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Abstract: Vehicular ad hoc networks (VANETs) can bolster road safety through the proactive dis-
semination of emergency messages (EMs) among vehicles, effectively reducing the occurrence of
traffic-related accidents. It is difficult to transmit EMs quickly and reliably due to the high-speed
mobility of VANET and the attenuation of the wireless signal. However, poor network design and
high vehicle mobility are the two most difficult problems that affect VANET’s network performance.
The real-time traffic situation and network dependability will also be significantly impacted by route
selection and message delivery. Many of the current works have undergone studies focused on
forwarder selection and message transmission to address these problems. However, these earlier
approaches, while effective in forwarder selection and routing, have overlooked the critical aspects of
communication overhead and excessive energy consumption, resulting in transmission delays. To
address the prevailing challenges, the proposed solutions use edge computing to process and analyze
data locally from surrounding cars and infrastructure. EDGE-RSUs are positioned by the side of
the road. In intelligent transportation systems, this lowers latency and enhances real-time decision-
making by employing proficient forwarder selection techniques and optimizing the dissemination of
EMs. In the context of 5G-enabled VANET, this paper introduces a novel routing protocol, namely,
the supercluster-based urban multi-hop broadcast and best forwarder selection protocol (UMB-BFS).
The improved twin delay deep deterministic policy gradient (IT3DPG) method is used to select
the target region for emergency message distribution after route selection. Clustering is conducted
using modified density peak clustering (MDPC). Improved firefly optimization (IFO) is used for
optimal path selection. In this way, all emergency messages are quickly disseminated to multiple
directions and also manage the traffic in VANET. Finally, we plotted graphs for the following metrics:
throughput (3.9 kbps), end-to-end delay (70), coverage (90%), packet delivery ratio (98%), packet
received (12.75 k), and transmission delay (57 ms). Our approach’s performance is examined using
numerical analysis, demonstrating that it performs better than the current methodologies across
all measures.

Keywords: VANET; EMs; supercluster; UMBBFS; improved firefly optimization; IT3DPG; MDPC

1. Introduction

In VANETs, safety applications rely mainly on broadcasting emergency messages
(EMs). The network operates by broadcasting beacon messages from every vehicle, al-
lowing them to self-identify. To establish a connection with nearby vehicles, the receiving
vehicle stores key information from these beacon messages, including the sender’s address,
velocity, position, and vehicle status. This proactive approach aims to efficiently determine
the most suitable relay node for transmitting emergency messages by pinpointing the
closest available vehicle. Additionally, specific guidelines for broadcasting emergency
alerts have been established to ensure precise and reliable message delivery [1]. The perfor-
mance of the RSBP-RF (relay selection based on proximity with radio frequency) system
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is assessed in terms of end-to-end message dissemination latency, the accuracy of relay
node selection, and the overall message delivery success rate. It has been observed that
the packet delivery ratio (PDR) increases significantly with higher vehicle density, indicat-
ing improved message transmission reliability as the number of vehicles in the network
grows [2]. The great mobility and dispersion of the nodes (vehicles) provide communica-
tion problems. To facilitate communication between cars and roadside units (RSUs), nodes
in the overall architectures of VANETs are outfitted with on-board units (OBUs). The OBUs
and municipal infrastructures are integrated through the RSUs, which are static nodes
placed along the roadways (static locations). OBUs employ opportunistic routing to transfer
information throughout the vehicular network when vehicles interact with RSUs or other
vehicles. VANETs have significant issues related to the high mobility of the nodes, their
vast geographic dispersion, and continuous changes in the network structure, resulting in
intermittent connections owing to network fragmentation [3]. Emergency communication
in VANET is a critical aspect of these networks, as it plays a vital role in ensuring the safety
of drivers, passengers, and other road users [4].

One of the main features of intelligent transportation systems (ITSs) involves the use of
vehicle-to-everything (V2X) communications to enhance road safety and driving conditions
by disseminating messages in emergency scenarios like traffic jams and accidents [5,6].
Data sharing between vehicles and RSUs is one of two potential communications in a
VANET. In order to communicate the precise positions of moving vehicles, RSU depends
on stationary nodes that are linked to the global positioning system (GPS) [7]. In the
conventional scheme, the relay nodes tend to cluster near each other, limiting the spatial
distribution of relay node candidates to a specific region [8]. Traditional approaches for
securing VANET commonly involve the deployment of public key infrastructure (PKI).
This infrastructure typically relies on certificate revocation lists (CRLs) to handle revoked
certificates. In PKI-based systems, a trusted authority (TA) is responsible for assigning
certificates, public keys, and private keys to each registered entity within the network [9].

The optimal cooperative forwarder (OCF) is a system designed to optimize the delivery
of messages across multiple channels, taking into account several important factors. The
OCF choice is determined by evaluating factors such as the vehicle’s location, speed and
direction, and communication quality [10,11].

VANET represents the predominant topology employed in intelligent transportation
systems (ITSs). However, the dynamic nature of VANETs, characterized by node mobility,
poses significant challenges for broadcasting emergency messages and ensuring efficient
data delivery, particularly in both highway and urban settings. To address the challenges
and acquire essential information, VANET broadcast protocols commonly rely on beacon
messages. These beacon messages are disseminated among vehicles to facilitate communi-
cation and coordination within the network [12,13]. The VANET paradigm plays a crucial
role in facilitating communication among vehicles, especially during emergencies. Electric
vehicles navigate the roadways, following a prioritized process, where the dissemination
of emergency messages and efficient traffic organization is paramount, especially in a
dynamic mobile environment. Traffic management relies on the effective calculation of
communication performance involving not only moving vehicles but also roadside units
and traffic lights. To ensure the smooth flow of emergency vehicles through traffic, an
approach was devised [14,15].

To improve emergency message dissemination in VANET, many existing works per-
form clustering and forwarder selection by performing optimal routing. However, this
leads to energy consumption, lack of reliability, and packet loss. Existing research works
focus on these problems but do not provide a proper solution for emergency message dis-
semination. Some of the unsolved gaps in the existing works—considered as the motivation
of the proposed work—are listed below:

• Communication overhead: Due to its limited bandwidth and mobility, the current
combination of insufficient communication technologies results in a large communi-
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cation overhead. Additionally, incorrect base station, RSU deployment, and network
structure limit the network’s capacity to scale, increasing communication overhead.

• High packet loss: Some of the pre-existing works included direct routing. However,
the lack of vehicle clustering leads to packet loss. Contrarily, clustering is based
on parameters such as direction, velocity, and distance of movement. As a result,
stability, reliability, energy efficiency, and packet loss are reduced when choosing the
CH. However, these criteria alone are insufficient.

• Transmission delay: The choice of a cluster head or a vehicle performing routing inde-
pendently by just looking at its information leads to inefficient routing that interferes
with packet transport. On the other hand, cluster heads are chosen for emergency
message transmission depending on the direction angle. However, while sending
messages, additional factors (such as distance, node location, and energy) are not
taken into account, causing transmission delays. Additionally, the choice of the for-
warder is made based on beacon messages and neighbor locations. However, other
factors (such as speed, lane condition, and distance) are not taken into account, causing
transmission delays.

• Inefficient emergency message dissemination: The next hop selects the best forwarder
based on a single moving direction. However, it results in the distribution of emer-
gency messages being ineffective. Estimates of decision areas are often based only
on transmission ranges in existing installations. However, since these factors are
ineffective at determining decision areas, message transmission becomes difficult.
Dissemination of emergency messages in this situation is limited to atypical cars and
accidents. However, another emergency message (such as an ambulance alert or a list
of local pharmacies) was not considered, resulting in the ineffective distribution of
emergency messages. Additionally, it narrows the selection of practical and reasonably
priced transportation choices and worsens traffic congestion on the roadways.

The primary objective of this research is to enhance the dissemination of emergency
messages within VANET by optimizing the selection of the most suitable forwarder nodes.
Additionally, this study tackles several critical issues such as excessive communication
overhead, elevated packet loss rates, and undesirable delays. The goal is to improve the
overall transmission of packets and enhance the selection of optimal communication paths
within VANET. The following are the objectives of this study:

• To mitigate communication overhead, we employ a network construction approach
that combines 2D and 3D elements. Furthermore, we establish robust vehicle-to-
vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-pedestrian (V2P) com-
munication channels. These enhancements collectively serve to optimize network
communication and efficiency.

• To enhance routing efficiency and bolster routing reliability, a clustering approach is im-
plemented. This clustering technique is designed to improve the overall performance
of the routing process within the network.

• To minimize transmission delay and reduce the occurrence of high packet loss, we
implemented optimal routing strategies and employed a careful selection process to
identify the most suitable forwarder nodes. All of these steps improved the network’s
data transmission reliability and efficiency.

• To enhance message transmission, we adopted a strategy that involved selecting
decision areas and classifying emergency messages, allowing them to be transmitted
effectively in multiple directions and thereby increasing their reach and impact.

This article is organized as follows: Section 1 presents the introduction, research
problem, and the contributions of the article. A literature review of prior work is presented
in Section 2. The proposed method is presented in Section 3. Section 4 presents the details
of the experimental results. The conclusion of this study is presented in Section 5, which
also provides plans for this research’s future work.
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2. Literature Review

In addition, the research gaps of such previous studies are provided in this portion
and are described below. The author of [16] suggested a technique for wave complaint
augmentation to transmit safety messages in VANET. To reduce channel congestion and
wasteful bandwidth consumption, the first part of the strategy depends on dynamic beacon
creation. Additionally, the clustering technique in the proposed work prioritizes the
mobility of vehicles and executes clustering based on beaconing frequencies and varied
data transmission rates. The simulation results show that the performance of the suggested
strategy improves service quality across two distinct ranges. The author of [17] suggested
a broadcast strategy to spread the emergency warning across the developed Internet of
Vehicles (IoV). The weighted node, which is a relay candidate and is determined by a mix
of distance, connection availability, and packet reception ratio, denotes the first protocol
selection advice for a relaying node. Additionally, the relay packet’s highest priority node
is chosen by the node with the highest weighted probability. The other node will transmit
the emergency messages if the chosen node cannot transfer the messages. By doing this,
a high packet delivery ratio, low delivery delay, and reliable transmission of emergent
messages are all assured. Here, the routing was performed directly where the lack of vehicle
clustering led to ineffective routing due to high mobility, resulting in high packet loss.

In [18], the author introduced a novel message broadcast strategy based on VANET
clustering and effective communication. The clustering plan can be adapted to any en-
vironment to include a hierarchy-based cluster selection strategy that prioritizes tasks to
minimize media latency. Unmanned aerial vehicle (UAV) cluster-based multicast commu-
nication and unmanned ground vehicles (UGV) dynamic mobility cannot compromise the
effectiveness of mobile device management (MDM) distribution. The suggested approach
is also flexible since a significant amount of devastation might result from any message de-
livery failure. For VANET, a suggested density-based clustering method using the Cauchy
density algorithm was devised. In [19], a centralized clustering approach was used to
construct a Cauchy density model to address the VANET issue in a 3D road environment.
According to factors, such as mobility, traffic, driving style, and road curvature, this model
groups vehicles together. Additionally, the Cauchy density model’s clustering methods
establish the mobility vector to enable the addition of vehicles to each cluster. The findings
show that this approach improves clustering efficiency, cluster head selection, and cluster
member duration. However, vehicles directly communicate with the base station, leading
to high power consumption due to the direct transmission of requests and demands for
service, leading to high latency. This study suggested using VANET to send emergency
messages on bend roads. Additionally, the message may spread concurrently in two direc-
tions. Relay node selection, however, is determined by the length of the road’s neighbor
node coverage. The neighboring nodes are then provided with various waiting times to
cover the road’s capacity in case the messages are not received. Lastly, the results show that
the suggested approach outperformed the contention latency and the propagation velocity.
The routing decisions are only based on neighbor direction [20].

The authors of [21] suggested that trust management can be implemented by distribut-
ing emergency notifications across a vehicle network. First, 6G can facilitate significant
interconnectivity in vehicle networks, catering to a variety of service requirements, with
high throughput and low-latency wireless communication capabilities for vehicular net-
works. Next, it can optimize the vehicular network’s performance to meet device service
needs. The proposed balancing trust management and privacy preservation (BTMPP)
technique uses the well-known bloom filter (BF)-based private set intersection technology
to enable both trust management and robust condition privacy protection. Additionally,
the suggested approach was enhanced in terms of accuracy, a powerful conditional privacy
preservation capacity, and accurate trust management. The optimal path detection was
performed for EM dissemination in VANETs. However, the RSU and base station are
randomly placed and were not constructed properly, which increases the communication
overhead. Vehicle networks are incorporated into the trust management system to spread
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the emergency message into space, the air, and the ground. By combining the advantages
of the space, air, and ground segments in terms of coverage, flexibility, reliability, and
availability, the proposed scheme can achieve precise trust management and strong condi-
tional privacy preservation at the same time. This leads to improved trust management in
space–air–ground-integrated vehicular networks. Then, a quantitative link between the
fuzzification of reputation levels and the false positive rate may provide a strong mathemat-
ical basis for reaching a good equilibrium. Finally, the outcomes showed that the suggested
plan is far better than the current methods in several ways.

In [22], the routing decisions are only based on coverage. However, transmission
ranges only are not efficient for estimating decision areas, which leads to complexity
in message dissemination. The author of [23] used a secure message broadcast method
with authentication to reduce message overhead in VANETs. The proposed effort focuses
on a low-cost message authentication and secure message distribution mechanism for
VANET. Messages are not authenticated by the vehicles themselves. The tasks of gathering,
aggregating, verifying, and distributing messages to vehicles are within the purview of
RSU. RSU may choose a few cars in its zone to act as the group leaders to gather aggregate
messages from vehicles and save overhead. Finally, this system uses digital signatures based
on public key cryptography to guarantee the validity and integrity of communications. The
next hop selection and best forwarder selection, based on a single moving direction, leads
to inefficient emergency message dissemination.

The authors of [24] proposed using an artificial intelligence-enhanced interplanetary
file system (IPFS) to securely manage messages in automotive energy networks. An
interplanetary file system was first integrated with the RSU to store data delivered by cars
for communication purposes. Additionally, the true identities of the automobiles guarantee
that the privacy needs of the owners are met. Then, in the third tier of BC, the data hashes
saved in IPFS are stored, along with a mild vehicle trustworthiness check. The suggested
method successfully separates the issues of processing time and storage overhead by
storing data hashes on the network as opposed to real data. Here, intelligent IPFS was
used for cluster formation. However, it assumes that the same points are distributed
about the mean, which leads to reduced stability, reliability, and energy efficiency. The
authors of [25] proposed a secure multi-hop secure message transmission in VANET
based on smartphone platforms. For example, the goal of the Automotive Connectivity
Development Alliance, which aims to develop smartphone-centric vehicle connectivity
solutions, is to focus on connected vehicle solutions for problems arising from vehicle-to-
infrastructure (V2I) communications. The work primarily focused on the possibility of
using smart devices to send messages between two vehicles. To solve the research gap,
the authors provided a platform entirely contained inside the device for secure multi-hop
message distribution. The findings introduced a cryptographic system appropriate for
VANET that ensures data integrity and node authentication. A prediction system for a
vehicle-to-everything network for the distribution of safety-based emergency messages
was presented. Here, the hybrid Markov chain process with an inverse index model is
used as the starting point of the vehicle trajectory prediction system. Depending on the
vehicle’s data connection, and to increase the time it takes to send the warning message,
the proposed system can switch between V2V and V2I connections. Finally, the findings
show that the vehicle’s trajectory density information may be properly predicted. In [26],
entities were not managed properly and were placed randomly, leading to a high packet
loss ratio and computational complexities.

The author in [27] suggested using an optimization approach for message distribution
in VANET. Information distribution in VANET networks requires a good strategy to protect
against situations affected by accidents or storms and to ensure high service levels. In this
study, a network using cars as nodes was used. The goal is to send emergency notifications
immediately. The identification method based on particle swarm optimization is both
efficient and safe. In addition, improvements have been made in the method in terms of
efficiency, packet loss, reducing end-to-end delay time, and reducing energy consumption.
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A particle swarm optimization algorithm is used to understand the optimal path but
the algorithm cannot control negative edges; it performs the search blindly, affecting
the visualization performance. In [28], the author suggested using dynamic clustering
to distribute emergency messages to the best IoV location. To address the broadcast
storm issue, this plan was built on a dynamic clustering technique that also used a novel
cluster head selection mechanism. The section method also makes it possible to use the
most stable vehicles as cluster heads, allowing for the efficient transmission of emergency
information by preventing packet collisions. Finally, the simulation results show that by
enhancing delay, packet delivery ratio, and throughput, their strategy minimizes collision
and broadcast storm concerns. The roads were divided into clusters to predict the traffic
density and optimize routing; this algorithm requires a large amount of time to detect
the congestion, which leads to high latency. In this study, a cloud-based vehicle ad hoc
network is used to distribute emergency messages securely. The type 2 fuzzy logic-based
secure clustering (T2FLSC) approach is used to dynamically cluster the cars, and it chooses
the cluster head based on several factors, including travel speed, connection quality, trust
factor, inter-vehicle distance, and neighboring node count. Additionally, the trust factor’s
inclusion aids in choosing the right CH for a secure data transfer method. A thorough
outcomes analysis was carried out. Finally, the suggested model provides the highest
throughput, packet delivery ratio, and key calculation time. Here, emergency message
dissemination is limited to abnormal vehicles. However, other emergency messages (i.e.,
accident, ambulance alert) were not considered, leading to inefficient emergency message
dissemination [29].

In [30], the author developed several rateless coding methods for message distribution
in VANET. In the suggested study, a new protocol for data dissemination was created to
reduce the negative impacts of problems and boost their effectiveness, providing a depend-
able method to provide mutual operating capabilities for V2V and V2I communications
between nodes. To further minimize irregular connections, as well as address uncertainties
in receiving information and collision issues, changing the messages sent by roadside
devices over time and their influence on the network is recommended. The final set of
findings demonstrates that the suggested system decreases the delay in disseminating
messages between the vehicles, increases the number of delivery packets, enhances the
range of data dissemination, and decreases the overhead of handshakes on average. The
authors of [31] proposed using a federated learning agent misbehavior detection system
(FLEMDS) and vehicle selection strategies to protect 6G-enabled vehicles against Sybil
attacks. Due to the government’s work on AI approaches, Sybil successfully stopped search-
ing locally in cars. To increase the accuracy of the analysis, FLEMDS used a three-stage
collection model at three different locations. FLEMDS uses state-of-the-art learning and
software-defined cloud computing to reduce learning and discovery latency. FLEMDS
involves sharing information for Sybil detection; there may be privacy concerns regarding
the exchange of sensitive vehicle data. The author in [32] proposed an effective safety
message transmission strategy that concentrates on metropolitan settings with high vehicle
densities and mobility. The proposed system can reduce packet loss by considering active
group pages and names from the active group control system. The distribution of safety
information in the vehicle-to-vehicle environment is divided into group issues, common
issues, as well as general safety messages. Due to the per-vehicle work request method
and the RSU planning method, the system reduces work requests and messages sent from
vehicles to RSUs on the construction site. For distribution on highway VANETs, the author
of [33] proposed using a clustering method known as the optimal path routing protocol
(OPRP) for warning messages. In a high-mobility environment, OPRP depends on mobility
measurements to support cluster building, save transmission overhead, and maintain
message authenticity. Additionally, the protocol considers cluster head communication to
cut down on transmissions. For a steady and protracted cluster life, the cluster head is also
selected using the median strategy based on an odd or even number of cars. With different
traffic volumes and speeds, OPRP is contrasted with well-known plans. While cluster heads
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can help reduce transmission overhead, the communication between cluster heads and
their member vehicles can introduce additional latency and overhead. The effectiveness
of this communication depends on the selection of cluster heads and their proximity to
the cluster members. In [30], the authors suggested a lower acceptance and publication
statement. They compared the overhead of their method in terms of authentication and
messaging with existing methods and analyzed the privacy and security of their method.
However, as the number of messages received by the RSU in the network increases, the
RSU’s computational and communication costs related to authentication and propagation
also increase. The effectiveness of authentication depends on a certain level of trust in the
network. These trusts must be clearly defined and acknowledged.

The author of [32] developed a Q-learning-based approach to determine the ideal
locations and minimal number for rebroadcast zones. The combination of V2I broadcasts
and vehicle-to-vehicle (V2V) rebroadcasts from these calculated zones enables the dis-
tribution of AMs across a wide region, even when there are places with weak wireless
connections. The performance results demonstrate that the suggested Q-learning-based
placement achieves great information coverage with minimal delivery delays. Additionally,
collisions and pointless repeated rebroadcasts are prevented, conserving network resources.
VANETs are characterized by dynamic network topologies due to vehicle mobility. The
author of [33] proposed a method for disseminating data that uses a time barrier mecha-
nism to reduce the number of overhead messages that may otherwise burden the network.
The notion of a super-node to distribute the messages promptly forms the basis of the
suggested solution. Additionally, the time barrier approach is modified to address this issue
to prevent superfluous broadcasts, which may also result in the broadcast storm problem.
Only the furthest vehicle can rebroadcast the message because it may go a greater distance.
As a result, the message may go to the furthest node in less time, increasing coverage and
decreasing latency. This method does not address potential privacy and security concerns
related to the exchange of location information and data dissemination in VANETs.

3. Proposed Method

In this study, clustering and optimal route selection are applied with a primary empha-
sis on the distribution of emergency messages. The key elements of this work are a 5G base
station, an Edge-RSU (Edge-RSU), a fog server, and the cloud. To decrease communication
overhead and boost dependability, 5G technology was used. Fog nodes and cloud comput-
ing were used to reduce storage requirements and enable flexible processing. Additionally,
clustering was carried out in the fog nodes, offering high-speed data processing while
using less energy. To spread the emergency message, the best route was detected as well.
This section briefly discusses the four main processes, as follows:

• Two-dimensional (2D) with 3D grid-based network construction.
• Energy-saving-based super-clustering.
• Hybrid protocol-based path selection.
• DRL-based emergency message dissemination.

3.1. 2D with 3D Grid-Based Network Construction

The cloud-based VANET was initially established within a structured 2D and 3D grid
framework. This grid divides the network into manageable m*m grid segments, result-
ing in reduced complexity and enhanced scalability. Within this grid selection, strategic
deployment of both the base station (BS) and edge-assisted roadside units (Edge-RSUs)
optimizes coverage and connectivity. Each grid is equipped with Edge-RSUs to efficiently
harness vehicle interactions within their coverage areas, facilitating information trans-
fer to the mini lanes situated within each grid. Furthermore, this architecture promotes
direct communication between vehicles (V2V), vehicles and infrastructure (V2I), and vehi-
cles and pedestrians (V2P), effectively mitigating communication overhead. By adopting
this 2D and 3D grid network construction approach, the system significantly reduces the



Computers 2024, 13, 208 8 of 26

burden of high communication overhead, resulting in a more streamlined and efficient
VANET infrastructure.

3.2. Energy Saving-Based Super-Clustering

To increase communication scalability and reliability, clustering is conducted after
network creation. The number of cars grouped within the grid increases as the number of
vehicles in this network increases. The fog nodes cluster the vehicles using the modified
density peak clustering method (MDPC). Clustering increases network connectivity, en-
ergy efficiency, effective topology management, and minimizes latency. According to the
suggested study, the vehicle is grouped according to its distance, node positions, energy,
stability, velocity, degree, and dependability.

Fog Node Location Model

Fog nodes, which are often located inside the transportation infrastructure, provide a
distributed computing architecture for optimizing clustering operations by being strate-
gically positioned close to the edge of the network. This approach reduces the need to
transfer massive volumes of raw data to a central data center or cloud for processing.
Rather, fog nodes enable the local and real-time execution of the vehicle-network-suited
MDPC clustering technique. Fast decision-making is made possible by automobiles moving
across the network, which is crucial for communication and security. Additionally, fog
nodes reduce network traffic by only transmitting pertinent cluster information, conserving
bandwidth. The scalability, adaptability to changing network conditions, and indepen-
dence in the case of network failures all contribute to the reliability of clustering operations.
In in-vehicle networks with limited energy supply, these nodes may also be modified for
energy efficiency. By providing automotive networks with the processing power required
for quick, dependable, and efficient clustering via MDPC, fog nodes provide enhanced
network scalability, communication, and performance in dynamic vehicle situations.

Each item designated as i in a fog computing environment with ‘n’ objects needs
certain computing resources, CRi, and storage resources, SRi, in order to meet the service
requirements. It is presumed that all entities may be serviced by a given number of
virtual fog nodes, V, and have a shared maximum response latency, represented as MRes.
Every virtual fog node, represented as Fnod, has W distinct device types attached to it,
represented as Kdev. QVw denotes the unique number of each device type, KdevVw,
within these devices. Within this collection, a specific device is denoted as devVwj, where j
denotes the device type index and m denotes the device type. Resvwji denotes the service
delay for each item i where the jth device of type w serves that object. Furthermore, the
unit resource costs are represented by the notation Costvwj = {CostSv wj, CostCv wj} and
Revwj = {ReSv wj, ResCv wj}, where CostS denotes the cost of storage resources, ReS, and
CostC denotes the cost of computation resources, ReC. These expenses are related to the
type w gadget j. The following formula may be used to construct the fog node placement
and allocation problem:

Min : K1 ∗ ∑V
v=1 ∑w

w=1 ∑ QV w
j=1 ∑n

i=1 Resvwjixi+K2 ∗ ∑V
v=1 ∑w

w=1 ∑ QV w
j=1 CostvwjRevwj. (1)

s.t.


xi = 1, i f Thing i is served, otherwise, xi = 0
Resvwji ≤ MRes[
∑V

v=1 ∑w
w=1 ∑ QV w

j=1 CostvwjRevwj

]
≥ ∑n

i=1(SRi + CRi)
. (2)

If there are ‘n’ points in an Euclidean space, and each point represents a “Thing,” then
the resources needed to service each Thing and the related resource prices are regarded
as characteristics of these points. Subsequently, the points are arranged into clusters by
minimizing the weighted distance between the points and the centers of each cluster. To
guarantee that the distance between each point and its cluster centroid stays below a certain
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threshold, a constraint is also applied to these clusters. The following may be used to
summarize this clustering process:

Min : K1

W

∑
i=1

W

∑
j=1

djyijCostixi + K2

W

∑
i=1

W

∑
j=1

Qijyij

s.t.


xi, yij ∈ {0, 1}

Qij = diOij[
Qij
]
≥ OThr

(3)

The weights of the items are represented by K1 and K2. The selection point as a virtual
fog node is denoted by xi, and the quality of service provided by point j or

[
Qij
]
≥ OThr

is shown by yij. Qij represents the quality of service provided by point j to point i. It is a
measure of how well point j serves point i in the context of the network. The service delay
occurs when fog node i serves point j. OThr denotes the value at the threshold.

1. Modified density peak clustering (MDPC) algorithm.

The MDPC method uses a local reachability density-based clustering strategy to
improve clustering performance. The cluster head selection step of the procedure comes
after the clustering phase.

Cluster centers are identified by their greater density relative to nearby data points
and by their relative distance from other places with higher densities. This denotes the
foundation upon which the MDPC algorithm functions. For each data point, two crucial
features are defined, (1) σi and (2) τi, in order to capture these qualities. Inherent to the
clustering technique are the following qualities:

σi = ∑n
j=1 A

(
dij − dC

)
. (4)

τi for a data point σi denotes the minimum distance to any data point τj with a higher
local density (σ) than σi, but only if the stated cutoff distance dC is met or exceeded by the
distance dij. A represents an indicator function that determines if a given distance meets
this condition:

τi =

{
Min

(
dij
)

Max
(
dij
) i f ∋ j, s.t : σj > σi

i f ∋ j, s.t : σj < σi
(5)

The number of data points closer to point i than a certain distance, dC, is represented
by σi. This metric offers a localized view of the probability that point I will function as a
cluster center. Conversely, τi denotes the minimal separation between point i and its closest
high-density point, providing a worldwide view of the probability that point i is a cluster
center. Metrics like σi and τi are widely used in practice to identify various properties of
clusters. Usually, cluster centers are selected at intervals when these metrics have high
values. The remaining data points are then assigned to the closest cluster center in a single
step once these cluster centers have been identified, ensuring accurate cluster assignments.
By considering both local and global density features, this method provides a data-driven
method for choosing cluster centers, which enhances the accuracy of the clustering process.
The supercluster idea is shown in Figure 1.

Following the first cluster center identification, the slave cluster heads (SCHs) must be
selected. This selection process takes into account many aspects to provide the greatest pos-
sible selection of SCHs. Density, packet delivery ratio, energy level, capacity, and distance
are some of these characteristics. By considering these factors, the clustering algorithm
seeks to maximize the efficacy and efficiency of the cluster head selection procedure while
choosing SCHs. The SCHs are better suited to their duties in the network as a result of this
rigorous evaluation of several elements.
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Figure 1. Supercluster.

A supercluster was overlaid with small clusters as part of the proposed methodology.
We see the supercluster diagram in Figure 2. Slave CHs in mini-clusters collect data from
nodes and forward them to the super CH via a hierarchical structure. Slave CHs also
transmit data to a nearby node. This allows the network to function in a multi-hop fashion.
Furthermore, a slave CH takes on the role of the cluster head as the energy of the slave
node is larger than that of the cluster head. When processing the SCH proves difficult and
a cluster could accommodate many vehicles, cluster splitting is used. When two clusters
have a dense vehicle with identical properties, cluster merging is used. The network was
also connected to fog nodes, which provided faster data processing and less energy use.
We will now analyze the temporal complexity and frequency of executing the proposed
MDPC (multi-hop delay propagation calculation) and best forwarder selection algorithms
concerning vehicle density. Single hop delay: Since this is a straightforward division, we
will assume that it is O(1). Since the multi-hop delay calculation is a O(n) process that
entails iterating over n regions and calculating delays, the total time complexity of the
MDPC is O(n). Execution frequency: Higher densities may need more frequent estimates
due to variable traffic patterns, depending on the number of cars.
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3.3. Hybrid Protocol-Based Path Selection

After successful clustering, optimal path selection is performed to develop the dissemi-
nation of EMs. The entire car is equipped with a GPS, which uses the vehicle ID to pinpoint
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the position. Every time a vehicle enters one of the road segments, the Edge-RSU with
gateway captures information on the vehicle and the road. The UMBBFS hybrid protocol
was applied to improve the performance of multi-hop broadcasts and the selection of the
best forwarder, with a focus on reducing one-hop delay, increasing message propagation
speed, and enhancing the message reception rate when determining the optimal path.

Urban Multi-Hop Broadcast and Best Forwarder Selection (UMBBFS) Protocol

In an urban environment, the UMBBFS employs an emergency message transmission
protocol for traffic accidents occurring on either straight roads or intersections. If the root of
the path is straight, the message starts broadcasting in both directions and a communication
channel is selected to send the message. However, when the destination’s source is at the
intersection, the message multicasts in many directions, and there is still a relay node on
each branch. In subsequent hops, the message is at an intersection, where multi-directional
broadcasting may occur. This protocol efficiently disseminates emergency messages in
the urban context, optimizing message propagation based on the source node location
and minimizing redundancy in message relay. When an emergency message needs to be
transmitted, the UMBB quickly selects neighboring nodes in multiple directions.

1. Multi-hop broadcast.

Using GPS location and digital maps allows the source of the location and its neighbors
to determine whether they are in the intersection area. When an incident occurs at the
intersection, UMBB begins broadcasting various announcements during the first half of the
broadcast. This allows emergency information to be displayed on all side roads starting
from the intersection, solving the problem of black area interference between adjacent
lines in multiple directions. At an intersection, preventing ‘blacks’ from colliding by
interacting with nodes at the intersection is a challenge that must reach those adjacent
to the intersection, especially in cases when the ‘black’ is broken. Figure 2 illustrates the
multi-hop broadcast architecture

In the context described, the source node is denoted as ‘T’, while the neighboring
nodes ‘P’, ‘Q’, ‘R’, and ‘S’ are situated in various directions at intersection point ‘O’. When
node ‘R’ sends a black-burst transmission along one road toward source node ‘T’, it can
potentially result in interference with neighboring nodes located between ‘T’ and ‘O’ on
different intersection roads. To address this issue, UMBB adopts an innovative method
to control the transmission of black-burst signals among neighboring nodes situated on
distinct roads within the intersection area.

2. Neighboring nodes on the intersecting road.

The UMBB protocol implements an iterative process for nearby nodes on the crossing
road, which is quite different from the process used for surrounding nodes on the current
route. Prior to starting the road, two distances must be calculated: “r” denotes the distance
from the center to the junction, and “d” denotes the distance from the source node to the
intersection. The covered length of the intersecting road by the source node is represented,
and half of this length is represented as cr, which can be calculated as cr =

√
(r2 − d2), as

illustrated in Figure 3. The first iteration begins after a specific time interval, TI + (2n + 1)τ.
During this process, cr is initially divided into two segments: a forward area represented as
fa( (1 − β)cr, cr) and a non-forward area represented as NF(0, (1 − β)cr) , in every direction
of the intersecting road.

This segmentation and timing strategy helps manage the selection of forwarding
nodes in a way that minimizes interference and minimizes message propagation in the
complex urban communication environment described.
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3. One-hop delay in multi-direction.

One-hop delay is made up of many elements, such as the time needed to send an
EM, the time needed for the iteration process, and the contention time needed to transmit
a µR. The time to transmit an EM is calculated as Mini_WC/2 + TE, and the time is as
Ts + (4n + 2)τ. The contention process requires the candidate to select a mini-slot to send
EM packets through the contention window (CW) by sending nodes along the current
path. The candidate’s chance of applying to the selected mini-hole is “p” = 1/CW. If there
is no conflict among candidates at two intersections, we can use a two-way broadcast to
calculate the conflict time. We replace the “R” span in the current path. The length of the
intersection in two directions is expressed as cr and can be calculated as cr =

√
R2 + r2;

where “r” denotes the distance between the center and the intersection. In the final analysis,
potential forwarding nodes on the present path select mini-slots for EM transmission with
a probability “p”. During contention, a bi-directional broadcast-like approach is utilized
to calculate the contention time and one-hop delay on the present route when candidate
nodes on adjacent roads are not in contention. Considering the distance “r” between the
source node and the junction point, the covered length of the crossing road is cr. Divide
the length cr into n segments, one for each direction of the intersecting road, such that the
segments constitute the state space of the final fa. The state may be represented by the set,
as follows:

SP = {SP0, SP1, . . . ., SPn−1} (6)

The length of the I is denoted as follows:

SPI = (1 − β)jβ(n−j)cr, ∃ j ϵ [0, n] (7)

In segment SPI , Yi represents the number of candidates forwarding nodes. For
probability, Pt(Yi = k). Our technique yields the one-hop delay on the intersecting route,
indicated as BM−i

H−D. The average one-hop latency in multi-hop is calculated by using the
mean of B M

H−D = (BM−c
H−D + BM−i

H−D)/2.
Message propagation speed: The speed at which the EM spreads is measured by

the distance traveled per second. This speed can be calculated by dividing the distance
from destination to destination ( fa) by the single hop delay. Finally, fa is expressed as
Ii(0 < i ≤ n − 1), which means that there are no cars in the region I0, I1, . . . Ii−1. The
probability of occurrence can be expressed as the product of the probability of each re-
gion. Therefore, the average one-hop propagation distance in the broadcast denotes “a”,
as follows:

a =
(
∏i−1

j=0 hr
(

xj = 0
)
hr(xi = 0)

)
. (8)
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The average one-hop propagation distance a is influenced by the chance that there are
no automobiles in the zones from I0 to Ii, as represented by this equation:

DB = (1 − hr((x0 = 0))·∑n−1
M=i IM + ∑n−1

i=1 (((1 − hr(xi = 0))∏i−1
j=0 hr(xj = 0))·∑n−1

M=i IM. (9)

And the propagation speed is as follows:

PN =

(
DB

B D
H−D

)
(10)

In the context of a bi-directional broadcast, the emergency message is disseminated in
two opposing directions, resulting in the propagation speed being influenced, as follows:

PO =
2DB

B O
H−D

(11)

In a multi-directional broadcast, where each direction on an intersecting road is
covered up to a length of IR, the average per-hop distance in one direction can be calculated
as follows:

Dm = (1 − hr((y0 = 0)))·∑n−1
M=i RM

∑n−1
i=1 (((1 − hr(yi = 0))∏i−1

j=0 hr(yj = 0))·∑n−1
M=i RM

(12)

Multi-directionally broadcasting the propagation speed is as follows:

SN =
2(DB + DL)

B P
H−D

(13)

The message propagation speed for each broadcast is finally determined.

4. Best forwarder selection.

In this section, we introduce an effective approach for the best forwarder selection in
VANETs. The forwarding node choice takes into account the priority assigned to the packets
in its transmission queue. The primary goal is to reduce delay for EM transmission while
also minimizing the routing overhead cost function that guides the selection of forwarding
networks. This function considers two key metrics: delay and stability, as elaborated upon
in the subsequent subsection.

Delay: The end-to-end delay (E2E) of a packet denotes the total time it takes for a
packet to travel from its source to its destination, which in this case is node X. To calculate
the link delay between two nodes, labeled as Ni and Nj, and represented as IDi,j for the
link (i,j), we consider the following factors: transmission delay (Ftd), queuing delay (Qd),
and hopping delay (Hd).

In essence, the link delay IDi,j for the link between nodes Ni and Nj can be expressed
as the sum of these individual delays:

IDi,j = Ftd(i) + Qd(i)+Hd (14)

This calculation helps in understanding the total delay experienced by a packet as
it travels through the network between the specific pair of nodes, Ni and Nj, where
Ftd(i) =

Ci
DR

and Qd(i) = Ci
DR−Ci

, with DR denoting the data rate and Ci illustrating the
current buffer occupancy of Ni to X, denoted by Di, and written as follows:

Di = ∑(i,j)∈pathi
IDi,j. (15)

pathi illustrates the routing path from Ni to X.
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Stability: To determine the connection security between two adjacent devices in
VANETs, our approach uses a random waypoint model to introduce movement patterns
in VANETs. In this VANET environment, each vehicle maintains a forum that records
the distance measurement history of other neighboring vehicles in the time interval [0, t].
Using this historical information, the vehicle calculates the link stability at the current time,
taking into account the distance traveled to all neighboring vehicles. The stability of the
link between two nodes labeled Ni and Nj can be expressed as si,j, given as follows:

si,j =

√
1

M − 1∑TM
T=1

(
Di,j − mean(T)

)2. (16)

Di,j: Distance between two nodes;
Ni and Nj: Nodes at the current time;
mean(T): The mean of M-previous distances between Ni and Nj, which is defined

as follows:

mean(T) =
∑TM

T=1 Di,j(T)
M

(17)

The parameter si,j in Equation (16) represents the standard deviation, which is an
indicator of the coefficient of variation. It provides a standard measure of how data points
are distributed in terms of probability. When the value of si,j is close to 0, it means that the
connection between two nodes is stable, and we can consider j as a stable neighbor of i. On
the contrary, if Di,j(T) tends to 1, it means that the distance distribution is unstable and the
connection between nodes is unstable.

In the tuning-based forwarder selection approach, each node Ni with high-priority
data packets (Hp) to send makes its forwarder choice based on the priority of these packets
in its transmission queue. We devised a cost function that takes both delay and stability
into account. Let N f i,j represent the cost of selecting downstream Nj as the forwarder from
the perspective of Ni. To give relative importance to these metrics, we assign two weights,
α and β, respectively. The cost function is calculated as follows:

N f i,j = α × Dj + β × si,j (18)

α + β = 1 (19)

When Ni intends to transmit a packet, it seeks to minimize delay. Therefore, it cal-
culates the cost value N f i,j for each Ni ∈ Nli, as specified in Equation (18), by assigning
a higher weight to delay. The node selects the forwarder with the lowest cost as the
optimal choice.

Conversely, if the node holds a low priority (Lp) packet in its buffer, it prioritizes a
stable forwarder to relay the data and reduce routing overhead. In this case, it increases
the weight associated with stability in the cost function in Equation (18) and selects the
CR with the minimum cost as the forwarding node. For instance, we can set α = 0.4 and
β = 0.6 for Lp data. The tuning-based forwarder selection, based on the packet type in the
transmission queue, is presented in Algorithm 1.

Algorithm 1: Best forwarder selection algorithm

Input: List of requesting nodes (Ni), forwarder list Nli, ∀
i ∈ M
Output: Forwarder of Ni
1: Find Nli, for each i ∈ M
2: Calculate delay Dj, for each Nj ∈ Nli
3: Calculate stability si,j, for each Nj ∈ Nli
4: if (Ni has Hp packets to send) then
5: {
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Algorithm 1: Cont.

6: for every j ∈ Nli, compute N f i,j by providing high weight to α and β

7: forwarder (Ni) = min
j∈Nli

(
N f i,j

)
8: }
9: end if
10: if (Ni has Lp packets to send) then
11: {
12: for each j ∈ Nli, compute N f i,j by providing a higher

weight to β than α

13: forwarder (Ni) = min
j∈Nli

(
N f i,j

)
14: }
15: end if

5. Improved firefly optimization (IFO) algorithm.

The improved firefly optimization algorithm operates under the premise that all
fireflies are unisex and attract each other. Attractiveness depends on the brightness and
distance between the fireflies. Brightness is directly proportional to attractiveness, while
distance has an inverse proportionality. Therefore, one firefly moves toward another based
on the strength of attraction between them. To facilitate optimization, there is a specific
entry for the objective function in a sorted list. The primary objective is to maximize this
objective function value. In the context of this algorithm, the objective function value is
computed at each vehicle node, serving as a measure of the quality of a given solution. This
objective function value guides the movement of the fireflies as they attempt to improve
their solutions by gravitating toward brighter, more attractive fireflies, while taking into
account the distance between them. This process continues iteratively, and the algorithm
aims to converge toward a solution that maximizes the objective function value, thereby
optimizing the desired transmission.

α = α0e−β (20)

where α illustrates the brightness, β is referred to as delay, and α0 denotes the initial value.
So, the improved objective function (the movement of the xth node to another node yth) is
defined in Equation (21), as follows:

αt = α +
∣∣Ax − Ay

∣∣ β + µ (21)

where
µ = µ f

(
1 − d/µj

)
(22)

d = density, µ f denotes free flow speed, µj denotes traffic density associated with
completely blocked traffic, and

∣∣Ax − Ay
∣∣ denotes the cartesian distance between the xth

and yth node.
The selection criteria for this objective function are rooted in the dynamic nature of

the problem, where vehicles exhibit varying speeds and travel in diverse directions. To
adapt to these dynamics, the objective function assesses the distance between each vehicle
and a stationary reference point, usually the origin. This distance assessment occurs in two
dimensions, effectively capturing the Cartesian distance between each vehicle’s current
location and the stationary reference point. By considering both horizontal and vertical
separations, the algorithm can gauge how effectively each vehicle is positioned within the
problem space. The central aim is to optimize the objective function value for each vehicle.
Given the ever-changing positions of vehicles in relation to one another, this objective
function provides a dynamic measure of how well each vehicle is situated. The reason for
adopting the IFO algorithm is to solve complex tasks simply, leading to easy adaptability,
robustness, and scalability. Figure 3 presents the improved firefly optimization architecture.
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3.4. DRL-Based Emergency Message Dissemination

After path selection, the destination area is selected to disseminate the emergency
message using the improved twin delay deep deterministic policy gradient algorithm
(IT3DPG) based on the direction, number of vehicles per lane, number of vehicles crossings,
and packet transmission. In these situations, the IT3DPG algorithm tackles the issues of
slow convergence and poor training efficiency, offering significant benefits in continuous
control problems.

3.4.1. Delay Deep Deterministic Policy Gradient Algorithm

In this section, we present the adaptation of the delay deep deterministic policy gradi-
ent algorithm for path selection in VANETs to facilitate the efficient dissemination of Ems.
Our two-stage system uses twin-actor networks for policy learning to improve decision
accuracy. The agent first interacts with a VANET simulation to acquire the optimal route
selection technique and train twin-actor and critic networks offline and online. Subse-
quently, during the online phase, these networks are adapted, providing a warm startup
that improves operations, including EM dissemination, aiming to enhance communication
safety and effectiveness in vehicular networks.

This process begins with pre-trained message actor and critic models that have learned
from historical data encompassing past emergency message transmissions. The historical
data serve as repositories, containing sender vehicle information, message type, urgency,
and subsequent vehicle states. When a vehicle node sends an emergency message, message
actor networks generate and transmit a message action, triggering state changes and
potential responses from other vehicles. Transmitted messages are recorded as transitions
during the experience replay memory. During the EM process within the network, the
message actor networks operate in a closed-loop manner. They start by receiving the current
state (Cs) from the vehicle’s communication system and then determine the appropriate
action (A) to take. This action is subsequently sent out via the communication network,
leading to a change in the system’s state (Ss) and the reception of a reward (R) associated
with the action taken. Each message transition is recorded and added to our experience
replay memory (E2). To enhance the reliability of message delivery, we periodically extract
a random batch of these message transitions (consisting of the state, action, reward, and
subsequent state) from our experience replay memory. These subsequent states (Ss) are
provided as inputs to target message actor networks, which predict the best possible actions
(PA) based on these states. Furthermore, the predicted target actions and corresponding
states (CRS) are forwarded to target message critic networks to estimate their quality and
evaluate how likely they are to effectively reach the intended recipients.

This evaluation produces the ultimate goal value, FTV , of each message transition,
which denotes the critic network’s minimal projected future reward and past reward.
The message critic networks construct current Q-values using the starting state (IS) and
action from the sampled batch of data i. The FTV and current Q-values are utilized to
calculate a loss and update the message critic networks. We create two sets of actor
networks: the primary actor networks, denoted as AN1, and their corresponding target
actor networks, denoted as ANT1, along with a second pair of primary actor networks, AN2,
and their corresponding target actor networks, ANT2. These networks are equipped with
the following distinct sets of parameters: ϕAN1 and ϕAN2 for the primary actor networks
and ϕANT1 and ϕANT2 for the target actor networks. To initialize the target actor networks,
we set the parameters of ϕANT1 equal to ϕAN1 and ϕANT2 equal to ϕAN2

. This initialization
process helps ensure a smooth and stable learning process to optimize the dissemination of
emergency messages within VANETs, allowing the target actor networks to progressively
adapt to the evolving communication environment.(

ϕANT1 → ϕAN1

)
and (ϕANT2 → ϕAN2

) (23)
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We built two critic networks and initialized them with parameters ϕCN1 and ϕCN2 .
The corresponding target networks are defined as ϕCTN1 and ϕCTN2 . We initialize the target
network as follows: (

ϕCTN1 → ϕCN1

)
and

(
ϕCTN2 → ϕCN2

)
(24)

Notice the initial state, IS, and select action AS from the actor network with noise
added to the action.

ASi = clip
(
µANi (IS)+ ∈, ASmin, ASmax

)
, i ϵ {1, 2} (25)

The parametrized deterministic policy in this case is denoted as µϕANi
, and the upper

and lower boundaries of action are denoted as ASmin and ASmax, respectively. We select a
course of action to maximize the Q function as follows:

AS = arg max
ASi

QϕCNj
(IS, ASi), i, j ϵ {1, 2}i ϵ {1, 2} j ϵ{1, 2} (26)

The state, S, and the target action, TA, are given as input to the target Q-network to
estimate the target Q-value, QϕCTN2

(S, TA). We select the minimum of the two Q-values to
calculate the target value, TV, given as follows:

TV = α min QϕCTNj
(S, TA), j ∈ {1, 2} (27)

The proposed work adopts the intelligent transportation system (ITS) with two specific
systems, namely, the traffic management system (TMS) and the intelligent traffic light (ITL)
system. However, smart transportation is an advanced system that offers new services
related to different types of transportation and traffic management, allowing users to
better understand and use transportation better, in a more integrated and smarter way.
Then, emergency messages can be classified into four categories, as follows: road event
notifications (i.e., accidents, abnormal vehicles), ambulance alerts, nearby pharmacies, and
public works using a light gradient boosting machine (LGBM) algorithm via fog nodes.

3.4.2. Light Gradient Boosting Machine (LGBM) Algorithm

A light gradient boosting machine, which is an ensemble algorithm rooted in decision
trees, leverages a forward distribution approach. In each iterative step, it fits the message
data by considering the negative gradient, essentially training a decision tree. The initial
step involves preparing a training dataset, denoted as TD = {(xi, yi)}N

i=1, where i ranges
from 1 to N, signifying N message samples. Each xi represents a multi-dimensional input
vector of dimension M, i.e., xi ∈ RM×1, while yi ∈ R corresponds to a single numerical
target value. Specifically, M is computed as M = ntw × nsm + nrt, where ntw represents the
time window size, nsm denotes the number of selected message features, and nrt reflects
the runtime nodes. yi (i = 1, 2, 3, . . . , N) is a one-dimensional target value. Within this
ensemble of decision trees, the predictions from all the individual trees are combined to
effectively categorize and process the incoming emergency messages:

ŷi = ∑k
k=1 tk(xi), tk ∈ T . (28)

Here, k represents the number of trees, T denotes the space that encompasses all
conceivable tree structures, and tk represents a particular tree within this space, complete
with its associated EM scores. tk is derived by minimizing the objective, as follows:

tk = argmin
tk

∑N
i=1 Tl (yi, ŷi

(k)) + Ω(tk). (29)
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where Tl denotes the training loss function and Ω denotes the regularization function,
usually defined by Equation (29).

Ω(tk) = αEM +
1
2

λ ∑EM
j=1 ω2

j . (30)

Here, α denotes the penalty parameter for the number of EMs and ω denotes the
weight of the EM. When EM uses a squared error loss function, its loss is calculated
as follows:

EM
(

y, ŷ(k−1) + tk(x)
)
=
[
y − ŷ(k−1) − tk(x)

]2
= [r − tk(x)]2 (31)

tk is obtained by fitting the residual r.

tk
∼= arg min

tk
∑N

i=1[tk(xi) +
1
2

tk
2xi] + Ω(tk). (32)

Therefore, a new tree is obtained by minimizing this objective function. Furthermore,
the emergency messages of road event notifications and public works are controlled by
ITL, and ambulance alerts and nearby pharmacies are controlled by TMS. Here, the LGBM
model has the advantage of having a fast training speed, which is suitable for handling
large-scale data, and it also has high classification accuracy. In this way, all emergency
messages are quickly disseminated in multiple directions and can manage the traffic in
the VANET.

4. Experimental Results

The experimental examination of the proposed super-clustering-based UMBBFS rout-
ing protocol for the EM dissemination method is shown in this section. The results show
that the suggested technique is quite effective. This sub-section includes the simulation
setup, comparison analysis, and research summary.

4.1. Simulation Setup

This sub-section explains the simulation setup and environment for the super-clustering-
based UMBBFS routing protocol for EM dissemination. This proposed approach ex-
perimented with a simulation environment of 2750 m × 2250 m. Table 1 presents the
system configuration.

Table 1. System specifications.

Hardware specifications
Hard disk 300 GB

RAM 4 GB

Software specifications

Simulation tools OMNET++, SUMO

Processor Intel(R) core™ i5-4590S
CPU@3.00 GHZ

OS Windows 10 Pro

The proposed work was simulated using the Objective Modular Network (OMNET++)
and Simulation of Urban MObility (SUMO) simulation tools, where ++ denotes that the
OMNET environment used C++ for testing. Table 2 presents the simulation configuration.
Figure 4 presents the experimental simulation scenario.
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Table 2. Simulation parameters.

Parameters Values

Version of OMNET++ OMNET++ 4.6

Version of SUMO SUMO 0.19.0

Number of repetitions 4

Number of vehicles 100

Blockchain node 1

Number of ERSU 4

Controller 3

TAS 4

Log collector 1

Vehicle acceleration 3.5 m/s2

Packet interval 2 s

Generated packet number 100

Packet size 512

Number of packets ~5000

Data rate Max 2 kbps

Simulation time 500 s

Transmission power 10 mW

Rate of transmission 18 Mbps

Bandwidth 10 MHz

Simulation area 2750 m × 2250 m

Software between networks TraCIDemoRSU11p in omnetpp.ini
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4.2. Comparative Analysis

The proposed model is assessed by contrasting it with other existing strategies in
terms of throughput, end-to-end delay, coverage, packet delivery ratio, packet received,
and transmission delay.
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4.2.1. Number of Vehicles vs. Throughput

Throughput refers to the capacity of a transportation system to move vehicles through
a given area. The concept of the number of vehicles vs. throughput can be defined using
the following equation:

Q = f (N, C, T, M) (33)

where Q denotes the throughput (measured in message per unit time), N denotes the
number of vehicles in VANETs, C denotes various cluster-related parameters, such as the
cluster size or density, T denotes technology-related parameters, like the Edge-RUS density
and 5G network capacity, and M denotes the message characteristics, such as the message
size and urgency. Figure 5 shows the performance of the network throughput where the
x-axis is assigned with the number of vehicles and the y-axis denotes the throughput
value in kbps. The throughput for fuzzy broadcast is 3.3 kbps, while RSBP-RF achieves a
throughput of 3.4 kbps. In contrast, the proposed method achieves a higher throughput of
3.9 kbps.

Computers 2024, 13, x FOR PEER REVIEW 20 of 26 
 

𝑄 = 𝑓(𝑁, 𝐶, 𝑇, 𝑀) (33)

where Q denotes the throughput (measured in message per unit time), N denotes the num-
ber of vehicles in VANETs, C denotes various cluster-related parameters, such as the clus-
ter size or density, T denotes technology-related parameters, like the Edge-RUS density 
and 5G network capacity, and M denotes the message characteristics, such as the message 
size and urgency. Figure 5 shows the performance of the network throughput where the 
x-axis is assigned with the number of vehicles and the y-axis denotes the throughput value 
in kbps. The throughput for fuzzy broadcast is 3.3 kbps, while RSBP-RF achieves a 
throughput of 3.4 kbps. In contrast, the proposed method achieves a higher throughput of 
3.9 kbps. 

 

Figure 5. Number of vehicles vs. throughput. 

4.2.2. Vehicle Density vs. End-to-End Delay 
The time taken by EMs to travel in a VANET model from the source vehicle to the 

destination vehicle is influenced by the vehicle speeds. At lower speeds, fewer vehicles 
carry data, resulting in higher end-to-end latency, as follows:   𝐷 = 𝐴 × ቀ1 𝑉ௗൗ ቁ + 𝐵 (34)

D denotes the end-to-end delay (ms); 𝑉ௗ represents the vehicle density; 
A and B are constants that depend on the specific network. 
Figure 6 illustrates the performance of the network. In this figure, as vehicle density 

increases, the end-to-end delay tends to decrease, which means that EMs can be transmit-
ted more quickly in denser traffic conditions. The end-to-end delay for multi-lane 
mmWave is 90 milliseconds, whereas RSBP-RF achieves an end-to-end delay of 87 milli-
seconds. In contrast, the proposed method demonstrates a significantly lower end-to-end 
delay, at just 70 milliseconds. 

Figure 5. Number of vehicles vs. throughput.

4.2.2. Vehicle Density vs. End-to-End Delay

The time taken by EMs to travel in a VANET model from the source vehicle to the
destination vehicle is influenced by the vehicle speeds. At lower speeds, fewer vehicles
carry data, resulting in higher end-to-end latency, as follows:

D = A × (1/Vd) + B (34)

D denotes the end-to-end delay (ms);
Vd represents the vehicle density;
A and B are constants that depend on the specific network.
Figure 6 illustrates the performance of the network. In this figure, as vehicle density

increases, the end-to-end delay tends to decrease, which means that EMs can be transmitted
more quickly in denser traffic conditions. The end-to-end delay for multi-lane mmWave is
90 ms, whereas RSBP-RF achieves an end-to-end delay of 87 ms. In contrast, the proposed
method demonstrates a significantly lower end-to-end delay, at just 70 ms.
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4.2.3. Vehicle Density vs. Coverage

Vehicle density and coverage are two important factors in transportation and urban
planning that have a significant impact on the traffic flow, accessibility, and overall efficiency
of transportation systems. Figure 7 shows the correlation between vehicle coverage and
density. Increasing the vehicle density leads to a shorter connection distance (d = λ − 1).
Multi-lane mmWave technology achieves a coverage rate of 59%, RSBP-RF technology
offers a coverage rate of 70%, and our proposed method stands out with an impressive
coverage rate of 90%, showcasing its potential to significantly enhance network coverage
and performance.
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4.2.4. Vehicle Density vs. Packet Delivery Ratio

The packet delivery ratio is a metric used to measure the effectiveness of the data
transmission system in VANET. The packet delivery ratio can be obtained by dividing the
total number of packets arriving at the destination by the total number of packets sent from
the destination.

PDR =
Num o f packets arrived at destination

Total data packets sent f rom source
(35)

Figure 8 illustrates the performance of the packet delivery ratio in the network. The
packet delivery ratio in the fuzzy broadcast is 78%, the packet delivery ratio in RSBP-RF
is 81%, and the proposed method’s packet delivery ratio is 98%. A high packet delivery
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ratio indicates a more reliable network, which is essential for applications and services that
require dependable data transfers.
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4.2.5. Number of Vehicles vs. Packet Received

The packet received refers to the successful reception or delivery of a data packet
within a communication system. When a packet is transmitted from a sender to a receiver,
it goes through various network devices and communication channels. A packet received
event occurs when the recipient successfully receives and processes the incoming packet
without any errors or loss of data.

PR = PS × PDR (36)

PR denotes the packet received rate; PS refers to the number of packets sent from the
source node; PDR indicates the packet delivery ratio in the network.

Figure 9 illustrates the number of vehicles vs. packet received rate. The findings of the
comparison reveal that the suggested work outperforms comparable works. The packet
received rate in RSBP-RF is 1 k, the packet received rate in fuzzy broadcast is 8 k, and the
proposed packet received rate is 12.75 k.
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4.2.6. Vehicles Density vs. Transmission Delay

The concept of “vehicle density vs. transmission delay” can be performed using the
following equation:

TD = PropaD + QD + ProD (37)

Figure 10 illustrates the performance of transmission delay in the network.
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Signal propagation delay (PropaD) denotes the time between the transmitter and
receiver. It depends on the vehicle distance and light speed. Queuing delay (QD) occurs
when packets wait in a queue before transmission. The vehicle density affects network
congestion. A vehicle’s processing delay (ProD) denotes the time it takes to prepare
a packet for transmission. The transmission delay in the fuzzy broadcast is 86 ms, the
transmission delay in RSBP-RF is 80 ms, and our proposed transmission delay is 57 ms.

4.3. Research Summary

This section presents a summary of the findings of the experiments, demonstrating
the improved performance achieved by the proposed framework. Figure 11 illustrates
confidence intervals, the tasks completed as part of the proposed work are listed below:
number of vehicles vs. throughput, vehicle density vs. end-to-end delay, vehicle density vs.
coverage, vehicle density vs. packet delivery ratio, number of vehicles vs. packet received,
and vehicle density vs. transmission delay, all which are described in Figures 5–10. Table 3
shows the numerical analysis of the proposed and existing works, demonstrating the
performance metrics.
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Table 3. Performance analysis.

Comparison Metrics Proposed Fuzzy
Broadcast

Multi-Lane
mmWave RSBP-RF

Throughput (kbps) 3.9 3.3 - 3.4

End-to-end delay 70 - 90 87

Coverage (%) 90 -- 59 70

Packet delivery ratio (%) 98 78 -- 81

Packet received 12.75 k 8 k -- 1 k

Transmission delay (ms) 57 86 -- 80

Confidence Interval

The range of values that can be inferred from the sample statistics and is likely to
include the value of an unknown population parameter is called a confidence interval; this
range can be calculated using the following equation:

x ± z
S√
n

(38)

Sample mean (x) 250, standard deviation (S) 80, sample size (n) 4, and confidence level
95% (confidence interval is 250 ± 78.4 or from 171.6 to 328.4).

5. Conclusions

This research aims to utilize the UMBBFS routing protocol to address key challenges
in VANETs, focusing on reducing the packet loss, transmission delay, and network com-
plexities through optimal routing and the best forwarder selection. Additionally, our
study presents a comprehensive approach to enhance emergency message dissemination in
5G-enabled networks, leveraging advanced communication technologies, efficient fog and
cloud resource management, as well as intelligent clustering and path selection techniques,
with the primary goal of achieving rapid and reliable emergency communication. Our
findings strongly suggest that this approach has significant potential to improve emergency
response systems and enhance overall public safety. The proposed supercluster-based
UMBBFS routing protocol model was verified with the help of the simulation tools OM-
NET++ and SUMO. Additionally, an assessment of the current technique was carried out
by comparing it with existing approaches. The performance of the proposed approach
was addressed using numerical analysis; using this analysis, we demonstrated that our
method is superior to all other techniques currently available (in terms of all of the metrics).
In future work, we plan to improve the robustness of the protocol against a variety of
difficulties, including network segmentation, node failures, and changes in the dynamic
topology. To ensure dependable message distribution under challenging circumstances, we
will investigate fault tolerance, route repair, and adaptive routing strategies.
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