An Efficient QC-LDPC Decoder Architecture for 5G-NR Wireless Communication Standards Targeting FPGA
Abstract
:1. Introduction
2. Materials and Methods
3. LDPC Codes in 5G-NR
4. Proposed 5G-NR Decoder Architecture
4.1. Comprehensive Decoder Architecture
4.2. MINU Processing Unit
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aqil, C.; Akharraz, I.; Ahaitouf, A. A New Reliability Ratio Weighted Bit Flipping Algorithm for Decoding LDPC Codes. Wirel. Commun. Mob. Comput. 2021, 2021, 6698602. [Google Scholar] [CrossRef]
- Singh, A.K. Error detection and correction by hamming code. In Proceedings of the International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, India, 22–24 December 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Ly, T.; Truong, N. Efficient Hardware Implementations of LDPC Decoders, Through Exploiting Impreciseness in Message-Passing Decoding Algorithms. Ph.D. Thesis, Université de Cergy Pontoise, Cergy, France, 2017. [Google Scholar]
- Li, H.; Guo, J.; Guo, C.; Wang, D. A low-complexity min-sum decoding algorithm for LDPC codes. In Proceedings of the 17th International Conference on Communication Technology (ICCT), Chengdu, China, 27–30 October 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Andrew, T. Online-course Ldpc and Polar Codes in 5G Standard. 2018. Available online: https://nptel.ac.in/courses/117/106/108106137/ (accessed on 1 June 2019).
- Aqil, C.; Akharraz, I.; Ahaitouf, A. Reliability Ratio Weighted Bit Flipping–Sum Product Algorithm for Regular LDPC Codes. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2022; p. 01084. [Google Scholar]
- Liu, Y.; Olmos, P.M.; Mitchell, D.G.M. On generalize LDPC codes for 5G ultra reliable communication. In Proceedings of the Information Theory Workshop (ITW), Guangzhou, China, 25–29 November 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Gallager, R. Low-density parity-check codes. IRE Trans. Inf. Theory 1962, 8, 1962. [Google Scholar] [CrossRef]
- Ángel, Á.; Fernández, V.; Matuz, B. An efficient NB-LDPC Decoder Architecture for Space Telecommand Links. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 1213–1217. [Google Scholar]
- Tran-Thi, B.N.; Nguyen-Ly, T.T.; Hoang, T. An FPGA design with high memory efficiency and decoding performance for 5G LDPC decoder. Electronics 2023, 12, 3667. [Google Scholar] [CrossRef]
- Verma, A.; Shrestha, R. A New VLSI Architecture of Next-Generation QC-LDPC Decoder for 5G New-Radio Wireless-Communication Standard. In Proceedings of the International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Cui, H.; Ghaffari, F.; Le, K.; Declercq, D.; Lin, J.; Wang, Z. Design of High-Performance and Area-Efficient Decoder for 5G LDPC codes. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 68, 879–891. [Google Scholar] [CrossRef]
- Nadal, J.; Baghdadi, A. Parallel and flexible 5G LDPC decoder architecture targeting FPGA. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 1141–1151. [Google Scholar] [CrossRef]
- Petrović, V.L.; El Mezeni, D.M. Reduced-Complexity Offset Min-Sum Based Layered Decoding for 5G LDPC Codes. In Proceedings of the 28th Telecommunications Forum (TELFOR), Belgrade, Serbia, 24–25 November 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Verma, A.; Shrestha, R. Low computational-complexity SOMS-algorithm and high-throughput decoder architecture for QC-LDPC codes. IEEE Trans. Veh. Technol. 2022, 72, 66–80. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Ye, N.; Chen, T.; Wang, Z.; Zhang, J. High Throughput Priority-Based Layered QC-LDPC Decoder with Double Update Queues for Mitigating Pipeline Conflicts. Sensors 2022, 22, 3508. [Google Scholar] [CrossRef] [PubMed]
- Selvakumari, R.S. Performance analysis of Min-Sum based LDPC decoder architecture for 5G new radio standards. Mater. Today Proc. 2022, 62, 4965–4972. [Google Scholar]
- Liu, J.C.; Wang, H.C.; Shen, C.A.; Lee, J.W. Low-complexity LDPC decoder for 5G URLLC. In Proceedings of the Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), Chengdu, China, 26–30 October 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Benhayoun, M.; Razi, M.; Mansouri, A.; Ahaitouf, A. Embedded Parallel Implementation of LDPC Decoder for Ultra-Reliable Low-Latency Communications. Appl. Comput. Intell. Soft Comput. 2023, 2023, 5573438. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, Y.; Kang, J. Two effective scheduling schemes for layered belief propagation of 5G LDPC codes. IEEE Commun. Lett. 2020, 24, 1683–1686. [Google Scholar] [CrossRef]
- Mosallaei, B. Enhancing Channel Decoding Efficiency in 5G Networks Using Machine Learning-Assisted LDPC Coding. Int. J. Eng. Appl. Sci. 2024, 11, 25. [Google Scholar]
- Tera, S.P.; Alantattil, R.; Paily, R. A Flexible FPGA-Based Stochastic Decoder for 5G LDPC Codes. Electronics 2023, 12, 4986. [Google Scholar] [CrossRef]
- Stark, M.; Wang, L.; Bauch, G.; Wesel, R.D. Decoding rate-compatible 5G-LDPC codes with coarse quantization using the information bottleneck method. IEEE Open J. Commun. Soc. 2020, 1, 646–660. [Google Scholar] [CrossRef]
- Aqil, C.; El Alami, R.; Akharraz, I.; Ahaitouf, A. Threshold Multi Split-Row algorithm for decoding irregular LDPC codes. In Proceedings of the International Conference on Applied Mathematics, Taza, Morocco, 19–20 October 2017; pp. 88–93. [Google Scholar]
- Usman, S.; Mansour, M.M. An Optimized VLSI Implementation of an IEEE 802.11 n/ac/ax LDPC Decoder. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Zhong, Z.; Huang, Y.; Zhang, Z.; You, X.; Zhang, C. A flexible and high parallel permutation network for 5G LDPC decoders. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3018–3022. [Google Scholar] [CrossRef]
- Benhayoun, M.; Razi, M.; Mansouri, A.; Ahaitouf, A. Low-Complexity LDPC Decoding Algorithm Based on Layered Vicinal Variable Node Scheduling. Model. Simul. Eng. 2022, 2022, 1407788. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, M.; Zhao, C.; Ma, L.; Wei, Y. Low-rate PBRL-LDPC codes for URLLC in 5G. IEEE Wirel. Commun. Lett. 2018, 7, 800–803. [Google Scholar] [CrossRef]
- Bae, J.H.; Abotabl, A.; Lin, H.P.; Song, K.B.; Lee, J. An overview of channel coding for 5G NR cellular communications. APSIPA Trans. Signal Inf. Process. 2019, 8, e17. [Google Scholar] [CrossRef]
- Razi, M.; Benhayoun, M.; Mansouri, A.; Ahaitouf, A. An improvement and a fast DSP implementation of the bit flipping algorithms for low density parity check decoder. Int. J. Electr. Comput. Eng. 2021, 11, 4774. [Google Scholar] [CrossRef]
- Tarver, C.; Tonnemacher, M.; Chen, H.; Zhang, J.; Cavallaro, J.R. GPU-based, LDPC decoding for 5G and beyond. IEEE Open J. Circuits Syst. 2021, 2, 278–290. [Google Scholar] [CrossRef]
- Sun, K.; Jiang, M. A hybrid decoding algorithm for low-rate LDPC codes in 5G. In Proceedings of the 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 18–20 October 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Li, F.; Zhang, C.; Peng, K.; Krylov, A.E.; Katyushnyj, A.A.; Rashich, A.V.; Tkachenko, D.A.; Makarov, S.B.; Song, J. Review on 5G NR LDPC Code: Recommendations for DTTB System. IEEE Access 2021, 9, 155413–155424. [Google Scholar] [CrossRef]
- Venkatesh, D.Y.; Mallikarjunaiah, K.; Srikantaswamy, M.; Huang, K. Enhancing 5G LTE communications: A novel LDPC decoder for next-generation systems. Inf. Dyn. Appl. 2024, 3, 47–63. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.; Chen, C.; Bai, B. Efficient construction of quasi-cyclic LDPC codes with multiple lifting sizes. In IEEE Communications Letters; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar]
- Richardson, T.; Kudekar, S. Design of low-density parity check codes for 5G new radio. IEEE Commun. Mag. 2018, 56, 28–34. [Google Scholar] [CrossRef]
- Nguyen, T.T.B.; Nguyen Tan, T.; Lee, H. Efficient QC-LDPC encoder for 5G new radio. Electronics 2019, 8, 668. [Google Scholar] [CrossRef]
- 5G NR Multiplexing and Channel Coding (3GPP TS 38.212 Version 15.2.0 Release 15). ETSI. 2018. Available online: https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/15.02.00_60/ts_138212v150200p.pdf (accessed on 1 June 2020).
- Ren, Y.; Harb, H.; Shen, Y.; Balatsoukas-Stimming, A.; Burg, A. A Generalized Adjusted Min-Sum Decoder for 5G LDPC Codes: Algorithm and Implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 71, 2911–2924. [Google Scholar] [CrossRef]
- Hamidi-Sepehr, F.; Nimbalker, A.; Ermolaev, G. Analysis of 5G LDPC Codes Rate-Matching Design. In Proceedings of the 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Wu, H.; Wang, H. A high throughput implementation of QC-LDPC codes for 5G NR. IEEE Access 2019, 7, 185373–185384. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, M.; Zhao, C. Decoding optimization for 5G LDPC codes by machine learning. IEEE Access 2018, 6, 50179–50186. [Google Scholar] [CrossRef]
- Yang, N.; Jing, S.; Yu, A.; Liang, X.; Zhang, Z.; You, X.; Zhang, C. Reconfigurable decoder for LDPC and polar codes. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
This Study | [11] | [12] | [13] | [14] | [39] | [43] | ||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | |||||||
Expansion factor | 384 | 384 | 384 | 104 | 32 | 384 | 384 | - |
Rate | 1/3 | 2/3 | 1/3 | 2/3 | 4/5 | 1/2 | 1/3 | 1/2 |
SNR (dB) | 1.7 dB | 2.9 dB | - | - | 4 dB | - | 2.4 dB | - |
Codeword length | 26,112 | 13,440 | 26,112 | 3432 | 1280 | 16,128 | 26,112 | 12 |
Information length | 8448 | 8448 | 8448 | 2288 | - | 8448 | 8448 | - |
Number of iterations | 4 | 6 | 10 | 15 | 20 | 20 | 15 | 10 |
Decoding algorithm | MS | MS | OMS | AMS | SMS | MS | MS | MS |
Matrix size | 46 × 68 | 13 × 35 | 46 × 68 | 13 × 35 | 22 × 44 | - | ||
Decoding parallelism | Fully | Fully | Fully | Partially | Partially | Partially | ||
Standard | 5G-NR | 5G-NR | 5G-NR | 5G-NR | 5G-NR | 4G-LTE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejmaa, B.; Marktani, M.A.; Akharraz, I.; Ahaitouf, A. An Efficient QC-LDPC Decoder Architecture for 5G-NR Wireless Communication Standards Targeting FPGA. Computers 2024, 13, 195. https://doi.org/10.3390/computers13080195
Mejmaa B, Marktani MA, Akharraz I, Ahaitouf A. An Efficient QC-LDPC Decoder Architecture for 5G-NR Wireless Communication Standards Targeting FPGA. Computers. 2024; 13(8):195. https://doi.org/10.3390/computers13080195
Chicago/Turabian StyleMejmaa, Bilal, Malika Alami Marktani, Ismail Akharraz, and Abdelaziz Ahaitouf. 2024. "An Efficient QC-LDPC Decoder Architecture for 5G-NR Wireless Communication Standards Targeting FPGA" Computers 13, no. 8: 195. https://doi.org/10.3390/computers13080195
APA StyleMejmaa, B., Marktani, M. A., Akharraz, I., & Ahaitouf, A. (2024). An Efficient QC-LDPC Decoder Architecture for 5G-NR Wireless Communication Standards Targeting FPGA. Computers, 13(8), 195. https://doi.org/10.3390/computers13080195