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Abstract: With its decentralized, immutable, and consensus-based validation features, blockchain
technology has grown from early financial applications to a variety of different sectors. This paper
aims to outline various applications of the blockchain, and systematically identify general challenges
and key threats regarding its adoption. The challenges are organized into even broader groups, to
allow a clear overview and identification of interconnected issues. Potential solutions are introduced
into the discussion, addressing their possible ways of mitigating these challenges and their forward-
looking effects in fostering the adoption of blockchain technology. The paper also highlights some
potential directions for future research that may overcome these challenges to unlock further appli-
cations. More generally, the article attempts to describe the potential transformational implications
of blockchain technology, through the manner in which it may contribute to the advancement of a
diversity of industries.

Keywords: blockchain; blockchain applicability; blockchain challenges; smart contracts; security;
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1. Introduction

Blockchain has quickly turned out to be an integral part of a variety of fields; its charac-
teristics include decentralization, immutability, and consensus-based validation processes;
it was originally developed for cryptocurrencies like Bitcoin. Because of these character-
istics, it has rapidly developed further into many fields and has provided widespread
applications, all of which increase transparency, security, and trust without central authori-
ties. Noted to have the ability to transform the existing business models and operations, it
also provides a sound framework for integrity and data security in transactions [1].

Our motivation comes from the considerable number of advantages of and the in-
creasing interest in blockchain technology, beyond the level of mere transactions. Figure 1
highlights the yearly evolution of published blockchain-related articles. Results shown in
the figure are based on findings of article [2]. The authors of this paper gathered articles
related to blockchain technology from IEEE, SPRINGER, ELSEVIER, and ACM publishers,
from 2016 to 2022, outlining the considerable interest increasing in this technology over
the years.

From this clear upward evolution of engagement in researching blockchain technology
over time, we can conclude as a result of new approaches or solutions to existing issues
that there is an increasing applicability in diverse domains.

The key contributions of this article are the following:

1. It emphasizes the different applications that have leveraged blockchain technology
across diverse sectors and society in general, showing the main benefits and challenges;

2. It offers an identification of the main challenges, and key threats to blockchain tech-
nology adoption, and a broad categorization of the challenges, to deliver a clearer
overview and better understanding;
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3. It suggests possible solutions and future research directions for areas that need fur-
ther exploration.
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on the findings related to article [2].

In addition, compared to our survey, similar reviews focus on specific areas of ap-
plicability [3–5], solutions to challenges [6,7], security and privacy challenges [8,9], fewer
areas of applicability, challenges, and solutions [10,11], similar areas of applicability but
fewer technical details, challenges, and solutions [12–14], and more areas of applicability
but fewer technical details, challenges, and solutions [15–17]. The review [18] employs
a similar approach to our survey, in terms of the structuration of applicability domains,
challenges, and possible solutions. However, our paper presents a larger number of appli-
cability domains and highlights for each one a practical application that is functional in
the real world at the time of writing this paper. In addition, the challenges and key threats
are structured in broader challenge categories, which could offer a better visualization of
interconnected issues.

The search for relevant studies in the literature was conducted in reputable databases:
MDPI, IEEE Xplore, and Elsevier. Articles included in this review had to pass the exclusion
and inclusion criteria outlined in Table 1.

Table 1. Exclusion and inclusion criteria for literature articles.

Exclusion Criteria Inclusion Criteria

Older than five years
Written in a different language than English Addresses the applicability of blockchain technology

Outlines the challenges that blockchain poses
Proposes solutions for the blockchain issues

For the initial search of the literature, the following keys were used: blockchain,
security issues, consensus, smart contract, interoperability, data storage, identity, and
network. Figure 2 presents a detailed, step-by-step depiction of the literature-selection
process. It highlights each stage, from the initial identification of articles to the final
inclusion as initial resources. The selection of the articles during the initial search was
conducted based on the title and abstract, which resulted in 123 selected articles. Exclusion
criteria and duplicate removal led to 85 papers left. After the full-text review of these articles,
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50 articles passed to inclusion criteria screening. In the end, 29 articles were selected as base
resources, with “backward snowballing” and “forward snowballing” approaches applied
to gather additional relevant sources.
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The rest of the article is structured in such a way that the wide applicability of
blockchain technology across multiple sectors is discussed in Section 2. This is then followed
by an elaboration of challenges, key threats, and solutions in Section 3. In Sections 4 and 5,
an outlook of the field of blockchain technology is given comprehensively, through the
synthesis of the findings and some proposed future research directions.

2. Applicability

This section presents examples of areas for major characteristics of blockchain tech-
nology from the literature review are relevant, highlighting the discovered applicability,
benefits, and one sector-related practical application. For clarity, the summary of the
findings is presented in Table 2, arranged according to the number of references.



Computers 2024, 13, 223 4 of 30

Table 2. Blockchain applicability.

Sector Applicability Benefits Articles

IoT Environments

Decentralized,
privacy-preserving, and fair
data-management systems
Governance mechanisms

Blockchain-based
authentication protocols

Enhanced security and privacy
Efficient data management

Improved transparency
and governance

Streamlined operations and
infrastructure monitoring

[19–33]

Healthcare
Encrypted data sharing

Decentralized systems for health
data management

Improved data privacy and security
Scalability and performance

Enhanced interoperability of EHR
[23,27,29,32,34–37]

Cybersecurity and Data
Management

ACE-BC framework
Blockchain-based special key

security model (BSKM)
Integration with cloud computing

Blockchain for IoT big data
DAuth authentication system

Enhanced data integrity
and security

Increased performance metrics
Cost reduction and efficiency

[12,24,31,32,38,39]

Supply Chain Wine supply chain management

Improved efficiency
Increased transparency

Reduced operational costs
Monitoring of greenhouse

gas emissions

[21,27,29,32]

Smart Transportation
Bus transportation framework

Blockchain with 5G for V2X
communications

Enhanced management, efficiency,
security, and data integrity
Decentralized data storage

[22,29,30]

Education Education data management
Decentralization

Transparency and traceability
Security and reliability

[40]

Digital and Financial
Management

Digital currencies and
cross-border transactions

NFT marketplaces

Reduced transaction times
and costs

Increased security, reliability,
and traceability

[32]

Internet of Drones Robust authentication processes
Decentralized data management

Enhanced privacy and security
Secure data collection, transaction

logging, and communication
[33]

Maritime Shipping Blockchain-based JIT and green
operation system

Improved efficiency and
transparency in

maritime operations
Significant reduction in emissions

[41]

Distributed Agile Software
Development AgilePlus blockchain framework

Improved transparency
and traceability

Increased security
Streamlined development processes

[42]

2.1. IoT Environments

IoT environments are emerging as a new area of technology development where the
role of blockchain technology is very important in empowering the inherent decentraliza-
tion and immutability features for better security and trust.

With time, technology such as blockchain in the IoT environment will greatly enhance
the system’s security, privacy, and data among the users. A model described in [19] has
the potential to offer a decentralized and privacy-preserving fair transaction data system
while emphasizing authentic data so that security issues do not crop up. The model
leverages a consortium blockchain, facilitating end-to-end communication between IoT
devices and reducing the risk of single-point failures. A consortium blockchain is a type
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of blockchain operated by a group of entities, combining elements of public and private
blockchains [43,44].

Figure 3 highlights the components of the model. Local differential privacy is a
technique where the participants perturb their data with random noise before the ac-
tual sharing [45,46]. An adaptive local differential privacy algorithm called MDLDP is
employed in the model to perturb the data before they are recorded to the blockchain,
enhancing privacy by performing multiple perturbations on the dataset and selecting the
result that offers the best privacy protection. Additionally, the participants have to pay a
deposit, and are penalized in cases of dishonest behavior and rewarded if they act fairly.
The combination of verifiable encrypted signatures and threshold signature techniques
empowers the arbitration committee to effectively manage disputes in the data-transaction
process. Verifiable encrypted signatures allow a signer to encrypt their digital signature
with a third party’s public key, ensuring that only the third party can decrypt it to enforce
the transaction if needed [47,48], while the threshold signature technique allows a sub-
group of a group of participants to jointly produce a digital signature [49,50]. Despite the
visible benefits of the model in terms of privacy and dispute resolution, it depends on the
honesty and maximum availability of committee members to avoid unfair behavior among
the participants and transaction delays. Furthermore, cryptographic operations could be
resource-intensive.
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In [20], the governance mechanism used the technology of blockchain and smart
contracts to manage the logistics of IoT in a way that is flexible and reliable, thus helping in
linking the planning, execution, and monitoring of infrastructure effectively. The approach
uses a blockchain-enabled six-layer IoT architecture, as presented in Figure 4.

The Blockchain Layer serves as the intermediary between the Network and Mid-
dleware Layers, ensuring immutability, traceability, and automation of the execution of
rules. The article emphasizes the usage of permissioned blockchain and cryptographic
mechanisms, such as k-anonymity, ring signatures, secure multi-party computation, homo-
morphic encryption, Zero-Knowledge Proof, and data obfuscation, which can enhance the
level of privacy and anonymity [51]. The model leverages a variable geometry approach
that allows flexible participation and varying levels of commitment among stakeholders,
facilitating proper cooperation [52]. For the testing of the model, the authors implemented
a two-node Ethereum blockchain and the voting mechanism written in Solidity, along with
the usage of Raspberry Pi to simulate IoT devices, in a Smart Logistic scenario. However,
while the test demonstrates the feasibility of the model, it is insufficient in demonstrating
practical effectiveness and efficiency.
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In [25], a new authentication protocol based on a blockchain for wireless sensor net-
works uses Proof of Authentication (PoAh) to cover the whole process from different kinds
of security threats, including the process requirements for energy consumption and delay.
The Proof of Authentication consensus mechanism is designed for lightweight blockchains
in resource-constrained environments, by utilizing trusted nodes to authenticate transac-
tions through asymmetric cryptography [53,54]. This research highlights the benefits of
using private blockchain structures for an application that has high-security needs besides
needing to manage the network efficiently. The private blockchain is a type of blockchain
controlled by a single entity, where access is restricted to authorized participants [26,55].

According to the authors, four primary actors are engaged in the model: Sensor Nodes,
Cluster Nodes, Base Station, and User. Figure 5 highlights the methods of communication
of the model: SN–CN, CN–BS/BCN, and U–BS/BCN. The communication is bidirectional
and the data are stored at the BS level to address the storage limitations of SNs and CNs.
While there are many benefits in terms of security and privacy, the result of the analysis
showcases that the proposed model increases latency and energy consumption compared
to the traditional solution. Additionally, the solution is compared against two other works,
which may not provide a comprehensive view, and the reliance on the base station for
blockchain storage could introduce a single point of failure.
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The study of the state-of-the-art blockchain solutions meant for strengthening the
security and privacy of IoT is encapsulated in a systematic review in [26], where several
blockchain-based solutions addressing security and privacy in IoT are highlighted, most
studies recommend private configurations of blockchains because they have enhanced con-
trol and security features. However, there are still challenges such as integration complexity,
energy consumption, and security concerns. Finally, ref. [28] placed emphasis on deploying
the blockchain as a safe and resilient solution for decentralized data management in IoT,
with the focus on reducing security challenges by enabling transparency and governance
capabilities in IoT networks. Furthermore, it also critiqued potential vulnerabilities, such
as those seen in the DAO attack [56], and addressed challenges related to scalability and
energy consumption. Similarly, the potential for integrating blockchain technology within
the IoT ecosystem is underscored in [21–24,27,29–33].

These together not only prove the crucial role of blockchain technology in advancing
IoT applications but also assure a security framework, preserve privacy, and maintain an
efficient way to manage the system. Nevertheless, scalability, energy consumption, and
integration complexity are still open concerns for this domain, leaving open doors for
further improvements.

Practical application: IOTA is a distributed ledger technology that uses a unique
architecture called Tangle to facilitate secure, feeless transactions and data transfers, making
it particularly suitable for applications like the Internet of Things [57].

2.2. Healthcare

Healthcare is one of the most challenging environments due to such things as the
sensitive protection of patients’ data and interoperability between a large number of
healthcare systems. Blockchain technology is offering very promising security solutions,
and the decentralized nature can improve data privacy and operational efficiency.

Examples of such solutions, based on blockchain, include Redact-Chain for Health [34].
It introduces the possibility of sharing encrypted data with features like chameleon hash
and distributed trapdoor management, focusing on the protection of patient privacy and
secured access to the data. The chameleon hash function is employed to enable fine-grained
data editing on the blockchain, allowing transactions to be modified without altering the
overall hash value of the blockchain [58,59]. Shamir’s Secret Sharing scheme is leveraged
for trapdoor management, which is a cryptographic method that divides a secret into
multiple parts among the participants [50,60]. Along with the chameleon hash function,
a symmetric encryption-based authentication algorithm is leveraged to protect against
cyberattacks and to ensure the authenticity of user identities.

Table 3 highlights the participants and corresponding responsibilities in the pro-
posed model. Additionally, the solution employed two main components: the redactable
blockchain and the InterPlanetary File System (IPFS). The redactable blockchain is used to
store sections of patients’ EHRs, while the InterPlanetary File System is employed to store
comprehensive EHRs. The model proposed by the authors has the potential to enhance the
EHR systems in terms of decentralized data management. However, due to the need for
decentralized coordination and trapdoor management, the system could bring additional
complexity and security issues.

On the other hand, IoT and blockchain [23] have also been used as yet another way
to optimize the security of, and integration with, EHRs using the Proof of Trust (PoT)
consensus mechanism, which enhances blockchain security and efficiency by selecting
validators based on trustworthiness, based on historical interactions, rather than compu-
tational power or wealth [61]. Additionally, the InterPlanetary File System (IPFS) is used
to optimize the effective storage of data. The proposed model includes the components
described in Figure 6.
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Table 3. Participants of the model described in the article [34].

Participant Responsibility

Administrator Initializes the redactable blockchain network and establishes the key-generation center and
verification institution

Verification Institution Registers and verifies the identities of medical institutions and patients

Key Generation Center Produces and distributes trapdoors and authentication keys to medical institutions

Medical Institutions Provides medical services and manages information within the RCH network

Patients Participates in the data-sharing scheme and collaborates with medical institutions to modify
their EHRs
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The Elliptic Curve Cryptography method is emphasized in the article, which offers
enhanced security with smaller sizes compared to traditional algorithms like RSA, making
it suitable for resource-constrained environments [62,63]. Despite the potential benefits of
the proposed solution, as the authors underscore, the following challenges still present
an impediment: resource constraints, bandwidth constraints, connectivity constraints,
memory constraints, and GDPR compliance.

Another exploration includes a decentralized system [35] that assures scalable and
secured data transactions with a guarantee of privacy, integrity, and availability of data
through sophisticated access control mechanisms. This framework leverages the Proof of
Work (PoW) consensus mechanism, with a feature that automatically adjusts the number
of nodes based on the new participants in the network, thus enhancing the scalability.
However, energy consumption might pose an issue, as the Proof of Work mechanism
requires miners to solve computationally intensive puzzles to validate a transaction [64,65].
Figure 7 presents the components of the proposed model: healthcare providers and consul-
tants, registration control process, data access control, and digital human healthcare. Data
integrity is maintained using SHA-256 hashing, which is a function that produces a 256-bit
fixed-length hash value from input data [66,67]. At the same time, privacy is enhanced
by RSA encryption, which is an asymmetric cryptographic algorithm that uses a pair of
keys: a public key for encryption and a private key for decryption [68,69]. Regardless of
privacy and security benefits, the proposed model might suffer from energy consumption
and latency, a faster and low-resource-consumption consensus mechanism such as Proof of
Stake or Proof of Trust represents a starting point for further improvements.
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Furthermore, the systematic review [36] suggested that since blockchain technology
can advance the interoperability of EHR, it will be one of the contributing factors in securing
big healthcare data sharing. It also highlights the benefits of federated learning, such as
data privacy preservation, collaborative model training, decentralized data management,
improved scalability and efficiency, and compliance with data regulations [37,70].

Articles [27,29,32] are other studies that mention the healthcare applicability of
blockchain technology.

These applications highlight blockchain’s potential to enhance system security,
ensure data privacy, and improve interoperability in healthcare. However, integrat-
ing blockchain technology may introduce additional complexity, and increase energy
consumption and latency.

Practical application: Solve.Care is a platform that improves the coordination, trans-
parency, and efficiency of healthcare services, by utilizing a decentralized system to securely
manage and share health information [71].

2.3. Cybersecurity and Data Management

In the area of cyber security and data management, problems like data breaches,
unauthorized access, and non-transparency in recording transactions are very common.
Blockchain technology could help by providing immutable, transparent, and secure data-
storage solutions, ensuring data integrity and enhancing trust.

The ACE-BC [24] framework exploits the blockchain to enhance data security and pri-
vacy. It is an approach to providing enforcement mechanisms in information sharing using
attribute-based encryption, which ensures that only users with appropriate attributes can
decrypt and access specific data, thus providing secure and flexible access control [72,73].
This resulted in increases in performance metrics, like throughput and data confidentiality,
and mitigated the issue of the single points of failure posing risks to centralized systems.

The components and corresponding responsibilities of the proposed model are high-
lighted in Table 4. The experimental results highlighted by the authors illustrated that the
ACE-BC framework significantly enhanced data confidentiality, throughput, efficiency, and
reduced latency compared to other models. However, the complexity of implementing and
managing attribute-based encryption, and the resource-intensive nature of the system may
limit its practical adoption.

The merging of the blockchain with cloud computing opens doors for robust solutions
that better the data security system, hence reducing the cost of breaches and better control
of user access [12]. However, scalability issues and energy-consumption concerns have
to be taken into consideration, thus exploring different types of solutions that fit the
system requirements.
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Table 4. Components of the model highlighted in the article [24].

Component Responsibility

Edge Gateways The interface between IoT devices and the blockchain network

5G Base Station Provides fast connection between edge gateways and cloud

Certificate Authority Provides permission to edge gateways to join the blockchain

Blockchain Network Consortium blockchain, used for decentralized storage and access control

The Blockchain-based Special Key Security Model (BSKM) [38] is proposed for ad-
dressing challenges such as scalability and transaction speed in large-scale data. The model
provides efficient and dynamic access control using special keys. These special keys are
a collection of policies paired with a data object, employed for the protection of the data.
Each owner of the data object can define or modify their security policies. Additionally,
a path-compression algorithm is leveraged, which is used to shorten data access paths in
a blockchain by updating node references to point directly to the current data location,
thereby enhancing retrieval speed and reducing access costs [74].

Figure 8 outlines the components of the proposed model. The tests conducted on
the model reveal enhanced performance and efficiency. However, although the tests were
conducted on a large dataset, the scalability of the model, considering that the network size
and transaction volume increase over time, has not been thoroughly explored, similar to
the computational overhead that might be introduced by the path-compression algorithm.
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On the other hand, the use of blockchain in IoT big data management [31] involves
highly sophisticated security measures, through fragmentation and encryption techniques,
while at the same time allowing for a blockchain-based access control mechanism. Frag-
mentation is the technique of dividing information into smaller, separate pieces called
fragments, making it difficult for unauthorized users to gain access to complete informa-
tion [75,76]. In the proposed framework, fragmentation is employed based on sensitivity
level, which is determined by the data owner, and the Mapping Array necessary for recon-
struction is stored in the blockchain, at the metadata level. For highly sensitive data, the
AES encryption standard [77] is used along with fragmentation.

Table 5 highlights the main entities and corresponding responsibilities of the proposed
framework. The experiments conducted by the authors demonstrate that the proposed
model could enhance big data security with acceptable performance overhead. However,
the framework might not be well-suited for applications requiring real-time processing due
to the added latency, and dependency on the data owner’s sensitivity assessment could lead
to unnecessary overhead if the sensitivity level is not determined correctly. Additionally,
although the framework scales well with increasing data size in the tested range, it is not
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clear how it performs with extremely large data volumes. Blockchain’s relevance in this
domain is also noted in [32].

Table 5. Entities of the model outlined in the article [31].

Entity Responsibility

Data Owner Owns and controls access to the data

User Requests access to data with granted authorization

Blockchain-based Security Manager Manages blockchain operations and ensures event authenticity

Big Data Distributed Storage Responsible for storing fragmented and encrypted data

Blockchain Stores metadata and permission lists to ensure tamper resistance and audibility

In [39], the authors present DAuth, a decentralized web authentication system that
leverages the Ethereum blockchain as a secure alternative to OAuth 2.0. The model employs
smart contract functionality and user signatures to achieve the authentication process.
Figure 9 represents the architecture of the proposed model.
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Despite the benefits of such an approach as the DAuth model, it might face adoption
challenges and additional costs, due to poor user experience—especially for users that are
not familiar with the blockchain context—and gas fees, respectively.

These applications of blockchain technology in this sector have massive improvements
in how the data are managed and safeguarded, guaranteeing high integrity and reliability
at large in cybersecurity and data management. However, scalability issues and overhead
for large data volumes, along with integration and management complexity, are concerns
that have to be taken into consideration.

Practical application: Acronis offers complete cybersecurity solutions, utilizing ad-
vanced technologies such as blockchain, to ensure the authenticity and integrity of stored
data [78].

2.4. Supply Chain

Transparency, inefficiency in tracking the goods, and susceptibility to fraud and
counterfeits are the main challenges of the supply chain. Blockchain technology, through
the use of a tamper-proof decentralized ledger, can bring in an improvement that will
strengthen the process of tracking, hence making it more traceable and accountable across
the whole supply chain.

The inclusion of blockchain in IoT and AI of the wine supply chain [21] brings several
improvements such as enhanced efficiency, transparency, and a decrease in operational
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costs. In addition, it can monitor greenhouse gas emissions, which is beneficial with respect
to environmental sustainability efforts. Accordingly, deploying such technologies provides
a fair competitive environment and sets a transparent marketplace for any consumer to
verify confidently whether a product is the original one or its quality. The components of
the model are highlighted in Figure 10.
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The authors emphasize the usage of consortium blockchain, along with smart contracts,
which are self-executing contracts with the terms of the agreement directly written into
the code, executed automatically without the need for intermediaries [79,80]. In spite of
the theoretical benefits outlined in the study, it lacks empirical tests and in-depth technical
details of the proposed framework.

Articles [27,29,32] also underscored the integrative potential of blockchain technology
in this sphere.

These comprehensive methods point towards the potential for blockchain technology
to truly revolutionize supply chain management, thereby improving transparency, effi-
ciency, and trust among the shareholders. However, in-depth analysis of technical details
and empirical tests are a must to balance the disadvantages and benefits of such integration.

Practical application: IBM Food Trust is a blockchain-based supply chain solution that
enhances traceability in the food sector. It allows all parties involved to securely access and
share data regarding the origin, processing, and distribution of food products [81].

2.5. Smart Transportation

The smart transportation sector is increasingly facing challenges with its data security,
privacy, and operations conducted across complexly growing networks. This is where
blockchain technology provides assistance, in the form of secure and decentralized vehicle-
to-everything (V2X) communication solutions that boost the integrity, transparency, and
traceability of the data-flow process while guaranteeing more reliable transactions and
coordination among various stakeholders within the transportation ecosystem.

The use of the blockchain in the bus transportation framework [22] incredibly im-
proves management, efficiency, and security. In so doing, the system reduces the risks
associated with fake data presentations and guarantees correct records, hence even enhanc-
ing dependability to improve systems in urban transportation. The architecture has been
worked on with Ethereum’s main net blockchain and the Aurora test network, for experi-
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mental comparisons, highlighting that storing heavy data, like photos and documents, on
decentralized storage items like IPFS [82], has many benefits. The architecture emphasized
by the authors is highlighted in Table 6.

Table 6. The architectural components of the model outlined in the article [22].

Entity Responsibility

HTTP Browser Layer Users interact with the system via a web browser

User Interface Layer The intuitive web interface for users

Business Logic Layer Handles business logic through smart contracts

Data Access Layer Ensures decentralized and secure data storage through IPFS

The authors tested the proposed framework using techniques such as the stochastic
algorithm to analyze time complexity and optimization solutions [83,84], and DEMATEL
for the identification and evaluation of critical factors [85]. However, a more comprehensive
exploration of critical factors and a broader range of performance metrics would strengthen
the findings and applicability.

Additionally, ref. [30] argues that 5G and future advanced communication systems are
key enabling technologies in supporting the further move forward of vehicle-to-everything
communications. It firmly supports the concept of Intelligent Transportation Systems
(ITSs) employing enhanced road safety, efficiency of traffic, and user experiences, based on
storage that can be relied upon. Blockchain systems will therefore perfectly contribute to
technologies on advanced traffic management and autonomous driving, ensuring, amongst
other aspects, the secure management of huge volumes of data that will be involved
in those areas. The authors emphasized the generic architecture detailed in [86] and a
permissioned blockchain to control access to information [87]. The authors outline the
benefits of symmetric-key cryptography as a more resource-efficient alternative for ensuring
data confidentiality [88], while for the authentication schema, mentioned techniques such
as RSA-based public key cryptosystem [89], SHA [90], AES [91], and ECC [92] are better
options. However, the article lacks in-depth technical explorations, such as hardware
limitations, and network-integration complexities. Blockchain technology advantages in
this area are also referenced in [29].

All these applications show how blockchain technology could solve important prob-
lems pertinent to the smart transportation domain, and increase system reliability, security,
and efficiency while paving the way for next-generation transportation systems. Despite
these advantages, comprehensive exploration of critical factors and in-depth technical
analysis are encouraged to employ the best techniques and solutions.

Practical application: Mobi is a consortium of companies that leverages blockchain
technology to develop a new economy of movement, focusing on smart transportation
solutions [93].

2.6. Education

The challenges faced by the education sector include the maintenance of integrity,
secure storage of sensitive students’ data, and ease in transferring credits between institu-
tions. These problems could be assisted with the help of blockchain technology, which has
the potential to deliver a secure, immutable, and transparent solution for records’ issuance
and storage.

The study [40] highlights the application of blockchain in this area and identifies
inherent advantages such as decentralization, transparency, traceability, security, and re-
liability that come with the usage of blockchain technology. These qualities, therefore,
portend better management in the realm of educational records, verification of creden-
tials, and security of the data environment within academic institutions. Different types
of blockchains are highlighted for their usability in this domain, such as Hyperledger
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Fabric [94], Ethereum [95], and Stellar [96], with corresponding limitations. Ring signa-
tures, secure multi-party computation, commitment schemes, zkSNARK, homomorphic
encryption, and zero-knowledge proofs are addressed for enhanced privacy [97].

The article concludes that the main focus regarding the challenges faced by the integra-
tion of blockchain technology in this domain is the technological one, as shown in Figure 11,
which might represent a gap for broader adoption in real use cases, as the environmental
and organizational challenges are also of high importance. However, the study could
benefit from a more balanced analysis by including detailed case studies and more in-depth
technical information.
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Practical application: Blockcerts is a blockchain-based open-source project that allows
participants to receive and share their diplomas and other documents in a secure and
verifiable manner, ensuring the authenticity and integrity of their achievements [98].

2.7. Digital and Financial Management

In this century of digital and financial management, there are tremendous grave chal-
lenges of fraud, inefficiency in transaction processes, and data integrity and transparency
failures. Blockchain technology provides a decentralized ledger that might help improve
transparency and reduce fraud through its immutable record-keeping.

As stated in [32], blockchain revolutionizes this area in various ways that enable the
use of digital currencies and transformation to work efficiently even across national borders.
These are adaptations that aim to reduce operational time and costs. The authors present a
generic blockchain architecture, composed of the components presented in Table 7.

Table 7. Components of the generic blockchain architecture presented in [32].

Component Functionality

Nodes/Users Transaction requesters and receivers. They maintain a copy of the entire blockchain ledger [99]

Miners Nodes that have the ability to add new blocks to the blockchain. Responsible for validating
and verifying transactions [100]

Blocks A fundamental unit of the blockchain, representing transaction details [101]

Verification Mechanism Involves two steps verification, using a smart contract [102] and a consensus mechanism [103]

In addition to financial management, other applications are highlighted related to
digital and financial management, such as NFT marketplaces. An NFT is a unique digital
asset stored on a blockchain that represents ownership or proof of authenticity of a specific
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item [104]. Notwithstanding different operational and interoperability issues outlined, the
article lacks in-depth specific case studies and results that could substantiate the claims.

Practical application: Ripple is the company behind the XRP Ledger, a blockchain
solution used to facilitate fast and low-cost international payments. It ensures transparency,
security, and efficiency in financial transactions, providing a reliable solution for cross-
border transfers [105].

2.8. Internet of Drones

Security challenges faced in the field of the Internet of Drones (IoD) have been well
addressed by blockchain technology, as described in ref. [33]. The very first challenge laid
down is the openness of IoD, which is quite prone to risks like interception, manipulation,
or unauthorized access to data. Blockchain enhances communication between drones and
ground stations, allowing for strong procedures of authentication and ensuring that the
collected data and transactions are effectively logged. The main types of IoD blockchain-
powered schemes outlined by the authors are shown in Figure 12. They are as follows:
Blockchain-Powered Access Control or Authentication [106,107], Blockchain-Powered
Architecture/Framework [108–111], Blockchain-Powered Data Management [112–115],
and Blockchain-Powered Autonomous IoD [116–118]. The article mentions Elliptic Curve
Cryptography and Attribute-Based Encryption as examples of encryption algorithms.
Despite the benefits, challenges, and future directions outlined by the authors, a more
in-depth technical analysis of the solutions and empirical tests could strengthen the results.
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Practical application: SkyGrid is a platform that uses blockchain technology to manage
drone traffic and ensure safe and efficient airspace. By integrating advanced technologies,
SkyGrid enhances the transparency, security, and coordination of drone operations [119].
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2.9. Maritime Shipping

As for maritime shipping, this sector faces huge challenges, among which are ineffi-
ciency in logistics, lack of clear visibility for cargo tracking, difficulty in compliance, and
documentation management. Blockchain technology offers an immutable ledger, thus
enhancing transparency and traceability in cargo movements.

Study [41] exemplifies a system using blockchain technology to incentivize Just in
Time (JIT) and green operations within maritime shipping. This system carried out in the
Solana blockchain [120] at the Proof of Concept (PoC) level serves to increase efficiency
in maritime operations, such as traffic-flow management, and effective utilization of port
resources, thus reducing their level of emission to a great extent.

The proposed framework is composed of three main components, as outlined in
Table 8. A two-token model is leveraged to incentivize the participants: JRT for operation
efficiency and GRT for decarbonization reduction. Notwithstanding the conducted tests
demonstrating the feasibility of the framework, as the authors highlight, several challenges
need further exploration, such as interoperability, security, regulatory compliance, and
token lifecycle.

Table 8. Components of the system proposed in [41].

Component Functionality

Data source This includes various inputs necessary for the system’s functioning, such as vessel operation data

On-chain Responsible for storing critical data in a decentralized manner, and operation execution through smart contracts

Off-chain Handles data that are either too large or sensitive to be stored directly on the blockchain

Practical application: CargoSmart is a blockchain-based solution for maritime trans-
portation, enhancing coordination and optimizing port operations to improve cargo man-
agement and reduce waiting times [121].

2.10. Distributed Agile Software Development

The challenges in the Distributed Agile Software Development (DASD) field are
those of coordinating the teams between locations, showing transparency in the process of
development, and providing security to the code repositories. Blockchain technology has
the potential to facilitate that with a decentralized platform and to ensure clear visibility
from the beginning to the end of the development lifecycle.

In ref. [42], the authors proposed AgilePlus: a blockchain-based framework specifically
designed to enhance transparency, trust, traceability, and security in DASD. The proposed
framework uses smart contracts on a private Ethereum blockchain to support and enhance
many key processes within the agile development life cycle.

The architecture of the framework is comprised of seven layers, as outlined in Table 9.
The InterPlanetary File System [122] is leveraged as an off-chain solution. Conducted tests
demonstrate the feasibility of the framework. Energy consumption and difficulty in data
modification once it is stored in the blockchain are highlighted limitations. Empirical tests
could provide additional validation of the obtained results.

Practical application: Gitopia is a code collaboration platform powered by a decentral-
ized network. It aims to enhance the open-source software-development process through
effective collaboration, incentivization, and transparency [123].
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Table 9. Layers of the model proposed in [42].

Layer Responsibility

Interface Layer Includes user-facing applications, decentralized applications, and a web portal that connects
users to the system

Application Layer Manages metadata of transactions, payments, and records such as posts, prototypes, and
project agreements

Business Logic Layer Contains smart contracts that govern the terms and conditions for transactions

Trust Layer Manages the consensus algorithm and smart contract security analysis

Transaction Layer Handles the initiation and validation of transactions, as well as mining and block validation

Infrastructure Layer Consists of a peer-to-peer network for distributing, verifying, and forwarding transactions

Security Layer Protects the network from attacks such as 51% attacks and includes security algorithms
and protocols

3. Challenges and Key Threats

Notwithstanding the huge potential of blockchain across various sectors, some com-
mon challenges are associated with the technology. This section brings forth such broad
areas containing related specific challenges. For each, the relevant key threats and related
articles are outlined, as can be seen in Table 10. Subsequent sections will explore the
potential solutions to effectively mitigate these issues.

Table 10. Blockchain challenges and key threats.

Broad Challenges Related Challenges Key Threats Articles

Technical and Performance
Issues

Scalability
Gas fees and memory

constraints
Redundancy

Network spamming
Slower transaction verification

Resource-heavy operations

[12,22–30,32,33,35,36,40–
42,124–126]

Security and Protocol
Integrity

Consensus mechanism
Smart contract
Immutability

Privacy and data security
Criminal activity

51% attack
Double spending

Eclipse attack
Sybil attack

Spoofing attack
Selfish mining attack
BGP hijacking attack

Balance attack
Transaction malleability

Sandwich attack
Liveness attack

Man in the middle attack
DoS/DDoS attack

[12,23,25–
29,32,35,36,40,42,125–130]

Operational and Global
Management

Governance
Interoperability

Unequal participant influence
Difficulties in system

communication
Financial losses

[19,28,32,36,40–42,131]

Legal and Regulatory
Compliance Regulatory concerns

Non-compliance risks
Operational disruptions due

to regulatory changes
[23,28,36,40,41]

Adoption and Knowledge
Barriers

Educational materials
Immaturity

Lack of understanding and
awareness of blockchain

technology
[21,40]
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3.1. Technical and Performance Issues

Scalability still poses a big problem when blockchain networks grow, therefore leading
to an increase in transaction processing time and very big storage needs, practically affecting
the use and adoption of the blockchain in several sectors [22,23,25–27,30,32,33,36,41,42,125].

The limited block size leads to a small number of transactions [40] and the duplication
of data across multiple nodes might increase the costs without any benefits, in some
cases [28].

At the same time, they are heavily resource-oriented, plaguing those blockchain
applications deployed in energy-sensitive environments and frameworks of the IoT, thus
bringing about high costs of transaction and computational bounds [12,32,33]. Further, the
problems of network spamming and slower transaction verifications increase the scalability
issues [35,41].

Solutions: To address these scalability and performance challenges, off-chain storage
solutions like IPFS manage data scalability without compromising performance, which is
more apt in the case of high-volume data management [42]. IPFS is a decentralized, peer-
to-peer file system designed to store and share data across a distributed network. It uses
content-addressed storage, meaning each file is identified by a unique cryptographic hash
rather than its location on a specific server. Despite its decentralized advantages, the net-
work can experience slower content-retrieval times compared to traditional CDNs [132,133].

Other studies suggest the use of lightweight blockchain architectures that reduce both
computational and communication overhead [12,33]. This is achieved through optimized
consensus mechanisms [134], such as HPoC [135]. However, the simplification of the
consensus mechanism could lead to potential security threats.

Additionally, the literature offers solutions like sharding techniques and efficient
consensus mechanisms [32]. Sharding is a technique that divides the network into disjoint
groups of nodes, each responsible for processing a subset of the total transactions. A simple
illustration of this technique is represented in Figure 13. This approach leads to a parallel
processing of the transactions which increases transaction throughput [136,137]. Despite
the advantages, this method could lead to cross-shard communication overhead [138] and
other potential problems [126].
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Another investigative approach is the pruning of the outdated blocks and their
resource-conserving balancing [27]. The pruning method refers to removing “spent trans-
actions” from the blockchain for size reduction [139]. Nevertheless, it is unclear how the
deletion of obsolete transactions and the migration of UTXOs buried in the chain should
occur [140].

Likewise, different architectural patterns shaped by the application needs have the
potential to reduce these concerns [124]. The ACE-BC framework provides an improved
throughput ratio, enhanced data confidentiality, and lower computation time, as an al-
ternative to the existing approaches [24]. In addition, an adaptive function of a Proof of
Work (PoW) consensus might increase its scalability by automatically adjusting the num-
ber of nodes to accommodate the new members [35]. Artificial intelligence and machine
learning might be helpful in support of transaction processing, heightened security, and
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management of the ever-increasing complexity of data and optimization of network opera-
tions [29]. However, each of these solutions still has disadvantages: empirical experiments
and in-depth technical analysis represent pre-requisites for their actual integration and
future improvements.

3.2. Security and Protocol Integrity

Several types of consensus mechanisms have been studied [23,25,35]; around 30 mech-
anisms exist [126], each with its own type of advantages and vulnerabilities, such as
high consumption of energy and inefficiency in processing transactions [12], and expo-
sure to potential security breaches: 51% attacks [27,40], eclipse attacks [28,40], double
spending [28,29], and sandwich attacks [127], among others [27,29,40,42,125,126].

Smart contracts are an important constituent of blockchain operation but fall prey to a
series of vulnerabilities due to bugs or errors that happen during their coding, which can
compromise the entire network and lead to financial losses. These vulnerabilities are decen-
tralized and tamper-proof by nature, and hence hard to patch once deployed [26,27,128].

On the other hand, the privacy and confidentiality concerns are related to the loss of
the private key [28,29] and blockchain transparency, which might lead, therefore, to the
leaking of sensitive data, such as sensible health information [27,28,36,40].

Solutions: These issues are addressed with better and safer consensus mechanisms [130]
such as PoT and DBFT that improve security, reduce energy consumption, and increase
transaction speed [12,23]. Proof of Trust (PoT) selects the validators based on a trust score,
determined by historical behavior and transaction history [141,142]. Delegated Byzantine
Fault Tolerance (DBFT) combines Delegated Proof of Stake and Byzantine Fault Tolerance
algorithms, where participants vote to elect delegates who achieve consensus on new
blocks [143,144]. However, challenges such as centralization risk and potential security
issues are still open for these solutions.

Moreover, several privacy-enhancing technologies, such as zero-knowledge proofs [145],
homomorphic encryption [146], and secure multi-party computation [27,36,40] combined
with various privacy-oriented frameworks like Hawk [28] have emerged to better the level
of privacy without any compromise on the blockchain functionality. Nevertheless, these
approaches increase integration complexity and might be resource-intensive.

The blockchain-based system that records malicious IP addresses in blockchain trans-
actions and the client-server approach that dynamically configures static ARP entries are
some of the highlighted solutions for DDoS and spoofing attacks, respectively [126]. In
any case, such solutions should be carefully pre-analyzed, as they might introduce latency
issues and centralization risks.

Defining and adopting game-theory-based frameworks might improve the security of
decentralized transactions [127]. This approach allows the organizer to implement a mech-
anism between the market and the participants aiming to maximize the market’s benefits.
However, empirical analysis is necessary to prove the efficiency in a real-time application.

The development of robust key-management systems aims at increasing the security
of cryptographic keys and avoiding unauthorized access [28,32]. Additionally, in the realm
of smart contracts, rigorous testing and deployment of security templates and libraries
are necessary to minimize the vulnerabilities in smart contracts [27,28,32,129]. Figure 14
presents some verification tools for smart contracts. Oyente [147], Securify [148], and
Zeus [149] are employed for formal verification and vulnerability detection [28,128], with
further constant monitoring and analysis post-deployment being a good practice.

In addition, the application of a private blockchain may lessen some of these risks,
such as the 51% attack, thereby securing transactions between the parties [42]. Furthermore,
SGX [125] is among the highlighted approaches to improve the security and privacy
of blockchain systems. Intel Software Guard Extensions (SGXs) are trusted execution
environment products that create secure enclaves within CPUs to protect data integrity
and confidentiality [150], making them applicable in the blockchain for enhancing security,
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privacy, and scalability. However, SGXs have limitations, including a 128 MB memory cap,
side-channel attacks, and single-point attacks.
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Artificial intelligence and machine learning might be implemented to monitor anoma-
lies, enable the strongest set of security items, and improve more efficient data management
within blockchain networks [28,29]. Nevertheless, the integration complexity and privacy
considerations are open issues.

3.3. Operational and Global Management

Both operational and global management in blockchain systems have several chal-
lenges, including fairness in transactions, integration with the existing systems, and en-
suring interoperability across the diversification of blockchain networks. This makes the
transaction mechanism and the financial incentive structures very important in maintaining
fairness—on the one hand, avoiding malicious behavior from the data providers, while
on the other hand, encouraging active and honest participation. Credible data providers
should receive rewards, while dishonesty should attract some penalties [19]. Issues like the
fairness of all parties in a public blockchain would point to the potential need for gover-
nance systems that can adjust the supply and rewards for proper equity in the treatment of
all parties involved [41].

Several different blockchain networks not only find it challenging to communicate
with each other, but to integrate into systems belonging to past ages due to the lack of
common standards. It is, therefore, the very heterogeneity of blockchain protocols that
presents a risk to the uniformity of basic processes and discourages their mass use [32,40].
For example, it is still very difficult to integrate blockchain technology with the existing
systems in the health sector and guarantee interoperability with diverse EHR systems [36].

Solutions: To encounter such challenges in operational and global management, differ-
ent approaches have been proposed. In ref. [19], the threshold signature [49,50] combined
with the verifiable encrypted signature [47,48] employs an arbitrator committee for the
protection of the rights of both parties of the transaction and assurance of fairness. The
components of the solutions are highlighted in Figure 3. However, cryptographic opera-
tions could be resource-intensive, and the dependency on the honesty and availability of
the committee might introduce delays and security issues.

Interoperability frameworks have also been designed, standardizing the interaction
between different blockchain networks. The frameworks incorporate cross-chains [151,152],
side-chains [153,154], proxy tokens [151], notary schemes [153], and atomic swaps [155]
that facilitate the exchange of assets and data [32]. Nevertheless, such frameworks could
introduce additional complexity and increase transaction costs.

Oracles provide a means of bridging the information gap between the on-chain and
off-chain environments. An oracle is an intermediary system that securely retrieves, verifies,
and transmits external data from real-world sources to smart contracts [156,157]. Figure 15
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represents a simple illustration of Oracle communication. Trust and data integrity are some
of the open concerns when it comes to oracles.
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Newer trust and transparency solutions, such as the Lightning Network [158], allow
double-signed transaction receipts, so the transactions can be validated between parties
securely and transparently, without the interference of third parties [28]. This way, they
establish trust and mitigate the risk of conflicts among the stakeholders.

Furthermore, the Kleros platform aims to resolve the conflicts that might arise between
stakeholders, using an incentive-game-theory approach [131]. Kleros is a decentralized
court system that allows dispute resolution encountered within smart contracts, based on
crowdsourced jurors [159]. Juror quality might represent an impediment, especially in
complex disputes.

AgilePlus [42], whose architecture is described in Table 9, could ensure the effective
implementation of agile development processes, safety in payments, and automatic pay-
ment distribution. However, it lacks empirical tests and faces challenges such as energy
consumption and data modification.

The development and adoption of different standards might enhance interoperability,
such as HL7 and FHIR for EHR [36].

3.4. Legal and Regulatory Compliance

Legal and regulatory compliance is a serious roadblock to the wide adoption of
the blockchain across various sectors. It is complicated and of great importance for the
stakeholders to classify and establish which types of tokens bear regulatory implications
against blockchain, basing such qualifications on their design and use cases [41].

The General Data Protection Regulation (GDPR) introduces stringent requirements
regarding safety and data protection, quite difficult to fulfill due to the decentralized and
transparent nature of the blockchain [23,40].

Additionally, the very absence of uniform standards compromises the security and
reliability of blockchain systems, complicating the merger with diverse regulations, such
as the California Consumer Privacy Act (CCPA) [160] and GDPR [161]. It even touches
the educational sector, to the extent that the regulation educational authorities manage
vital aspects like degree attestation, verification standards, and the candidate certificate
integrity [40].

Compliance with laws for the protection of health data, such as the Health Insurance
Portability and Accountability Act (HIPAA), continues to be an area riddled with problems
within the health sector, due to the comprehensive requirements for the privacy and security
of health information [36]. Further, the integration of blockchain in the legal and financial
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sectors presents regulatory challenges, emanating from the application of the technology in
a wider context than just cryptocurrencies [28].

Solutions: The key steps towards effective navigation of the complex regulatory
landscape involve undertaking comprehensive studies, to ensure that the solutions meet the
regulatory requirement, and taking on clear communication with the stakeholders [41,162].

The collaboration between stakeholders and government support is a necessity, where
challenging regulations arise. One example is the education sector, which requires compli-
ance with data-protection laws, such as GDPR [40,163]. Furthermore, in a field as delicate
as healthcare, facing legal challenges, one viable solution seems to be the establishment
of clear regulatory frameworks. That might allow for the decentralized aspects of the
blockchain to comply with specific regulations, such as HIPAA [36,164].

In addition, the limitation of personal data storage on the blockchain, assessing the
need for specific reasons, and adopting permissioned blockchains with more regulation in
usage might make these systems work better for observance of the data-protection laws.
These steps will help to align blockchain implementations with legal requirements and, at
the same time, ensure that this technology is used responsibly and ethically [40,165].

3.5. Adoption and Knowledge Barriers

The adoption of blockchain technology faces massive challenges due to a lack of gen-
eral awareness about its potential and functionalities. The said barrier is more pronounced
for stakeholders who have little knowledge about the technology. In addition, because of
skepticism regarding cryptocurrencies, often linked with Bitcoin, they refuse to accept the
technology [166]. This skepticism has further been the reason for regulatory obstacles and
outright prohibition in some jurisdictions, thus hampering its wide adoption [21].

Article [40] focuses on the fact that the low penetration of blockchain technology in
education is seriously hampered by a lack of human and expert resources whose compe-
tencies allow for dealing with intricate systems of data. This contributes to the shortage of
blockchain technology in the education area because most institutions do not want to ven-
ture into this technology without enough information and knowledge of how best it should
be implemented and managed. What is more, blockchain technology is still immature [167],
which is observable through the poor usability of applications, with an extreme focus
on security and privacy at the expense of user-friendly interfaces and adequate training.
Furthermore, the complexity of integrating blockchain into the current educational systems
aggravates these issues [168].

Solutions: Successful tackling of the challenges related to the adoption of the technol-
ogy requires a cohesive strategy, involving multiple facets of education and integration.
Education and awareness need to be a prime focus area. Herein, the key is the development
of complete educational materials and awareness programs, so that all those who are
associated know what the functionalities of blockchain technology are and their poten-
tial [169,170]. This will also help to reduce skepticism on issues to do with cryptocurrencies,
by emphasizing the huge applications that blockchain technology has, beyond financial
transactions [21].

With increased training and development investment that relates to education, profes-
sionals will be equipped with the right set of skills for proper management and utilization
of blockchain systems. Therefore, this is one way through which the skilled blockchain
professional shortage can be overcome.

At the same time, a focus on user interfaces that make the functionality much easier for
common people will improve usability, in turn improving adoption and effectiveness. Addi-
tionally, third-party services specializing in this technology might be considered with regard
to dealing with complexity in the integration of blockchain in diverse systems [40,171].

4. Discussion and Future Directions

Integration of blockchain with AI, IoT, and Big Data Analytics still holds the key in
solving scalability and performance issues. There is a need for continued innovation in
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cryptographic solutions and consensus mechanisms in a bid to further improve the security
and integrity of blockchain networks, which are continuously at risk of cyberattacks.

Another highly involved area is sustainability, which requires system designs that
are both scalable and resource-efficient. Research should focus on developing blockchain
architectures that can handle applications at a large scale, but at the same time with a
minimal expenditure of resources.

Security is one of the major concerns for blockchain technology because, right from
minor vulnerabilities to huge attacks that might lead to the entire network being compro-
mised, everything is possible. To maintain the high security of the blockchain, it is a must to
utilize standardized frameworks, conduct extensive testing, and keep up with the dynamic
of cyber threats.

Governance is an important part of this technology as it evolves, and complex appli-
cations keep arising. Proper validation of certain activities and transparent, fair conflict
resolution processes are of very high importance for the credibility and functioning of
blockchain networks, especially in public and decentralized setups. The said point of
blockchain governance is pivotal in nature and warrants a more in-depth exploration to
devise mechanisms that can facilitate the dynamic character of decentralized operations.

The regulatory and compliance challenges require the navigation of very complicated,
nontechnical policy landscapes. Simplified research into these frameworks must be con-
ducted to ensure that blockchain activities will be aligned with very stringent rules. This
makes educational initiatives of great importance. Strong facilitation on the part of aca-
demic and government institutions is needed to craft specific programs and public outreach
efforts that will successfully raise blockchain knowledge and support broader adoption.

A comprehensive understanding of the potential and drawbacks of blockchain should,
therefore, embrace a multilayered approach, blending technical, regulatory, and environ-
mental research. AI applied to blockchains promises much in terms of efficient management,
scalability, and security, but also introduces the disadvantages of complexity and ethical
considerations. Interdisciplinary collaboration is required to ensure that the full potential of
blockchain technology for the development of strong and sustainable solutions is realized
to revolutionize industries and improve society in a significant way.

5. Conclusions

This review captured the broad scope of blockchain technology and underlined the
significant potential and the diverse set of challenges it presents. We highlighted the critical
role that blockchain technology plays in advancing technological frontiers and the capacity
it has to impact several industries.

The proposed insights further open room for exploration and development. Apart
from that, some light is shed on the continuous innovation in and careful attention paid to
the complexities and capabilities of blockchain technology. It is to be noted that the paper
presents most of the wide-range applications, challenges, threats, and possible solutions of
blockchain technology; nevertheless, many others could exist. However, compared to other
reviews, our survey comprises a large number of applicability domains, challenges, and
possible solutions, along with a structure that offers a better visualization of interconnected
challenges. That being said, this paper provides a comprehensive view of the actual
situation of this technology, in terms of applicability, challenges, and possible solutions,
opening paths for future research.

As blockchain continues to evolve, it has the potential for a great impact on technology
and society around us and calls for continued exploration and critical engagement by a
panoply of stakeholders.
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The following abbreviations are used in this paper:

IoT Internet of Things
AI Artificial Intelligence
ACE-BC Access Control-Enabled Blockchain
BSKM Blockchain-based Special Key Security Model
V2X Vehicle-to-Everything
NFT Non-Fungible Token
JIT Just-in-Time
PoAh Proof of Authentication
PoT Proof of Trust
PoW Proof of Work
DBFT Delegated Byzantine Fault Tolerance
HPoC Hierarchical Proof of Capability
IPFS InterPlanetary File System
CDN Content Delivery Network
UTXO Unspent Transaction Output
ITS Intelligent Transportation Systems
IoD Internet of Drones
PoC Proof of Concept
DASD Distributed Agile Software Development
ARP Address Resolution Protocols
SGX Intel Software Guard Extensions
MDLDP Multiple Disturbance of Local Differential Privacy
EHR Electronic Health Records
GDPR General Data Protection Regulation
HL7 Health Level 7
FHIR Fast Healthcare Interoperability Resources
CCPA California Consumer Privacy Act
HIPAA Health Insurance Portability and Accountability Act
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