estimate, following our
definition [16], the “difficulty” of the statement. Roughly speaking, GeoGebra Discovery
verifies the (“geometric”, i.e., the thesis vanishes over all points {(v5, v6, . . . , v16) ∈ Cn,
s1 = 0, . . . , s8 = 0}) truth of the statement by proving that 1 ∈ Ideal < s1, . . . , s8, thesis ∗
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v17 − 1 = 0 >; that is, 1 ∈ Ideal < s1, . . . , s8, s9 >. Indeed, it is well known that this is
equivalent to having a power of thesis in the Ideal < s1, . . . , s8 >, which is equivalent,
by Hilbert’s Nullstellensatz, to the geometric truth of the statement. Now, the verification
of 1 ∈ Ideal < s1, . . . , s8, s9 > is equivalent to having {1} as the Gröbner basis of the ideal
for whatever monomial order. In general, Giac, GeoGebra Discovery’s internal CAS [17],
performs the computation of the corresponding Gröbner basis, keeping a record of the
expression of the elements in the obtained basis in terms of the given generators (here:
{s1, . . . , s8, s9}). Finally, Giac obtains this expression for one:

1= (s1 * (((1 / 2 * v14) * v17) - ((1 / 2 * v16) * v17))) +
(s2 * (((-1 / 2 * v13) * v17) + ((1 / 2 * v15) * v17))) +
(s3 * (((-1 / 2 * v14) * v17) + ((1 / 2 * v16) * v17))) +
(s4 * (((1 / 2 * v13) * v17) - ((1 / 2 * v15) * v17))) +
(s5 * (((1 / 4 * v17) * v6) - (1 / 4 * v17))) +
(s6 * ((-1 / 4 * v17) * v5)) + (s7 * (((-1 / 4 * v17) * v6) +
(1 / 4 * v17))) + (s8 * ((1 / 4 * v17) * v5)) + (s9 * (-1));

Thus, according to our definition, since only polynomials of degree at most two are
involved in the expression of one in terms of s1, . . . , s8, s9, we could estimate the complexity
of the statement (the relation hypotheses/thesis) as bounded by two.

A final remark: in this particular case, it holds that the thesis is not only geometrically
true over the hypotheses’ variety but also algebraically true, i.e., the thesis itself belongs
to the ideal of the hypotheses thesis ∈ Ideal < s1, . . . , s8 >. In this case, we could (but
GeoGebra Discovery does not, to be able to deal quickly with more involved situations)
directly find the expression of the thesis in terms of the generators of the ideal hypotheses
by first computing a Gröbner basis, expressing each element of the basis in terms of the
generators, and then computing the Normal Form of the thesis (i.e., 0) and the representation
of the thesis in terms of the G-basis. Finally, combining both expressions, obtaining

Thesis = 2 ∗ (−v14/2 + v16/2) ∗ v9 + (2 ∗ v10 − 1) ∗ (v13/2 − v15/2) + (v14/2 −
v16/2) ∗ (2 ∗ v11 − v5) + (−v13/2 + v15/2) ∗ (2 ∗ v12 − v6) + (−v14/2 + v16/2) ∗ (2 ∗
v13 − v7 − v5) + (v13/2 − v15/2) ∗ (2 ∗ v14 − v8 − v6) + (v14/2 − v16/2) ∗ (2 ∗ v15 −
v7) + (−v13/2 + v15/2) ∗ (2 ∗ v16 − v8 − 1)

that is,

Thesis = s1 ∗ (−v14/2 + v16/2) + s2 ∗ (v13/2 − v15/2) + s3 ∗ (v14/2 − v16/2)) +
s4 ∗ (−v13/2 + v15/2) + s5 ∗ (−v14/2 + v16/2) + s6 ∗ (v13/2 − v15/2) + s7 ∗ (v14/2 −
v16/2) + s8 ∗ (−v13/2 + v15/2)

and the complexity will be one, the degree of the polynomials that multiply the hypotheses’
equations. This difference, i.e., complexity 1 with the direct proof and complexity 2 in the
proof by contradiction, is not relevant and is due, in part, to the inclusion of the “dummy
variable” v17 in the latter approach. Let us remark that most classical, elementary theorems
(e.g., Pythagoras, Intersection of Medians, Intersection of Heights, etc.) obtain grades 1 or
2 by GeoGebra Discovery; a partial formulation of the nine-point circle theorem obtains
complexity four; and some recent Austrian mathematics olympiad problem was graded
with number 10 by our algorithm, see [18].

3. Revisiting Gelernter et al. Theorem 2

The theorem in Appendix 2 of [4] is stated as follows:

Premises
Quad-lateral ABCD
Segment BC parallel segment AD
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Point E midpoint segment AC
Point F midpoint segment BD
Precedes MEF
Precedes AMB

To Prove
Segment MB equals segment MA

As declared in Appendix 2, the system states, after 8.12 min, “I Am Stuck”. And the same
Appendix mentions that, after manually adding a point K (see Figure 5) and completing
the premises with

Precedes CFK
Collinear AKD

the theorem was successfully proven, in those days, with an elapsed time of 30.68 min.
Notice that Precedes means the involved points are “collinear in that order.” ([4], p. 157,
last line).

Figure 5. Theorem 2 from Appendix 2 in [4], with an extra point K.

As in the precedent section, next we describe how both ChatGPT and GeoGebra
Discovery succeed in proving the theorem.

3.1. Gelernter et al. Theorem 2: ChatGPT

ChatGPT, after entering the question “Let A, B, C and D be a trapezoid with vertices
given in clockwise manner, AD parallel to BC, f the line through B and C, g the line
through A parallel to f , E the midpoint of AC, F the midpoint of BD, h the line through
F and E, i the line through A and B, and M the intersection point of i and h. Prove that
segment BM equals segment MA”, outputs the following answer:

To prove that segment BM equals segment MA in the given configuration of
a trapezoid ABCD where AD∥BC, follow these steps:

Trapezoid Configuration: Given trapezoid ABCD with AD∥BC and vertices
in a clockwise manner. Line f passes through points B and C. Line g passes
through point A and is parallel to f, hence g∥BC.

Midpoints: E is the midpoint of AC, so AE = EC. F is the midpoint of BD, so
BF = FD.

Constructing Lines: Line h passes through points E and F. Line i passes
through points A and B.

Intersection Point: Let M be the intersection point of lines h and i.
Properties and Symmetry: Since AD∥BC, and E and F are midpoints, line h

(through E and F) behaves as a midsegment of trapezoid ABCD.
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Key Property of Midsegment: The line segment joining the midpoints of the
non-parallel sides of a trapezoid (line h) is parallel to the bases (AD and BC)
and its length is half the sum of the lengths of the bases.

Geometric Analysis: Since h is the midsegment, it is parallel to AD and BC
and divides the trapezoid into smaller sections that reflect the symmetry of the
figure. Lines h and g are both parallel to BC (and thus to each other), and line i
is the transversal through A and B.

Using the Midpoints E and F: Midpoint E of AC and midpoint F of BD create
symmetry about the center of the trapezoid.

Intersection and Equal Segments: Since h connects the midpoints and i
intersects h at M, by properties of trapezoids and midsegments, M divides AB
such that BM = MA.

Detailed Symmetry Argument: Consider triangles △ABE and △BDF. Line
EF (the midsegment) maintains parallelism with the bases and equality in
segment distances. The intersection M by nature of midpoint lines and parallel
properties guarantees M lies equidistantly between A and B.

Conclusion: Since M divides AB symmetrically: BM = MA
Therefore, the segment BM equals segment MA. This synthetic proof con-

firms the equality of the segments based on the midpoint theorem and proper-
ties of trapezoids.

As in the previous example, we included in Appendix A the ChatGPT session when
rephrasing Theorem 2, first in a completely textual way and then including just an image.
Here, analytic proofs are given by taking suitable coordinates for points in the configuration.
As in the previous statement, the proof for the first prompt is correct, but not for the second
one. Indeed, in this case, ChatGPT proves nothing: the chosen parallel sides in the proof
are different from those in the picture, i.e., it is declared that AB∥CD (similar issue as the
one in Problem 1 with a figural prompt), which makes it impossible to follow the thesis
because then line EF can not intersect line AD; but, furthermore, ChatGPT continues taking
M as the midpoint of AD in order to prove that M is the midpoint of AB!

3.2. Gelernter et al. Theorem 2: GeoGebra Discovery

Similarly, GeoGebra Discovery declares the truth of the theorem by using, for example,
ProveDetails(k==j). Note that, again, it would not be necessary to know the thesis about
the equality of these two segment lengths because, in the given construction, after intro-
ducing the command Discover (M), a list of properties involving point M, including the
sought thesis stating that segment k = AM and j = BM are congruent, could be obtained.
Figure 6 displays both the results of the Discover(M) and of the ProveDetails(k==j)
commands.

Nevertheless, things are not simple. When GeoGebra Discovery is asked to give a
proof via the ShowProof command, it declares that the statement could not be proven or
disproven (an answer that should be regarded as a modern counterpart to the “I am stuck”
comment concerning the proof of this theorem in the article of Gelernter et al. [4]). See
Figure 7, which exhibits two contradictory messages: “The statement could not be proven
nor disproven” and l1 = true, {“ . . . ”} if ProveDetails(k==j) is entered.

Clarifying this strange behavior requires reference to some subtle computational
complex algebraic geometry algorithms that are behind the scenes:

• The notion of “True on Parts” [13], which labels statements that are true on some
non-degenerate prime components of the hypotheses’ variety but are also false on
some others;

• The notion of the Minimal Extended Polynomial (MEP) [14] to deal with statements
involving variables that are defined through square powers (like the distance between
two points or the length of a segment).
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Figure 6. GeoGebra Discovery discovers, and verifies, the equality of segments j, k.

Figure 7. GeoGebra Discovery declares that it can neither prove nor disprove the equality of
segments j, k.

3.2.1. True on Parts

Roughly speaking (referring the reader to the above-mentioned references for details),
let us say that the algebraic translation of the steps of a geometric construction might give
rise to some unexpected (by the user) prime components of the hypotheses’ variety where
the statement does not hold while being true on the “expected” components.

This fact (i.e., being “True on Parts”) can be verified through two different algorithms:
one, performing a prime, or primary, decomposition of the hypotheses’ variety, and then
applying the automated proving methods to each of the components. Two, performing
the elimination of all variables that are not free in the construction over the ideal of the
hypotheses plus the negation of the thesis and over the ideal of the hypotheses plus the
thesis. If the output in both cases is 0, it means that there are prime components where the
free variables are independent, which do not have an open set (Zariski topology) where
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the thesis holds, and that there are also such components that have an open set where the
thesis holds (hence, over all the component).

GeoGebra Discovery implements the second option as it is computationally more
efficient than having to compute the prime/primary decomposition. As a negative coun-
terpart, when declaring “True on Parts”, GeoGebra Discovery is not able to specify the
components where the statement is true or is false, leaving the user without further geo-
metric information to understand more deeply what is going on. Thus, in order to realize
the situation of Theorem 2, we will have to perform the computations by ourselves. We
will conduct them through the Maple CAS ( https://www.maplesoft.com, accessed 22 July
2024); see Appendix B for details.

As in the previous section, we might be interested in grading the complexity of
the statement. Here, obtaining such a grade could involve, perhaps, the introduction
of a measure associated with the relation between the given hypotheses and the new
hypotheses—the ones describing the components where the theorem holds true. What
could be a reasonable proposal of a complexity measure cA for statements A : {H ⇒ T}
that are partially true and thus transformed into a new statement B : {H′ ⇒ T} if we know
the complexity of B to be cB? To ask an even simpler question: what could be a sound
definition of the complexity of checking that j − k is a factor of j2 − k2? We could say it is
one since we only need to multiply j − k times j + k, a degree one polynomial. Likewise,
what could be a measure of the complexity of testing that the generators of a given ideal
generate a prime component of the hypotheses’ ideal H? Remark: we are not talking about
the complexity of computing the components but of having a sort of proof certificate that
the computation is correct. This is, surely, work for the future, involving both computer
algebra and automated reasoning.

3.2.2. Minimal Extended Polynomial

It is easy to conclude, from the computations described in Appendix B concerning
this “True on Parts” statement, that it seems more reasonable—in order to apply the
very well-performing complex algebraic geometry algorithms implemented in GeoGebra
Discovery—to change the thesis of the previous theorem from j = k to j2 = k2 as this wider
thesis generally holds in the components of the hypotheses’ variety. Understanding how
to go from j = k to j2 = k2 (of course, in much more general situations) is precisely the
computation of the Minimal Extended Polynomial (MEP) of j − k, the smallest multiple
with only even powers of the variables j, k; see [14] for details.

Here, we just want to show that, indeed, keeping the same hypotheses of Theorem
2 and considering now the thesis j2 = k2, we obtain a generally true statement that can
be computed by the elimination of all variables except the free one on the ideal of the
hypotheses and the negation of the new thesis with the “dummy” variable t, i.e., t ∗ (j2 −
k2)− 1. See Appendix C for the output of this elimination and its interpretation. This is
already achieved (but not detailed) by GeoGebra Discovery, see Figures 8 and 9, depicting
the output of the ShowProof computations, similar to those described in the previous
section. But let us remark on the high complexity, 13, of this MEP variant of Theorem 2
in [4]. More precisely, this measure refers to the complexity of Theorem 2, but after adding
certain non-degeneracy hypotheses and extending the thesis to include the case j = −k.

Again, it is still pending work to propose a reasonable measure of the complexity of
statements that involve computing and adding non-degeneracy conditions. For instance,
should we add, to rank the initial statement, to the grade obtained for the final statement,
the complexity of checking that the found non-degeneracy conditions belong to the ideal of
the hypotheses and the negation of the thesis?

https://www.maplesoft.com
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Figure 8. GeoGebra Discovery verifies the truth of j2 = k2.

Figure 9. GeoGebra Discovery estimates the complexity of the MEP variant of Theorem 2.

4. AMM Problem 11984

As a final comparison of the performance of ChatGPT and GeoGebra Discovery,
let us consider, following the trend to test AI performance in mathematical problems of
recognized difficulty (e.g., problems from mathematics olympiads), as mentioned in the
Introduction, the proof of an inequality that was proposed in the challenging Problem
Section of the American Mathematical Monthly [15]: “If a, b, c are the side lengths of a
triangle with inradius r, then the following inequality holds: a6 + b6 + c6 ≥ 5184 r6”.

In order to prove this inequality, the GeoGebra Discovery version must be v5.0.641.0-
2024Apr03 or above. Furthermore, it should be executed with the options

singularws=enable:true,
remoteurl:http\://prover-test.geogebra.org/~kovzol/singularws-dev/

and
timeout:3000---prover=timeout:3000.

For reproducibility issues, let us mention that the construction can be introduced into the
GeoGebra input bar as

Execute({"A = (-.86, -.08)", "B = (6.92, .18)", "C = (5.54, 3.94)",
"Polygon(A, B, C)", "IncircleCenter(A, B, C)", "PerpendicularLine(D, c)",
"Intersect(f, c)", "r = Segment(D, E)", "Prove( a^6 +b^6 +c^6 >= 5184
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r^6)"})

GeoGebra Discovery succeeds in proving the inequality, as shown in Figure 10. More-
over, using the ProveDetails command the system returns

{true, {‘‘AreCollinear(A,B,C)’’, ‘‘AreEqual(A,B)’’}}

meaning that the inequality is true except for certain degenerate configurations, such as the
collinearity of the three vertices. Notice that, in the case of inequalities (and, more generally,
real algebraic geometry statements), the GeoGebra Discovery command ShowProof is still
not able to provide a proof certificate (a non-trivial, theoretically still not clear task), only
some steps. See Figures 11–13.

Figure 10. GeoGebra Discovery confirms that the inequality: a6 + b6 + c6 >= 5184r6 holds.

Figure 11. Viewing proof of the inequality through ShowProof. Initial steps.
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Figure 12. Viewing proof of the inequality through ShowProof. Intermediate steps.

Figure 13. Viewing proof of the inequality through ShowProof. Final steps.

On the other hand, attempting to obtain a human-readable proof of the same inequality,
we use ChatGPT, which “pretends” to succeed in proving the inequality (see Figures 14–18).
What is relevant here is that the user can test each of the ChatGPT steps through GeoGebra,
so assuring or denying the correctness of the proof. For instance, in Figure 14, Weitzenböck’s
inequality (a2 + b2 + c2 ≥ 4

√
3A, where A is the area of the triangle) is used by ChatGPT

as one of the arguments for proving Problem 11984. If a reader of the proof is unaware
of this inequality, the user could check it in GeoGebra, confirming that this inequality
holds. Thus, Figure 19 displays the quite impressive performance of GeoGebra Discovery,
which not only automatically verifies the truth of this inequality but also “discovers” this
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inequality (in an equivalent formulation) if asked about the relation between (a2 + b2 + c2)2

and s(s − a)(s − b)(s − c), where s is the semi-perimeter. Notice that GeoGebra Discovery
does not have a command to express the area A of a triangle, and thus the user must
introduce its definition, for example, as shown in Figure 15, using Heron’s formula.

Figure 14. ChatGPT proof of the inequality (1/5).

Figure 15. ChatGPT proof of the inequality (2/5).
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Figure 16. ChatGPT proof of the inequality (3/5).

Figure 17. ChatGPT proof of the inequality (4/5).

An anonymous reader of an early version of this paper noted that, in his/her attempt
of proving the inequality using ChatGPT, the chatbot claimed that 72

√
3 ≥ 5184, thus

returning a wrong proof. Likewise, here, the top equality in Figure 15,

(a6 + b6 + c6) = (a2 + b2 + c2)(a4 + b4 + c4 − (a2b2 + b2c2 + c2a2))

is obviously false, as a straightforward computation of the right side of this expression
shows it is equal to a6 + b6 + c6 − 3a2b2c2 and not to a6 + b6 + c6. Notice that, in the same
Figure, the next substitution is also wrong: the inequality mentioned in this substitution
should supposedly be the one in the last line of Figure 14:
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a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) ≥ 48r2s2

not the one displayed here: (a2 + b2 + c2)(a4 + b4 + c4 − (a2b2 + b2c2 + c2a2))) ≥ 48r2s2.
And, in general, the rest of the proof by ChatGPT is not reliable at all.

Figure 18. ChatGPT proof of the inequality (5/5).

Figure 19. GeoGebra discovers (and verifies) Weitzenböck’s inequality, included by ChatGPT in the
proof of AMM Problem 11984 [15].
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5. Conclusions

It is relevant to remark that all the features of GeoGebra Discovery that we exemplified
in the previous sections are accomplished through the internal execution of computer
algebra algorithms, which implies both the formal validity of the obtained results (a relevant
property that is essential in our comparison with the performance of A.I. tools addressing
the same tasks) and the difference in methodology with other automated provers that use
formal reasoning, such as GeoCoq ( https://geocoq.github.io/GeoCoq/, accessed 22 July
2024), and output high-level proofs in the same style as in high school [19].

Now, concerning the validity of the use of automated deduction methods through
algebraic geometry tools, let us quote [20], where it is stated that

The arithmetization of geometry paves the way for the use of algebraic
automated deduction methods in synthetic geometry. Indeed, without a back-
translation from algebra to geometry, algebraic methods only prove theorems
about polynomials and not geometric statements. However, thanks to the
arithmetization of geometry, the proven statements correspond to theorems of
any model of Tarski’s Euclidean geometry axioms.

Thus, a first conclusion, concerning the comparison of ChatGPT and GeoGebra Dis-
covery in the three examples we described, is that GeoGebra Discovery offers mathematical
reliability and performs well even for complicated statements (see [18]) but does not output
human-like explanations: just proof certificates, through the recent ShowProof command,
and an estimation of the difficulty of the statement. Both features still require being theoreti-
cally developed in different contexts: when there is an automated completion of a statement
by means of non-degeneracy conditions, when dealing with statements that are just “True
on Parts”, or with statements that involve real algebraic geometry issues (such as dealing
with lengths or inequalities). Moreover, even considering just statements that do not involve
any of these issues, the performance of ShowProof and its associated complexity measure
deserve to be tested—and their output compared with human intuition—in a large number
of examples of different kinds, and that could be relevant in the educational context.

On the other hand, we showed that ChatGPT’s performance depends on the prompt
input, as it could be relevant to the previous training of the chatbot. Thus, for Gelern-
ter et al. Theorems 1 and 2 (as shown in Sections 2 and 3), when the input is a textual
copy of a previous statement, ChatGPT performed very well at presenting correct and
readable proofs. But this is not the case for other formulations of the same statements (see
Appendices A and B). ChatGPT also fails when dealing with the AMM Problem 11984,
as described in Section 4. Indeed, ChatGPT states on its webpage that it can commit errors
and recommends checking the provided information. One could say that it is generally
plausible but not reliable.

It is perhaps interesting to remark that, despite the very different approach for different
technological tools (Gelernter “Geometry Machine”, ChatGPT, and GeoGebra Discovery)
for dealing with geometry statements, their performance in the three considered examples
shows some common features. Thus, Theorem 1 is easy for both ChatGPT and GeoGebra,
while Theorem 2 required us to add some extra hypotheses to the input of the “Geometry
Machine” and to “understand” the subtleties of the “True on Parts” and “Minimal Extended
Polynomial” issues involved in the proof of this statement through GeoGebra Discovery.
This is related to the fact that the statement is, actually, a statement that requires using
signs (for segment lengths), and thus it is deeply (and formally: see [20]) related to real
computational algebraic geometry, well known to be much more demanding than complex
geometry—although GeoGebra Discovery implements some tricks to avoid getting fully in
the real algebraic geometry realm when possible. The same reflection applies to the case of
the AMM Problem 11984, a pure real geometry statement, where ChatGPT fails and where
GeoGebra Discovery requires using some optional features.

In view of this set of coincidences, we consider it would be quite useful, in the
context of Euclidean geometry statements, to develop close cooperation between chatbots

https://geocoq.github.io/GeoCoq/
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and GeoGebra Discovery, where the latter controls the validity of the steps of the proof
described by the bot and offers the possibility to the human user, through the proof
certificate, of verifying by other, different computational tools, the correction of the decisions
of ChatGPT.

In conclusion, we think we provided arguments to support the potential of our coop-
eration proposal: the mixing of the natural language abilities of a chatbot with the recently
extended features of GeoGebra Discovery, providing

• A rigorous checking of the mathematical truth of a given statement, drawn in the
dynamic geometry window of this program;

• The availability of the corresponding algebraic translation for analyzing and obtaining,
through a CAS, further insight about its geometry, which could be quite relevant in
special cases (e.g., “True on Parts” and “Minimal Euclidean Polynomials”), as it would
provide a kind of automated completion of the initial statement;

• The production of proof certificates;
• The estimation of the difficulty of geometric theorems.

A final reflection: we think that, in this context of elementary geometry, the final goal
is not just to prove, but to learn more. And we consider that by merging both ChatGPT and,
very specially, the GeoGebra Discovery output, even when it is not conclusive enough, we
are naturally encouraged to learn more.
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Appendix A

In this appendix, we show the performance of ChatGPT when we rephrase the in-
put by some equivalent (to the ones exhibited in Sections 2.1 and 3.1) statements from
Gelernter et al. [4] Theorem 1 and Theorem 2. First, we ask ChatGPT for a proof when
the prompt includes just a purely descriptive geometry statement, even without labeling
points. Then, for both Theorem 1 and Theorem 2, we describe the performance of ChatGPT
when the prompt is just an image of the geometric configuration, and we ask it to prove
the thesis.

Appendix A.1. Gelernter et al. Theorem 1: ChatGPT Performance for Alternative Formulations

Appendix A.1.1. Descriptive Statement Prompt

Yes, we can prove this statement using vector geometry. Let’s consider a
quadrilateral ABCD and denote the midpoints of AB, CD, AC, and BD as E, F,
G, and H respectively.
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1. Midpoints of Opposite Sides:

• Let E be the midpoint of AB.
• Let F be the midpoint of CD.

2. Midpoints of Diagonals:

• Let G be the midpoint of AC.
• Let H be the midpoint of BD.

We need to prove that EFGH forms a parallelogram.
Step-by-Step Proof:
Step 1: Define the Points Using Vectors

• Let the position vectors of points A, B, C, and D be A⃗, B⃗, C⃗, and D⃗ respectively.

Step 2: Find Midpoints Using Vectors

• The position vector of E, the midpoint of AB, is given by:

E⃗ =
A⃗ + B⃗

2

• The position vector of F, the midpoint of CD, is given by:

F⃗ =
C⃗ + D⃗

2

• The position vector of G, the midpoint of AC, is given by:

G⃗ =
A⃗ + C⃗

2

• The position vector of H, the midpoint of BD, is given by:

H⃗ =
B⃗ + D⃗

2

Step 3: Calculate Vectors of the Sides of Quadrilateral

• Vector EF:

E⃗F = F⃗ − E⃗ =
C⃗ + D⃗

2
− A⃗ + B⃗

2
=

C⃗ + D⃗ − A⃗ − B⃗
2

• Vector GH:

G⃗H = H⃗ − G⃗ =
B⃗ + D⃗

2
− A⃗ + C⃗

2
=

B⃗ + D⃗ − A⃗ − C⃗
2

Notice that:

E⃗F = G⃗H =
C⃗ + D⃗ − A⃗ − B⃗

2

Since E⃗F and G⃗H are equal, EF is parallel and equal in length to GH.

• Vector FG:

F⃗G = G⃗ − F⃗ =
A⃗ + C⃗

2
− C⃗ + D⃗

2
=

A⃗ − D⃗
2

• Vector EH:

E⃗H = H⃗ − E⃗ =
B⃗ + D⃗

2
− A⃗ + B⃗

2
=

D⃗ − A⃗
2
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Notice that:

F⃗G = E⃗H =
A⃗ − D⃗

2

Since F⃗G and E⃗H are equal, FG is parallel and equal in length to EH.

Conclusion: Both pairs of opposite sides EF and GH, FG and EH are equal
and parallel. Therefore, the quadrilateral EFGH is a parallelogram.

This completes the proof.

Appendix A.1.2. Figural Prompt

Figure A1. Image describing context of Theorem 1.

The image below reproduces exactly the beginning of the output of ChatGPT when
asked, after introducing as input the Figure A1 describing Theorem 1, the literal question
“Consider the following figure. Prove that EFGH is a parallelogram”.

Notice that, although the above output image does not fully reproduce the introduced
figure, by clicking over the geometric construction, the user can verify that ChatGPT
answers handles the complete figure. What follows is the textual reproduction of ChatGPT
reply:

To prove that EFGH is a parallelogram in the given figure, we’ll use the
properties of midpoints and vectors as previously outlined. Let’s identify and
label the points clearly from the image:

• A, B, C, and D are the vertices of the quadrilateral.
• E is the midpoint of AB.
• G is the midpoint of CD.
• F is the midpoint of BC.
• H is the midpoint of AD.
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Step-by-Step Proof:
Step 1: Define the Points Using Vectors
Let’s assign position vectors to points A, B, C, and D as A⃗, B⃗, C⃗, and D⃗

respectively.
Step 2: Find Midpoints Using Vectors

• The position vector of E, the midpoint of AB, is given by:

E⃗ =
A⃗ + B⃗

2

• The position vector of G, the midpoint of CD, is given by:

G⃗ =
C⃗ + D⃗

2

• The position vector of F, the midpoint of BC, is given by:

F⃗ =
B⃗ + C⃗

2

• The position vector of H, the midpoint of AD, is given by:

H⃗ =
A⃗ + D⃗

2

Step 3: Calculate Vectors of the Sides of Quadrilateral EFGH

• Vector EF:

E⃗F = F⃗ − E⃗ =
B⃗ + C⃗

2
− A⃗ + B⃗

2
=

C⃗ − A⃗
2

• Vector GH:

G⃗H = H⃗ − G⃗ =
A⃗ + D⃗

2
− C⃗ + D⃗

2
=

A⃗ − C⃗
2

Notice that:

E⃗F = G⃗H =
C⃗ − A⃗

2

Since E⃗F and G⃗H are equal in magnitude and direction, EF is parallel to GH
and equal in length to GH.

• Vector FG:

F⃗G = G⃗ − F⃗ =
C⃗ + D⃗

2
− B⃗ + C⃗

2
=

D⃗ − B⃗
2

• Vector EH:

E⃗H = H⃗ − E⃗ =
A⃗ + D⃗

2
− A⃗ + B⃗

2
=

D⃗ − B⃗
2

Notice that:

F⃗G = E⃗H =
D⃗ − B⃗

2

Since F⃗G and E⃗H are equal in magnitude and direction, FG is parallel to EH
and equal in length to EH.

Conclusion: Both pairs of opposite sides EF and GH, FG and EH are equal
in length and parallel. Therefore, quadrilateral EFGH is a parallelogram.
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Appendix A.2. Gelernter et al. Theorem 2: ChatGPT Performance for Alternative Formulations

Appendix A.2.1. Descriptive Statement Prompt

To prove the given statement about a trapezoid, we’ll consider a trapezoid
ABCD with AB and CD as the parallel sides (AB ∥ CD). Let the non-parallel
sides be AD and BC.

We need to prove that the line passing through the midpoints of the diago-
nals AC and BD intersects the non-parallel sides AD and BC at their midpoints.

Here is the proof:
1. Identify the Midpoints of the Diagonals: Let E be the midpoint of diagonal

AC and F be the midpoint of diagonal BD.
2. Coordinate Geometry Setup: Place the trapezoid ABCD in a coordinate

system with A = (0, 0), B = (b, 0), C = (c, d), and D = (a, d).
3. Find Coordinates of the Midpoints E and F:
The coordinates of midpoint E of diagonal AC are:

E =

(
0 + c

2
,

0 + d
2

)
=

(
c
2

,
d
2

)
The coordinates of midpoint F of diagonal BD are:

F =

(
b + a

2
,

0 + d
2

)
=

(
a + b

2
,

d
2

)
4. Equation of Line through E and F:
The slope m of the line passing through points E and F is:

m =
d
2 − d

2
a+b

2 − c
2

= 0

Therefore, the line through E and F is horizontal, given by y = d
2 .

5. Midpoints of Non-Parallel Sides:
The midpoint G of AD (where A = (0, 0) and D = (a, d)) is:

G =

(
0 + a

2
,

0 + d
2

)
=

(
a
2

,
d
2

)
The midpoint H of BC (where B = (b, 0) and C = (c, d)) is:

H =

(
b + c

2
,

0 + d
2

)
=

(
b + c

2
,

d
2

)
6. Verify Intersection Points:
Since both midpoints G and H lie on the horizontal line y = d

2 , which is
the same as the line through E and F, the line through the midpoints of the
diagonals intersects the non-parallel sides AD and BC at their midpoints G
and H.

Therefore, we have proven that the line passing through the midpoints of
the diagonals AC and BD intersects the non-parallel sides AD and BC at their
respective midpoints.
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Appendix A.2.2. Figural Prompt

To prove that segment MB is equal to segment MA in the given trapezoid
ABCD with AB ∥ CD, let’s use a combination of coordinate geometry and
properties of midpoints in trapezoids. The key insight is to show that M is the
midpoint of AB.

Step-by-Step Proof:
1. Identify the Key Points:

• Let A be at (0, 0), B at (b, 0), C at (c, d), and D at (a, d).
• Let E be the midpoint of diagonal AC and F be the midpoint of diagonal

BD.
• Let M and K be the midpoints of AB and CD, respectively.

2. Find Coordinates of Midpoints M and K:

• M, the midpoint of AB:

M =

(
0 + b

2
,

0 + 0
2

)
=

(
b
2

, 0
)

• K, the midpoint of CD:

K =

(
c + a

2
,

d + d
2

)
=

(
c + a

2
, d
)

3. Equation of Line through M and K:

• The slope m of the line MK is:

m =
d − 0

c+a
2 − b

2

=
d

c+a−b
2

=
2d

c + a − b

• The equation of line MK can be written using point M = ( b
2 , 0):

y =
2d

c + a − b

(
x − b

2

)
4. Prove MB = MA:

• Since M is the midpoint of AB, we have: MB = MA because midpoints
divide a line segment into two equal parts by definition.

This implies that, geometrically, if M is the midpoint of AB, then segments
MB and MA are congruent as they are each half of AB.

Conclusion: In the given trapezoid ABCD, with AB ∥ CD and M being the
midpoint of AB, we have MB = MA. This is because M divides AB into two
equal segments by definition, confirming that MB = MA.
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Appendix B

Maple computations describing the “True on Parts” issues involved in the automated
proof by the algebraic geometry methods of Gelernter et al. Theorem 2 (see Section 3.2.1).

First, we introduce the following polynomials associated with the statement of the
theorem:

• Free points: A(a1, a2), B(b1, b2), C(c1, c2)
• Line BC, f : (x − b1)(c2 − b2)− (y − b2)(c1 − b1)
• Line through A parallel to f , g: (x − a1)(c2 − b2)− (y − a2)(c1 − b1)
• D(d1, d2) point on g: (d1 − a1)(c2 − b2)− (d2 − a2)(c1 − b1)
• E(e1, e2) midpoint of A, C: 2e1 − (a1 + c1), 2e2 − (a2 + c2)
• F( f1, f2) midpoint of B, D: 2 f1 − (b1 + d1), 2 f2 − (b2 + d2)
• Line through F, E, h: (x − f1)( f2 − e2)− (y − f2)( f1 − e1)
• Line through A, B, i: (x − a1)(a2 − b2)− (y − a2)(a1 − b1)
• M(m1, m2) intersection of i, h: (m1 − f1)( f2 − e2)− (m2 − f2)( f1 − e1), (m1 − a1)(a2 −

b2)− (m2 − a2)(a1 − b1)
• Segment BM, j: j2 − (b1 − m1)

2 − (b2 − m2)
2

• Segment AM, k: k2 − (a1 − m1)
2 − (a2 − m2)

2

We will show that the thesis (j = k) in this example does vanish on some, but not all,
non-degenerate components of the hypotheses’ variety, so the statement is true on some
components and false on some others (see [13]).

To verify this, we compute the dimension of the ideal of the hypotheses, seven, and
show that a1, a2, b1, b2, c1, c2, d1 are seven free variables (as point D must be on a line parallel
from A to BC):

Hypo:=<(d1-a1)*(c2-b2)-(d2-a2)*(c1-b1),2*e1-(a1+c1),2*e2-(a2+c2),2*f1
-(b1+d1),2*f2-(b2+d2),(m1-f1)*(f2-e2)-(m2-f2)*(f1-e1),(m1-a1)*(a2-b2)
-(m2-a2)*(a1-b1), j^2-(b1-m1)^2-(b2-m2)^2,k^2-(a1-m1)^2-(a2-m2)^2>:

HilbertDimension(Hypo);
7

EliminationIdeal(Hypo, {a1,a2,b1,b2,c1,c2,d1});
<0>

Adding to the hypotheses’ ideal, the thesis j − k = 0, or its negation, introducing the
equation t(j − k)− 1 = 0, using t as a “dummy” variable, we obtain in both cases that the
elimination ideal over the ring of free variables is 0:

EliminationIdeal(<(d1-a1)*(c2-b2)-(d2-a2)*(c1-b1),2*e1-(a1+c1),
2*e2-(a2+c2),2*f1-(b1+d1),2*f2-(b2+d2),(m1-f1)*(f2-e2)-(m2-f2)*
(f1-e1),(m1-a1)*(a2-b2)-(m2-a2)*(a1-b1), j^2-(b1-m1)^2-(b2-m2)^2,
k^2-(a1-m1)^2-(a2-m2)^2, t*(j-k)-1>,{a1,a2,b1,b2,c1,c2,d1});

<0>

EliminationIdeal(<(d1-a1)*(c2-b2)-(d2-a2)*(c1-b1),2*e1-(a1+c1),
2*e2-(a2+c2),2*f1-(b1+d1),2*f2-(b2+d2),(m1-f1)*(f2-e2)-(m2-f2)*
(f1-e1),(m1-a1)*(a2-b2)-(m2-a2)*(a1-b1), j^2-(b1-m1)^2-(b2-m2)^2,
k^2-(a1-m1)^2-(a2-m2)^2, (j-k)>,{a1,a2,b1,b2,c1,c2,d1});

<0>

It is thus a “True on Parts” statement. Figure 7 already gives a hint about this fact since
the answer to the ProveDetails(k==j) input is not able to include any non-degeneracy
condition, which should have been expressed in the “. . . ” of the output l1 = true, {“ . . . ”}.
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Now, in order to understand more deeply the situation, we start by computing the decom-
position of the hypotheses’ variety in irreducible components. The primary decomposition
of the hypotheses’ ideal turns out to be too difficult to obtain, but the prime decomposition
(which is enough, in geometric terms, to compute the irreducible components) is affordable,
yielding 12 prime ideals, although it is too large to be displayed here in detail:

PP:=PrimeDecomposition(Hypo);
PP := <j + k, a1 + b1 - 2 m1, a2 + b2 - 2 m2, -2 e1 + a1 + c1, [...]

Next, we check which of these components are non-degenerate (i.e., not including any
polynomial restriction involving the free variables of the construction):

for i from 1 to 2 do HilbertDimension(PP[i]),
EliminationIdeal(PP[i], {a1,a2,b1,b2,c1,c2,d1}) od;

7, <0>
7, <0>

for i from 3 to 8 do HilbertDimension(PP[i]),
EliminationIdeal(PP[i], {a1,a2,b1,b2,c1,c2,d1}) od;

6, <b1 - a1, c1 - a1, d1 - a1>
6, <b1 - a1, c1 - a1, d1 - a1>
6, <b1 - a1, c1 - a1, d1 - a1>
6, <b1 - a1, c1 - a1, d1 - a1>

6, <c1 - b1, d1 - a1>
6, <c1 - b1, d1 - a1>

for i from 9 to 12 do HilbertDimension(PP[i]),
EliminationIdeal(PP[i], {a1,a2,b1,b2,c1,c2,d1}) od;

7, <b1 - a1 + d1 - c1>
7, <b1 - a1 + d1 - c1>

7, <-a1 b2 + a1 c2 + a2 b1 - a2 c1 - b1 c2 + c1 b2>
7, <-a1 b2 + a1 c2 + a2 b1 - a2 c1 - b1 c2 + c1 b2>

So, only the first two are non-degenerate. The remaining components are either of
dimension six or of dimension seven, but in all cases, they do not have a1, a2, b1, b2, c1, c2, d1
as free variables, so they are degenerate as defined in [13].

Next, we observe that indeed j = k is generally true, i.e., it vanishes over the irreducible
variety corresponding to the second component and is not generally true on the first one.
We check this, as in the previous section, by contradiction, showing that one belongs to the
ideal of the second component plus the negation of the thesis and that the closure of the
projection of the points of the first component, where the thesis fails, is the whole space of
free points; that is, the thesis is false for almost all instances, belonging to this component,
of the construction:

for i from 1 to 2 do EliminationIdeal(PP[i]+<t*(j-k)-1>,{a1,
a2,b1,b2,c1,c2,d1}) od;

<0>
<1>

Likewise, we verify that j = k is not generally false on the second component, and it is
generally false on the first one, maybe holding true if we add the requirement (a1 − b1)

2 +
(a2 − b2)

2 = 0, which, from the real point of view, means imposing that A = B, so it is a
non-interesting requirement:

for i from 1 to 2 do EliminationIdeal(PP[i]+<(j-k)>,{a1,a2,b1,
b2,c1,c2,d1}) od;

<a1^2 - 2a1b1 + a2^2 - 2a2b2 + b1^2 + b2^2>
<0>
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Since these two components have such relevant—and diverse—behaviors, we might
be interested in knowing about their generators:

PP[1]:=<j + k, a1 + b1 - 2*m1, a2 + b2 - 2*m2, -2*e1 + a1 + c1, -2*e2 + a2
+ c2, d1 - 2*f1 - a1 + 2*m1, 2*m2 - a2 - 2*f2 + d2, -e1*f2 + e1*m2 +
e2*f1 - e2*m1 - f1*m2 + f2*m1, -a1^2 + 2*a1*m1 - a2^2 + 2*a2*m2 +
j^2 - m1^2 - m2^2>;

PP[2]:=<k - j, a1 + b1 - 2*m1, a2 + b2 - 2*m2, -2*e1 + a1 + c1, -2*e2 + a2
+ c2, d1 - 2*f1 - a1 + 2*m1, 2*m2 - a2 - 2*f2 + d2, -e1*f2 + e1*m2 +
e2*f1 - e2*m1 - f1*m2 + f2*m1, -a1^2 + 2*a1*m1 - a2^2 + 2*a2*m2 +
j^2 - m1^2 - m2^2>

noticing that both components have the same generators, except the first one; that is, j+ k in
the first component and j − k in the second. This information gives us a sound explanation
about the “true on parts” issue here: the first component implies that j = −k, so the two
segments j, k have opposite lengths, which is impossible from the real point of view. . . But
let us recall that we are working—as it is much more efficient and “a fortiori” fully reliable
in the real setting—on the complex algebraic geometry context, and our definition of j, k is
through a square root, so both variables can take positive and negative values.

A final reflection. As in the previous section, we might be interested in grading the
complexity of the statement that is true, namely {PP[2] =⇒ j = k}. Indeed, here it is
immediate to conclude that the thesis j = k is already one of the hypotheses and one of
the generators in PP[2], so the statement is of complexity 0, and it is trivial (as is always
the case when the conclusion is one of the hypotheses). But this does not mean that the
original Theorem 2 in [4] should be classified as difficulty 0, because in order to derive from
Theorem 2 the new, true, statement {PP[2] =⇒ j = k}, we have to perform a (non-trivial)
prime decomposition.

Appendix C

Computations related to the Minimal Extended Polynomial thesis of Theorem 2
(Section 3.2.2):

EliminationIdeal(<(d1-a1)*(c2-b2)-(d2-a2)*(c1-b1),2*e1-(a1+c1),2*e2-(a2+c2),
2*f1-(b1+d1),2*f2-(b2+d2),(m1-f1)*(f2-e2)-(m2-f2)*(f1-e1),(m1-a1)*(a2-b2)-
(m2-a2)*(a1-b1), j^2-(b1-m1)^2-(b2-m2)^2,k^2-(a1-m1)^2-(a2-m2)^2,
t*(j^2-k^2)-1>,{a1,a2,b1,b2,c1,c2,d1});

<a1^2*b2 - a1^2*c2 - a1*a2*b1 + a1*a2*c1 - a1*b1*b2 + 2*a1*b1*c2 - a1*b2*d1
- a1*c1*c2 + a1*c2*d1 + a2*b1^2 - 2*a2*b1*c1 + a2*b1*d1 + a2*c1^2 -
a2*c1*d1 - b1^2*c2 + b1*b2*c1 + b1*c1*c2 - b1*c2*d1 - b2*c1^2 + b2*c1*d1>

The zeroes of this degree three elimination ideal (that should be avoided in order to
have a true statement) are the union of the instances of the construction where the three
initial points A, B, C are aligned, and the instances where the first coordinates of E and F
coincide, which include cases where m2 is not defined and, thus, j2 does not have to be
equal to k2. After adding to the hypotheses the negation of these two degenerate cases, we
obtain a geometrically true theorem.
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