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Abstract: Digital video coding aims to reduce the bitrate and keep the integrity of visual presentation.
High-Efficiency Video Coding (HEVC) can effectively compress video content to be suitable for
delivery over various networks and platforms. Finding the optimal coding configuration is chal-
lenging as the compression performance highly depends on the complexity of the encoded video
sequence. This paper evaluates the effects of motion content on coding performance and suggests an
adaptive encoding scheme based on the motion content of encoded video. To evaluate the effects of
motion content on the compression performance of HEVC, we tested three coding configurations
with different Group of Pictures (GOP) structures and intra refresh mechanisms. Namely, open GOP
IPPP, open GOP Periodic-I, and closed GOP periodic-IDR coding structures were tested using several
test sequences with a range of resolutions and motion activity. All sequences were first tested to check
their motion activity. The rate–distortion curves were produced for all the test sequences and coding
configurations. Our results show that the performance of IPPP coding configuration is significantly
better (up to 4 dB) than periodic-I and periodic-IDR configurations for sequences with low motion
activity. For test sequences with intermediate motion activity, IPPP configuration can still achieve a
reasonable quality improvement over periodic-I and periodic-IDR configurations. However, for test
sequences with high motion activity, IPPP configuration has a very small performance advantage
over periodic-I and periodic-IDR configurations. Our results indicate the importance of selecting the
appropriate coding structure according to the motion activity of the video being encoded.

Keywords: HEVC; video; motion vectors; periodic-I; periodic-IDR

1. Introduction

Over the past few years, numerous technological breakthroughs have led to an increase
in the creation and consumption of audiovisual multimedia materials. Consumers are
excessively exposed to video content through a multitude of social networking platforms,
media-sharing Internet sites, and mobile phone applications. According to the most recent
report by Cisco [1], there is a notable increase in the popularity and demand for video
applications. The video streaming market is expected to reach around 1.6 billion users by
2027, showing significant growth and a rising global interest in video streaming services.
The user penetration rate is anticipated to increase from 18.3% in 2024 to 20.7% by 2027 [2].
Specifically, it is anticipated that two-thirds (66%) of TV sets connected to the Internet
will possess ultrahigh-definition (UltraHD) resolution, compared to a mere 33% in the
year 2018. The term “UltraHD” is used to describe the resolution of 3840 × 2160 pixels,
which is also commonly referred to as 4K. The usual bitrate for a 4K encoded video is
commonly observed to range between 15 and 18 Mb/s, which exceeds the high-definition
(HD) video bitrate by more than two-fold and surpasses the standard-definition (SD) video
bitrate by a factor of nine [3]. According to Cisco Visual Networking Index forecasts,
an expected 23% increase in Compound Annual Growth Rate (CAGR) in worldwide IP
traffic between 2021 and 2026 will occur, reaching 2.3 zettabytes annually by 2026. It is
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expected that ‘video’ traffic will remain dominant, constituting 87% of global IP traffic
by 2026 [4]. Nonetheless, the storing and delivery of this immense quantity of data pose
significant challenges, necessitating the utilization of efficient compression methods [5].
As smartphones and social networks have become more popular over the past few years,
many streaming services (Netflix, Disney Plus, YouTube TV, Hulu, Apple TV Plus) are
available that can stream 4K videos online. This surge in video consumption necessitates
efficient coding methods, especially for UltraHD resolutions like 4K (3840 × 2160 pixels)
and 8K (7680 × 4320 pixels).

The fundamental aim of most digital video coding standards is to reduce the bitrate
of video while maintaining the integrity of visual presentation. This means minimizing
the bitrate necessary for the representation of video content to reach a given level of video
quality or maximizing the video quality achievable within a given available bitrate. As a
successor to H.264, High-efficiency video coding (HEVC) [H.265/MPEG-H] standard was
released in 2013 [6]. HEVC was development prioritized two main concerns: higher video
resolutions and the utilization of parallel processing architectures. However, the adoption
of HEVC has been gradual, mainly due to higher processing power and other hardware
requirements. The HEVC/H.265 video compression standard can effectively compress
video content of various resolutions, including 8K.

HEVC standard was jointly created by the International Telecommunication Union—
Telecommunication Standardization Sector (ITU-T)—Video Coding Experts Group (VCEG)
and the International Organization for Standardization/International Electrotechnical Com-
mission (ISO/IEC)—Moving Picture Experts Group (MPEG). The HEVC standardization’s
main objective was to facilitate a substantial enhancement in compression performance
compared to existing standards. HEVC can achieve a bitrate reduction of around 50% (as
compared to H.264) while maintaining an equivalent level of perceptual video quality [4,7].
Additionally, there is evidence to support the superiority of HEVC over VP9 in several
aspects [8]. HEVC can achieve this compression performance through a range of techni-
cal capabilities and qualities, such as supporting high-resolution video, improved color
representation, and a more flexible block partitioning mechanism [9].

HEVC outperforms H.264 due to several key factors. HEVC achieves increased
compression efficiency by employing advanced encoding techniques and introducing new
coding tools such as larger block sizes [10], improved intra prediction [11], improved
motion estimation [12], and compensation methods [13], leading to superior inter-frame
prediction [14] and motion representation [15].

HEVC has better support for high-resolution video, including 4K and 8K resolutions.
Additionally, HEVC supports a wider range of bit depths, enabling more accurate color
representation and improved visual quality. Finally, HEVC is designed for a wide range
of applications and use cases, making it suitable for delivering high-quality video over
various networks and platforms [13,16–20]. However, it is important to note that HEVC’s
performance gains come with increased computational complexity, which can impact
hardware requirements [21].

The latest iteration of HEVC software is represented by the HEVC HM-18.0 reference
software [22].

The main contributions of this paper are listed as follows:

• A suitable encoding configuration for low-activity video sequences is selected to
improve the coding performance. For such sequences, our results show that using the
IPPP configuration can significantly improve coding performance by up to 4 dB.

• Investigated the impact of motion content on the coding efficiency of HEVC video
coding. Our results show that for highly active sequences, IPPP has a negligible
performance advantage over periodic-I and periodic-IDR. Here, our results suggest
using periodic-I and periodic-IDR rather IPPP to obtain the benefits of I-frames of
limiting error propagation and offering random access while not losing a significant
coding performance.
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• Investigated the impact of coding structure on decoding complexity. Our results show
that IPPP has a slightly lower decoding complexity than periodic-I and periodic-IDR.

• Proposed an adaptive scheme that adjusts the GOP structure and intra coding tech-
niques used based on the motion content of the encoded video.

The rest of the paper is arranged as follows. In Section 2, the structure of HEVC
codec is described. Section 3 reviews the related work. The evaluation methodology and
configurations are discussed in Section 4, with an explanation of each phase. Section 5
presents the performance results of sequences and their evaluations in terms of bitrate
efficiency and video quality. Section 6 discusses the results in the broadest context. A
conclusion of this paper and suggestions for future work are provided in Section 7.

2. HEVC Codec

Overall, the HEVC structure (shown in Figure 1) provides a high degree of flexi-
bility and adaptability, allowing it to optimize coding performance for a wide range of
applications and content types.
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Figure 1. HEVC video coding encoder [23].

HEVC divides video frames into a hierarchy of Coding Units (CU), as shown in
Figure 2 [23]. The hierarchical structure organizes video frames into progressively smaller
and more localized units for compression purposes. A Coding Tree Unit (CTU) is comprised
of a rectangle picture area containing N × N samples of the luma component and its
associated chroma components. The encoder has the ability to select the CTU sizes based
on its specific architectural features and the requirements of the application environment.
These limits may include memory requirements and constraints on latency. The bitstream
contains a signal indicating the value of N, which can be either 64, 32, 16, or 8.

Furthermore, each CTU is partitioned into Coding Tree Blocks (CTBs), which can be
further partitioned into multiple coding blocks (CBs), as shown in Figure 3. The chosen
sizes of CBs might differ based on the intricacy of the information being encoded. The
smallest CB is 4 × 4 samples, and the largest is 64 × 64 samples.

The HEVC standard also includes new coding tools that contribute to its improved
coding efficiency. These include a more flexible prediction structure, a more efficient intra
prediction scheme, a more powerful transform and quantization process, and a more
sophisticated entropy coding scheme.
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There are 35 intra prediction modes integrated within the codec. HEVC uses two types
of transform coding: Discrete Cosine Transform (DCT) of type II (DCT-II) and Discrete
Sine Transforms of type VII (DST-VII). The sizes of the transformation blocks range from
8 × 8 to 16 × 16 to 32 × 32 [24]. Encoder design features two loop filters, each optimized
for a different aspect of video encoding. The first is the deblocking filter, which has the
primary purpose of reducing compression-induced blocking artifacts. The second filter
is called the Sample Adaptive Offset (SAO) filter, and it is used to eliminate artifacts
caused by video coding’s transform and quantization processes [25]. HEVC standard
uses Context Adaptive Binary Arithmetic Coder (CABAC) as the only entropy coding
technique. CABAC can greatly improve compression efficiency through an arithmetic
coding approach. Nonetheless, CABAC implementation is intricate and has its drawbacks,
including a decrease in processing speed and increased hardware costs [26].

3. Related Work

Video compression and video quality assessment play pivotal roles in enabling efficient
storage and transmission of multimedia content. As the need for multimedia services,
especially video, has grown, these areas have become increasingly important. The HEVC
standard has become a fundamental aspect among the several video compression standards,
providing better compression efficiency in comparison to its predecessors.

Xu et al. [27] performed a thorough evaluation of the H.265/HEVC compression stan-
dard, examining the impact of bitrate and Group Of Pictures (GOP) pattern on video quality.
The research aimed to provide guidance on video compression techniques, particularly in
the areas of bitrate and GOP pattern selection. The study aimed to examine the relationship
between video quality and bitrate across different GOP patterns. The evaluation of video
quality was performed using objective metrics such as Peak Signal-to-Noise Ratio (PSNR),
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Structural Similarity Index (SSIM), and Video Quality Metric (VQM). The study’s results
demonstrated that increasing the bitrate led to better video quality when using the same
GOP pattern. Additionally, enlarging the GOP size while keeping the number of B-frames
the same resulted in increased video quality.

Mackin et al. [28] examined how changes in frame rate affect the compression of
HEVC video. The study demonstrated that greater frame rates, specifically those over
60 fps, can improve the quality of perception, particularly when using higher bitrates. The
researchers introduced a new approach to measure the degree of content dependency by
classifying video sequences into distinct groups according to their motion characteristics.
Their research uncovered a nearly straight-line connection between the average bitrate and
the ideal frame rate, suggesting that the ideal frame rate fluctuates with different bitrates.
The study emphasizes the significance of taking video content into account when choosing
the most suitable frame rates for various video sequences.

Valizadeh et al. [29] introduced a new approach to improve the effectiveness of video
coding by using perceptual coding approaches that consider the characteristics of the
Human Visual System (HVS). The proposed method included the video quality parameter
PSNR-HVS in the rate–distortion optimization process in order to achieve greater com-
pression efficiency compared to the HEVC standard system. Their proposed methodology
demonstrated a reduction in bitrate of up to 4.56% for the evaluated video sequences.

The study conducted by Ruiz Atencia et al. [30] examined the influence of different
HEVC coding configuration parameters on the perceptual quality of reconstructed videos.
The study employed diverse metrics, including traditional image quality assessments and
Netflix’s Video Multi-Method Assessment Fusion (VMAF), moving beyond conventional
PSNR metrics. The methodology involved encoding video sequences under different config-
urations. The paper underscored the importance of considering perceptual quality metrics
and provided valuable insights for configuring video encoders to optimize perceptual
rate–distortion performance.

Kobayashi et al. [31] proposed a hybrid architectural system integrating hardware
for efficient HEVC multiple channels encoding with software for packaging. This system
allows for adaptive bitrate/multi-channel encoding, low-latency, and supports multiple
HTTP streams protocol, as well as 4K video at 60 frames per second. In order to address the
issue of content-aware bitrate control, the authors have proposed a technique that modifies
the target bitrate according to the complexity of the video scene. This technique ensures
that the bitrate ladder relationship is maintained and employs QP control to encode at
a lower bitrate without causing noticeable degradation in image quality. Experimental
results demonstrated a significant reduction in encoding bitrates.

Hamdoun et al. [32] examined the efficacy of integrating error-protection methods
for HEVC video transmission via satellite channels. These methods included systematic
network coding and physical-layer turbo coding, emphasizing the advantages of network
coding in terms of error protection and resilience performance gains. The study specifically
examined the network coding attributes in cases where no packets are lost in order to iden-
tify the precise qualities that are relevant to the GOP in streaming multimedia. Additionally,
the paper utilized the IPPP encoding structure in the video encoding process, employing it
to encode video sequences using the HEVC standard. Their results showed considerable
video quality improvement compared to only UDP flow error-protection methods.

Joy and Kounte [33] proposed a novel approach to enhance HEVC compression
efficiency using deep learning technology. The proposed deep-depth decision algorithm
employed a content-based deep learning approach to training separate chroma and luma
components. The algorithm predicted the depth of CTU and converted it into a simplified
vector with 16 elements, leading to a reduction in encoding time and an improvement in
encoding bitrate.

Z Pan et al. [34] suggested an algorithm that leverages the features of video content
to enhance bit allocation in HEVC. Their algorithm established a correlation between



Computers 2024, 13, 204 6 of 16

motion activity, texture complexity, and bit allocation, resulting in enhanced rate–distortion
performance and coding efficiency.

These research works used different techniques to improve compression efficiency
and enhance the perceived video quality. However, none of them considered the effects of
motion content and intra coding techniques on coding performance.

4. Evaluation Methodology and Configurations
4.1. Proposed Evaluation Framework

Figure 4 illustrates the proposed framework, which offers a systematic method for
comprehending and evaluating the influence of H.265/HEVC encoded video motion
content. This proposed approach not only improves theoretical comprehension but also
offers practical instructions for assessing the HEVC codec by implementing the suggestions
outlined in the study.
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4.2. Quality Evaluation Metrics

Quality is an essential factor for assessing the performance and efficiency of all items
and the way they function. To precisely evaluate the quality of an image, it is important
to possess a reference point that represents the true or factual quality of the image [35].
There are various video quality assessment metrics, including Mean Squared Error (MSE),
Universal Image Quality Index (UIQI), Peak Signal-to-Noise Ratio (PSNR), Structured
Similarity Index Method (SSIM), and Feature Similarity Index Method (FSIM) that are
commonly employed to evaluate and assess image and video quality. In this paper, we
have used the widely adopted PSNR objective metric, which is related to the MSE. They
are calculated by comparing the original video with the uncompressed received version.

The MSE is a comprehensive measure that quantifies the average value of the squared
errors, with lower values indicating better performance. MSE allows us to estimate both
the estimator’s bias and variance. If an estimator is unbiased, its MSE is equal to its
variance [35].

The PSNR is a metric that measures the ratio between the highest possible signal
strength and the power of the unwanted noise that impacts the quality of its depiction.
PSNR is a commonly used metric for assessing the quality of reconstructed images in lossy
image compression codecs. The signal is defined as the unmodified data, whereas the noise
refers to the errors introduced during compression or distortion. The PSNR provides an
estimated measure of how well a reconstruction compares to the original in terms of human
perception, specifically in relation to compression codecs [36].

For a video sequence with N frames, each with pixels of dimensions Dx × Dy pixels,
consider the pixel’s luminance value at coordinates (x, y) in frame n of the video and denote
it I (n, x, y). MSE is the mean squared difference between luminescence values of video
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frames in the original video sequence I and processed sequence Î. MSE for a single video
frame n is:

MSEn =
1

Dx.Dy

Dx

∑
x=1

Dy

∑
y=1

[
I(n, x, y)− Î(n, x, y)

]2 (1)

For an N-frame video, MSE is averaged over frames:

MSE =
1
N

N−1

∑
n=0

MSEn (2)

The PSNR in decibels (dB) is generally defined as:

PSNR = 10log10
P2

MSE
(3)

In which p is the peak luminance of a pixel (2d − 1, where d is the depth of the pixel in
bits). A sequence of videos with N frames is described by its average quality, measured in
decibels, as:

PSNR =
1
N

N−1

∑
n=0

PSNRn (4)

4.3. Video Datasets and Configurations

We selected a set of eight video sequences with a range of resolutions and motion
activity commonly encountered in multimedia applications. Figure 5 shows a snapshot
of these sequences. The dataset is composed of versatile Full HD (1920 × 1080) and High-
Definition (1280 × 720) test video sequences. These natural sequences were captured
either at 120, 60, 50, or 25 frames per second (fps) and stored online in raw 8-bit 4:2:0
YUV formats. The dataset is characterized by spatial and temporal perceptual information,
coding complexity, and rate–distortion behavior [37]. One dataset is published online [38]
under a non-commercial Creative Commons BY-NC license. The other dataset is also
publicly accessible with appropriate copyright information included [39]. Snapshots of
these sequences are shown in Figure 5.
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Specifically, 200 frames from test sequences: YachtRide, HoneyBee, Crowd_run,
Ducks_take_off, Sunflower, Fourpeople, Mobcal, and Shields were encoded. The test sequences
utilized are shown in Table 1.

The system in use is a Lenovo IdeaPad Gaming 3-15IHU6 laptop, including an 11th
Generation Intel® Core™ i7-1137H processor, running Ubuntu 22.04.3 LTS operating
system.
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Table 1. Test sequences used.

Test
Sequence Resolution No. of Frames

Encoded fps

HoneyBee 1920 × 1080 200 120

Sunflower 1920 × 1080 200 25

Fourpeople 1280 × 720 200 60

Mobcal 1280 × 720 200 50

Shields 1280 × 720 200 50

YachtRide 1920 × 1080 200 120

Ducks_take_off 1920 × 1080 200 50

Crowd_run 1920 × 1080 200 50

The sequences were encoded using HEVC HM-18.0 codec [22] with different GOP
structures and different intra refresh mechanisms. The Quantization Parameter (QP) ranged
from 22 to 42.

To study the performance of HEVC codec across different setups, we performed three
distinct tests for each video sequence. For the first test (IPPP), an IPPP coding structure
with an open GOP of size of 8 is used. The codec configuration parameters are shown in
Table 2. The IntraPeriod is configured as −1, indicating that the GOP structure is repeated
indefinitely during the whole video sequence. DecodingRefreshType is configured as 0,
indicating that no frames are expressly designated as refresh points during the decoding
procedure. The GOP Size parameter is configured to 8, indicating that each GOP structure
consists of eight frames.

Table 2. Encoding parameters and configurations.

Configuration
IPPP Periodic-I Periodic-IDREncoder

Parameter

IntraPeriod −1 32 32

DecodingRefreshType 0 0 2

GOP Size 8 8 8

QP 22–42 22–42 22–42

For the second test (Periodic-I), an open GOP structure of size of 8 is used with a
periodic I frame at every 32 frames. The IntraPeriod is set to 32, indicating the insertion of
an I frame every 32 frames. DecodingRefreshType is set to 0, and the GOP Size parameter
is set to 8.

For the last test (Periodic-IDR), a closed GOP structure of size 8 was adopted. In-
traPeriod parameter was set to 32, and DecodingRefreshType was set to 2, indicating the
insertion of an IDR frame every 32 frames. These three experiences allow us to evaluate the
codec’s performance under different GOP structures and decoding refresh mechanisms.

Figure 6 shows the coding structure for the three configurations used in this paper.
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5. Results

Firstly, we analyzed the tested sequences to check their motion activity. We used
average motion vectors per pixel (MVpp) as an indicator of motion activity.

We compressed the test sequences using the configurations in Table 1. We then
analyzed the compression performance, taking into consideration the motion activity of
the tested sequences.

5.1. Motion Activity

Figure 7 shows the average MVpp for the tested video sequences when using IPPP
coding configuration. As can be seen, Crowd_run and Ducks_take_off are the most active
sequences in terms of this indicator. On the other hand, Sunflower and HoneyBee show the
least motion activity.
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Figure 7. Average MVpp of tested video sequences.

Figures 8 and 9 show a predicted frame of Crowd_run and HoneyBee test sequences
consecutively, with motion vectors shown as white and red lines. As it is clear from these
figures, the predicated frame of Crowd_run includes more motion vectors (with many large
ones) than the HoneyBee sequence.
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5.2. Rate–Distortion Performance

Figures 10–12 show the rate–distortion curves for less active video sequences HoneyBee,
Sunflower, and FourPeople consecutively.
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For HoneyBee test sequence at a bitrate of 1 Mbps, the IPPP configuration can achieve
about 4 dB over both periodic-I and periodic-IDR configurations. Periodic-I has a slight coding
advantage over periodic-IDR configuration, as shown in Figure 10.

For the other two sequences in this low activity group (Sunflower and FourPeople) at a
bitrate of 1 Mbps, IPPP configuration can give about (1 dB and 1.5 dB) quality improvement
when compared to periodic-I and periodic-IDR configurations.

Figures 13 and 14 show the rate–distortion curves for the Mobcal and Shields test
sequences that have intermediate motion activity.
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The results show that the IPPP coding configuration can still achieve a reasonable
quality improvement over periodic-I and periodic-IDR configurations. At 2 Mbps bitrate, the
IPPP can achieve about 1.5 dB better than periodic-I and periodic-IDR for Mobcal. For Shields
at 2 Mbps bitrate, the IPPP configuration can achieve about 1 dB better quality than the
other two coding configurations.

For all sequences with low and intermediate motion activity, periodic-I shows a slight
coding improvement over the periodic-IDR.

Figures 15–17 show the rate–distortion curves for the more active sequences YachtRide,
Ducks_take_off and crowd_run consecutively. The results show that the IPPP configuration
has a very small performance advantage over periodic-I and periodic-IDR configurations.
Additionally, periodic-I and periodic-IDR configurations show negligible coding differences
for these sequences.
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5.3. Encoding and Decoding Times

To check the complexity of encoding and decoding different video configurations,
we encoded Sunflower, HoneyBee, and FourPeople test sequences using IPPP, Periodic-I, and
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periodic-IDR coding configurations. The sequences were encoded using QPs of 30, 32, and
27 consecutively to achieve an average PSNR of about 40 dB. The results of encoding times
are shown in Figure 18, while Figure 19 shows the results of decoding times. Encoding
times are almost not changed for different coding configurations except for the Sunflower
sequence, which needs more time to encode the IPPP configurations than periodic-I and
periodic-IDR configuration. Looking at Figure 19, it is clear that the decoding time for the
IPPP coding configurations is less than that of the periodic-I and periodic-IDR configurations.
The reason is that for the same video quality, periodic-I and periodic-IDR configurations use
more bitrate than IPPP (Figures 10–12). Increased bitrate needs more processing, which
increases decoding times.
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6. Discussion

Choosing the optimal coding configuration for encoding a video sequence is challeng-
ing as the motion activity of the coded video has a significant impact on the HEVC coding
performance. We analyzed the coding performance of a range of video sequences with
different levels of motion activity using different coding configurations.

6.1. Low Motion Activity

For low motion activity test sequences (HoneyBee, Sunflower, and FourPeople), the IPPP
configuration can achieve considerably better coding than both periodic-I and periodic-IDR
configurations. Periodic-I has a slight coding advantage over periodic-IDR configuration.

6.2. Intermediate Motion Activity

Rate–distortion curves for the test sequences with intermediate motion activity (Mob-
cal, Shields) show that the IPPP coding configuration can achieve a reasonable quality
improvement over periodic-I and periodic-IDR configurations. Additionally, periodic-I shows
a slight coding improvement over the periodic-IDR.
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6.3. High Motion Activity

The rate–distortion curves for the more active sequences (YachtRide, Ducks_take_off
and Crowd_run) show that the IPPP configuration has a very small performance advantage
over periodic-I and periodic-IDR configuration. Additionally, periodic-I and periodic-IDR
configurations show negligible coding differences for these sequences.

For the same quality video, IPPP uses fewer bits than periodic-I and periodic-IDR
configurations. Therefore, the decoding time for the IPPP coding configurations is slightly
less than that of the periodic-I and periodic-IDR configurations.

Generally, IPPP coding configuration can achieve a better coding performance by
heavily relying on inter-frame prediction. Additionally, IPPP tends to have reduced decod-
ing complexity compared to periodic-I and periodic-IDR structures. However, I-frames can
minimize error propagation in error-prone environments and improve the random-access
capability of encoded video.

However, for sequences with high motion activity, our results show that the coding
advantage of the IPPP over periodic-I and periodic-IDR is very small. Therefore, for such
sequences, we recommend including I-frames to obtain the advantages of these frames
while not losing any significant coding performance.

Therefore, we propose an enhancement to the HEVC codec so that it can dynamically
select the encoding configuration based on the motion content of the encoded video content.
This adaptive scheme will offer better coding performance when the encoded video has
low motion content and automatically add I-frames when motion activity increases.

7. Conclusions

IPPP typically achieves a lower bitrate by heavily relying on inter-frame prediction,
leveraging previously encoded frames to predict the current frame. Additionally, IPPP
tends to have reduced decoding complexity compared to periodic-I and periodic-IDR struc-
tures. On the other hand, intra coded frames minimize error propagation from inter-frame
prediction and improve the random-access capability of encoded video. However, more
frequent I-frames also elevate the bitrate, potentially reducing overall compression effi-
ciency. Additionally, increased decoding complexity, particularly in real-time applications
or resource-constrained devices, accompanies frequent I-frames. Hence, it is essential to
carefully assess and evaluate the coding configuration in order to select the most appropri-
ate configuration for a specific case and achieve the desired coding performance.

Our results for sequences with low motion content and intermediate motion content
show that the IPPP configuration consistently has lower bitrates than the Periodic-I and
Periodic-IDR configurations. This indicates that IPPP is able to perform efficient compression
while efficiently maintaining visual quality. In contrast, Periodic-I and Periodic-IDR config-
urations incurred additional bits, leading to higher bitrates or lower quality at a specific
bitrate. Additionally, periodic-I shows a slight coding improvement over the periodic-IDR
for these sequences.

The results for tested sequences with high motion content indicate that the IPPP
configuration achieved slightly lower bitrates than Periodic-I and Periodic-IDR. Taking into
consideration the advantages of including I-frames in error-prone environments and the
random access they offer, it may be preferable to use the Periodic-I and Periodic-IDR coding
configurations in such scenarios.

Our results show how complicated the trade-offs are between bitrate, visual quality,
and encoding methods. These findings emphasize the importance of choosing a suitable
encoding configuration according to the motion activity of the encoded video sequence.
If the priority is to achieve lower bitrates with acceptable PSNR, configuration with the
IPPP coding structure is preferred. However, for videos with high-motion content, it may
be preferable to use the Periodic-I and Periodic-IDR coding configurations because of the
advantages these configurations can offer in error-prone environments.

Future work will investigate the effects of losses when these videos are sent over IP
networks and compare with these results. Also, building the proposed codec that can
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dynamically select the encoding configuration based on the motion content of the encoded
sequence is another important area for work in the future.
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