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Abstract: Harnessing the power of Large Language Models (LLMs), this study explores the use of
three state-of-the-art LLMs, specifically GPT-3.5-turbo, LLaMA3-8B, and LLaMA3-70B, for crash
severity analysis and inference, framing it as a classification task. We generate textual narratives
from original traffic crash tabular data using a pre-built template infused with domain knowledge.
Additionally, we incorporated Chain-of-Thought (CoT) reasoning to guide the LLMs in analyzing
the crash causes and then inferring the severity. This study also examine the impact of prompt
engineering specifically designed for crash severity inference. The LLMs were tasked with crash
severity inference to: (1) evaluate the models’ capabilities in crash severity analysis, (2) assess the
effectiveness of CoT and domain-informed prompt engineering, and (3) examine the reasoning
abilities with the CoT framework. Our results showed that LLaMA3-70B consistently outperformed
the other models, particularly in zero-shot settings. The CoT and Prompt Engineering techniques
significantly enhanced performance, improving logical reasoning and addressing alignment issues.
Notably, the CoT offers valuable insights into LLMs’ reasoning process, unleashing their capacity to
consider diverse factors such as environmental conditions, driver behavior, and vehicle characteristics
in severity analysis and inference.

Keywords: traffic safety; crash severity inference; crash causality reasoning; crash narrative generation;
textual context; transformer; large language models; Chain-of-Thought; prompt engineering; zero-shot
learning; few-shot learning

1. Introduction

Traffic safety research plays a crucial role in enhancing road safety by examining the
root causes of accidents, identifying hazardous behaviors or factors, and proposing effective
countermeasures [1]. Despite advancements in vehicle safety, enhancements in road design,
and the implementation of various policies, traffic safety remains a significant challenge.
One important aspect of road safety research is understanding contributing factors leading
to different crash severity outcomes, which is essential for mitigating crash consequences.

The challenge of traffic accident modeling stems from their multifaceted nature, involv-
ing intricate interplay among diverse factors, such as human behavior, vehicle dynamics,
traffic conditions, environmental factors, and roadway characteristics. Traffic safety re-
search has been primarily focused on understanding causality using observational data,
due to the impracticality of conducting controlled experiments in this field [1]. Traditional
statistical and econometric methods have long been studied in traffic safety domain [2–6]
for causality understanding. These classic methods suffer from several limitations, includ-
ing constraints imposed by specific functional forms and distributional assumptions [1], as
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well as subtle confounding effects, also referred as heterogeneous treatment effects [1,7,8],
which often lead to an incomplete or misleading understanding of influencing factors.

Another limitation of statistical and econometric methods lies in the fact that they
were designed around and can only consume structured data with traditional numeric or
categorical coding and a limited number of features. These methods can not effectively
handle unstructured textual data or passages of narratives. Due to recent advancements
in AI and the abundance of narrative data captured in crash reports, natural language
processing (NLP) methods have been applied in text mining of crash narratives [9–11]. In
previous works, researchers are required to collect a large amount of high-quality, labeled
crash reports for model training. However, this process is time-consuming and costly.
Additionally, low-quality training data and poorly chosen training parameters can lead
to undesirable performance. In contrast, large language models (LLMs) offer a distinct
advantage by leveraging their immense knowledge acquired from extensive pre-training
with vast datasets, effectively addressing these challenges. Motivated by their superior
capability to comprehend and generate human-like text, this study aims to investigate
whether LLMs can process complex and unstructured data in traffic safety domain to enable
elaborate case-specific analysis.

Despite the release of numerous LLMs, represented by the GPT family [12] and
LLaMA family [13], their ability for traffic crash analysis and reasoning remains unexplored.
Applying LLMs to crash analysis presents two major challenges: (1) it requires LLMs to
fully understand the domain knowledge and potential causality behind crash events.
However, LLMs, typically built on transformer architectures, are often regarded as “black-
box” models, making it difficult to interpret their decision-making processes. (2) while
LLMs possess extensive real-world knowledge acquired from the pre-training stage, they
are not specialized in analyzing textual data in crash reports. This creates an alignment gap
between the model’s original intent and the specific requirements of this specific task.

To address the first challenge, we propose to leverage the Chain-of-Thought (CoT)
technique to enhance the reasoning capabilities of LLMs [14]. This technique guides the
model through a structured reasoning process, helping it better understand the detailed
knowledge and causality behind crash data. Additionally, the CoT approach provides
explainable reasoning steps for each intermediate result, making the model’s decisions
more transparent and easier to interpret. By incorporating CoT, we aim to improve the
LLMs’ performance in crash severity modeling, leveraging their capability to effectively
process the complex and diverse data relevant to crash analysis.

To address the second challenge, we propose to use prompt engineering (PE) and
few-shot learning (FS) to better align the LLMs with the specific requirements of the target
task: crash severity modeling and analysis. PE can tailor the input prompts to guide the
LLMs toward more relevant and reliable analysis, while few-shot learning can provide the
models with specific examples to improve their understanding and performance in the
subject domain. By combining these techniques, we aim to bridge the alignment gap and
enhance the models’ ability to effectively analyze textual descriptions in crash reports.

To demonstrate the efficacy of our approach, we explore three state-of-the-art LLMs,
specifically GPT-3.5-turbo, LLaMA3-8B, and LLaMA3-70B, for crash severity inference,
framing it as a multi-class classification task. In our experiments, we utilized textual nar-
ratives derived from crash tabular data as input for crash severity analysis with LLMs.
Additionally, we incorporated CoT to guide the LLMs in analyzing potential crash causes
and subsequently inferring severity outcome. We also examine prompt engineering specif-
ically designed for crash severity inference. We task LLMs with crash severity infer-
ence to (1) assess their capability for crash severity analysis; (2) evaluate the effective-
ness of CoT and domain-informed PE; and (3) examine their reasoning ability within the
CoT framework.

The experimental setup involves several strategies, including plain zero-shot and
few-shot settings, zero-shot with Chain-of-Thought (ZS_CoT), zero-shot with prompt
engineering (ZS_PE), zero-shot with both prompt engineering and Chain-of-Thought
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(ZS_PE_CoT), and few-shot with prompt engineering (FS_PE). The LLMs evaluated include
GPT-3.5-turbo, LLaMA3-8B, and LLaMA3-70B, with specific hyperparameters to ensure
consistent and reliable results. We compare the performance of these models and settings
to determine the most effective approach for the crash severity inference task.

2. Methods
2.1. Model Descriptions

In our approach, we leverage the reasoning ability of LLMs for domain-specific (i.e.,
traffic safety) analysis and modeling. Specifically, we utilize two state-of-the-art LLMs
as our base models, including GPT-3.5-turbo [12] and LLaMA-3 [13]. Both models are
auto-regressive language models, which generate text by predicting the next word or
subword in a sequence based on the previous words or subwords, one step at a time. This
approach allows the model to create coherent and contextually relevant text. In this auto-
regressive setting, the joint probability is expressed as the product of sequential conditional
probabilities in Equation (1):

P(x1, x2, . . . , xn) =
n

∏
i=1

P(xi | x1, x2, . . . , xi−1), (1)

where P(xi | x1, x2, . . . , xi−1) represents the conditional probability of the i-th word given
the preceding words. This auto-regressive modeling framework, designed to handle large
context windows and trained on extensive datasets, empowers the model to generate fluent
and context-aware sequences. Some details about these two models are provided below for
direct reference.

GPT-3.5-turbo [12], developed by OpenAI, is designed for a variety of applications,
including advanced text generation, coding assistance, and more. Trained on a vast corpus
of internet text, including diverse sources such as books and websites, it has billions of
parameters, allowing for nuanced understanding and generation of text. In our experiments,
we use the gpt-3.5-turbo-0125 version.

LLaMA-3 [13], developed by Meta, is another state-of-the-art LLM designed for ef-
ficient and scalable language understanding. It is pre-trained on over 15T tokens that
cover diverse internet text sources. LLaMA-3 is available in sizes of 8 billion and 70 billion
parameters, making it flexible for various applications.

Both models employ techniques like supervised fine-tuning (SFT) and Reinforcement
Learning with Human Feedback (RLHF) to align their outputs with human preferences,
ensuring the model is helpful and safe [15]. Specifically, SFT fine-tunes a pre-trained
model on specific datasets with human instructions, ensuring it understands relevant
vocabulary, patterns, and knowledge, thereby improving accuracy and relevance. RLHF,
on the other hand, refines the model using feedback from human experts, allowing it to
adapt to complex real-world scenarios and prioritize critical safety aspects, enhancing both
adaptability and reliability.

2.2. In-Context Learning

In-context learning is a promising approach for traffic safety analysis and modeling,
where a LLM learns to perform a specified task by observing examples of the task within
the input context, without any explicit fine-tuning or gradient updates [16]. The LLM
leverages its pre-existing knowledge and the provided examples to generate appropriate
inference for new, unseen instances of the task. In-context learning encompasses both
zero-shot and few-shot learning [17], with the number of examples ranging from zero to
a few. In the context of traffic safety analysis and modeling, in-context learning can be
applied to various tasks, such as crash severity inference.

Zero-shot learning in traffic safety analysis refers to the setting where the model is
expected to perform a task without any examples or explicit training for that specific
task. The model relies solely on its pre-existing knowledge to make inference. While few-
shot learning involves providing the model with a few examples of the target task before
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asking it to perform the same task on new instances. The model learns from these few
examples and adapts its behavior accordingly. For instance, in crash severity inference, the
model may be provided with a few examples of crashes and their corresponding severity
outcomes. The model then learns from these examples and reasons the severity outcome of
a new, unseen crash. Few-shot learning allows the models to quickly adapt to new tasks or
scenarios with minimal training data for diverse real-world applications [18].

2.3. Chain-of-Thoughts (CoT)

A notable distinction between LLMs and conventional machine learning algorithms
is the capacity of foundation LLMs to process variably structured input data, specifically
prompts, during the inference phase [14]. For inference, LLMs generally precede or pri-
oritize the information provided in the input prompts over the large implicit knowledge
gained from the pre-training stage. Consequently, this leads to clear, comprehensive con-
tent. This content could encompass domain-specific knowledge, contextual background,
or detailed step-by-step reasoning guidance. By doing so, LLMs can be encouraged to
disclose their reasoning processes during inference, thereby enhancing the explicability
of their outputs. In this paper, we utilize the CoT technique to enable LLMs to generate
step-by-step reasoning before providing the final answer, improving their performance on
complex reasoning tasks.

Although it is widely recognized that LLMs excel at generating responses reminiscent
of human conversation, they often have opacity issues in their reasoning processes. This
opacity hinders users’ ability to evaluate the trustworthiness of the responses, particularly
in scenarios that necessitate elaborate reasoning.

Formally, let fθ be a language model and X = {(x1, y1), (x2, y2), . . . , (xn)} be an input
prompt, where (xi, yi) denotes the i-th example question-response pair. In a standard question-
answering scenario, the model output is given by: yn = arg maxY pθ(Y|x1, y1, x2, y2, . . . , xn),
where pθ is the predicted probability of the language model fθ. This setting, however, does
not provide insights into the reasoning process behind the answer yn. The CoT method
extends this by including human-crafted explanations ei for each example, resulting in a
modified input format X = (x1, e1, y1), (x2, e2, y2), . . . , (xn). The model then outputs both the
explanation en and the answer yn:

(en, yn) = arg max
Y

pθ(Y|x1, e1, y1, x2, e2, y2, . . . , xn). (2)

However, in practice, it is difficult to obtain sufficient high-quality explanation ex-
amples for crash severity classification, while low-quality explanations can harm the CoT
performance. Therefore, following strategies in [19], we simply ask LLMs to think step by
step to conduct traffic safety analysis and inference. Some template examples are presented
in the Section 4. Besides allowing for a more transparent and understandable interaction
with LLMs, the CoT approach is also practically useful in several key aspects: (1) Reducing
Errors in Crash Risk Assessment: By breaking down complex traffic scenarios, CoT can
better understand and reason over specific cases, thus reducing errors in crash risk analy-
sis [14,20,21]. (2) Providing Adjustable Intermediate Steps for Crash Analysis: CoT enables
the outlining of traceable intermediate steps within the crash analysis process. This can
be helpful in identifying potential biases or errors in the model’s reasoning and allow for
more reliable crash risk assessment [22]. By leveraging the CoT approach in traffic safety
analysis, we can enhance the interpretability and reliability of crash risk assessment.

2.4. Prompt Engineering (PE)

Prompt engineering is a technique for crafting and refining input prompts for LLMs
to enhance their performance on specific tasks. It is akin to “asking the right question
(prompt) to get the desired answer (response)”. For traffic safety analysis, carefully de-
signed prompts can significantly enhance LLMs’ ability to analyze complex scenarios and
provide meaningful insights. Specifically, in the context of crash severity inference, one
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critical category is ‘Fatal accidents’. However, LLMs often exhibit a tendency to avoid
assigning this label to relevant cases. This behavior stems from their alignment training,
which generally encourages them to avoid discussing unpleasant subject or potentially
unsafe topics [23,24]. Such design constraints present a challenge in accurately inferring se-
vere outcomes for traffic incidents. To address this issue, we found it necessary to rephrase
the original ’Fatal accidents’ label using alternative terms. This “soft” approach allows us
to maintain inference accuracy while respecting LLMs’ aligned parameters. The specific
modifications and their impacts on inference performance are discussed in detail in the
Section 4.

We understand that while some literature considers CoT a subset of PE, in this study,
we distinguish between the two to emphasize the unique contributions of each approach
to traffic safety analysis. We explicitly define Prompt Engineering as the technique of
crafting and refining input prompts to guide the model toward more relevant and reliable
outputs. In contrast, Chain-of-Thoughts is considered as a specific reasoning technique that
encourages the model to break down complex problems into intermediate steps, providing
a more transparent and structured reasoning process.

3. Data

In this section, we first discuss the dataset employed for the study. We then explain
how we convert the crash tabular data to coherent descriptive narratives. Finally, we
discuss our experimental settings and evaluation methods.

3.1. Dataset

Our empirical analysis utilizes data sourced from CrashStats data from Victoria, Aus-
tralia spanning from 2006 to 2020. The crash database contains records of vehicles involved
in crashes. A four-point ordinal scale is used to code the severity level of each accident,
including: (1) non-injury accident, (2) other injury (minor injury) accident, (3) serious
injury accident, and (4) fatal accident. Each sample denotes a vehicle involved in a crash
with driver’s information. After data prepossessing, the final dataset has an extremely
low representation of non-injury accidents (only four instances), accounting for less than
0.001%. Consequently, these four non-injury accidents are merged to the category of “Minor
or non-injury accidents”. As a result, the dataset contains 197,425 minor or non-injury
accidents, 89,925 serious injury accidents, and 4760 fatal accidents.

The traffic accident attributes considered in our empirical study include crash charac-
teristics, driver traits, vehicle details, roadway attributes, environmental conditions, and
situational factors (see Table 1).

Table 1. Traffic accident attributes.

Variables Description

Crash characteristics
ACCIDENT_TYPE The type of accident.
EVENT_TYPE Type of incident event.
VEHICLE_1_COLL_PT Collision point on the first vehicle involved in the event.
VEHICLE_2_COLL_PT Collision point on the second vehicle involved in the event.
OBJECT_TYPE Object involved in the specific accident event.
DCA The definitions for classifying accidents.

ACCIDENT_MONTH The month in which the accident occurred, derived from
“ACCIDENT_DATE”.

TIME_PERIOD The period the accident occurred, derived from “ACCIDENT_TIME”.
DAY_OF_WEEK The day of the week the accident occurred.
LGA_NAME The name of local government areas.
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Table 1. Cont.

Variables Description

REGION_NAME The region where the accident occurred.
DEG_URBAN_NAME The type of urbanized area for the crash site.
Driver characteristics
DRIVER_SEX The sex of the driver.
AGE_GROUP The age group of the driver, derived from “DRIVER_AGE”.
ROAD_USER_TYPE The role of the person was at the time of the accident.
Vehicle characteristics
VEHICLE_TYPE The type or category of vehicle.
VEHICLE_WEIGHT The weight or mass of the vehicle. The unit of measurement is kilograms.
NO_OF_WHEELS The number of wheels that the vehicle has.
SEATING_CAPACITY The number of seats in the vehicle.
FUEL_TYPE The type of fuel used by the vehicle.
VEHICLE_AGE The age of the vehicle when the accident occurred.
VEHICLE_BODY_STYLE The body type of the vehicle.
TRAILER_TYPE The type of trailer towed by the vehicle involved in the accident.
Roadway attributes

ROAD_TYPE Type of the highest priority road at the intersection or the road the
accident occurred.

ROAD_GEOMETRY The layout of the road where the accident occurred.
SPEED_ZONE The speed zone at the location of the accident.
ROAD_SURFACE_TYPE The type of road surface: 1: Paved 2: Unpaved 3: Gravel 9: Not known.
ROAD_TYPE_INT The type or suffix of the intersecting road.
COMPLEX_INT_NO Whether or not the segment is part of a complex intersection.
Environmental factors
LIGHT_CONDITION The light condition or level of brightness at the time of the accident.
SURFACE_COND Road surface condition: dry, wet, muddy, snowy, icy, unknown.

SURFACE_COND_SEQ Starts with 1 and incremented by 1 if more than one road surface
condition.

ATMOSPH_COND Atmospheric condition.

ATMOSPH_COND_SEQ 1 and incremented by 1 if more than one atmospheric condition is
entered.

Situational factors

HELMET_BELT_WORN Whether or not the person was wearing a helmet or seatbelt at the time
of the accident.

NO_OF_VEHICLES The number of vehicles involved in the accident.
LAMPS Whether the lamps or headlights for the vehicle were alight (on).
VEHICLE_MOVEMENT The actual movement of the vehicle before the accident.

TRAFFIC_CONTROL The type of traffic control measure in the location where the accident
occurred.

NO_PERSONS The number of people involved in the accident.

NO_OCCUPANTS The number of occupants or people in the vehicle at the time of the
accident.

SUB_DCA SUB_DCA code and description of the accident.

SUB_DCA_SEQ Starts with 1 and is incremented by 1 if more than one sub_dca is
entered.

DRIVER_INTENT The intent of the driver initially.

3.2. Textual Narrative Generation

To get coherent, informative passages enriched with domain-specific knowledge, we
use a simple yet effective template to convert the raw structured tabular data into detailed,
human-readable textual narratives, encapsulating vital information about traffic accidents,
which can be better consumed by LLMs. This process is depicted in Figure 1.
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Figure 1. Illustration of textual narrative generation.

The primary objective is to augment the applicability and relevance of tabular data as
input for LLMs, facilitating more context-aware inference for tasks like accident severity
assessment. Furthermore, road safety engineers can supplement it with established facts or
domain-specific knowledge for further enhancement. For instance, “Children and elders
are typically more vulnerable in accidents without seat belts”. However, it is important to
note that, for this study, we do not delve into the intricate design of scientific knowledge in
traffic safety.

4. Experiments
4.1. Experiments Design

In this work, we tackle the crash severity inference problem as a classification task.
The inputs encompass various crash related attributes, including environmental conditions,
driver characteristics, crash details, and vehicle features. The original data is in tabular
format including categorical and numerical fields. We then transform the tabular data into
consistent textual narrative with a simple template, detailed in the preceding subsection.
The objective is to estimate severity outcomes of crashes with the state-of-the-art LLM
models, such as GPT-3.5-turbo, LLaMA3-8B, and LLaMA3-70B.

LlaMA3s models are open-source foundation models, while the GPT model is a close-
source and non-free model. Considering the cost and our goal of evaluating crash severity
inference performance of foundation models, we randomly draw 50 samples from each of
the three severity outcome categories, resulting in a total of 150 samples. These samples are
used to demonstrate the potential of LLMs in enhancing crash analysis and reasoning.

The strategies outlined in Table 2 includes: Zero-shot and Few-shot settings coupled
with different techniques. We use ZS and FS to denote the plain zero-shot and few-shot
setting without prompt engineering and Chain-of-Thought. Other settings are zero-shot
with Chain-of-Thought (ZS_CoT), zero-shot with prompt engineering (ZS_PE), zero-shot
with prompt engineering and Chain-of-Thought (ZS_PE_CoT), and few-shot with prompt
engineering (FS_PE). It worth noting that some literature treats Chain-of-Thought (CoT)
as a special form of Prompt Engineering (PE). In this paper, we make distinction between
PE and CoT to highlight the advantages of CoT over a basic PE approach in the context of
traffic safety analysis.

With these experiments, we aim to determine: (1) the accident severity inference
performance of LLMs in a plain zero-shot setting; (2) whether CoT enhances the perfor-
mance through its reasoning process (ZS_CoT vs ZS; ZS_PE vs ZS_PE_CoT); (3) whether
PE improves performance in zero-shot and few-shot settings (ZS_PE vs ZS; FS_PE vs FS);
(4) whether few-shot learning boost performance compared to the zero-shot setting (ZS
vs. FS). Accordingly, we tested six prompts to automatically infer the severity outcome of
crashes. The details of these prompts are presented in the following section.
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Table 2. Experiments.

Experiments Setting

Plain Chain-of-Thought Prompt Engineering Prompt Engineering with Chain-of-Thought

Zero-shot ZS ZS_CoT ZS_PE ZS_PE_CoT
Few-shot FS / FS_PE /

Models

GPT-3.5-turbo LLaMA3-8B LLaMA3-70B
Sampling Strategy Greedy Greedy Greedy
(temperature, top_p) (0, 0.01) - -

The experiments were conducted using GPT-3.5-turbo, LLaMA3-8B, and LLaMA3-70B.
For GPT-3.5-turbo and LLaMA3, the hyperparameters are configured with temperature = 0
and top_p = 0.0001 for crash severity inference, aiming to produce consistent and reli-
able results through greedy decoding. Additionally, the LLaMA3 models are set with
do_sample = FALSE to generate deterministic outputs, ensuring reproducibility.

4.2. Prompts for LLMs

In this section, we explained in detail how we design the prompts for different experi-
ments in Table 2.

4.2.1. Zero-Shot

The prompt designed for plain zero-shot setting is demonstrated in Figure 2. The
provided prompt tasks each LLM as a professional road safety engineer with classifying
the severity of a traffic crash in Victoria, Australia, based on a detailed description of a
crash. The engineer is required to categorize the crash into one of three specified categories:
’Fatal accident’, ’Serious injury accident’, or ’Minor or non-injury accident’. The engineer’s
response is restricted to outputting only the classification result, ensuring a focused and
objective assessment. This prompt is designed to elicit a precise evaluation of the crash
severity outcome, leveraging the knowledge of engineer’s expertise in road safety and
crash analysis.

Figure 2. Zero-shot (ZS).

The prompt designed for zero-shot with CoT setting is demonstrated in Figure 3.
This prompt leverages a CoT approach, encouraging the LLM to serve as an engineer to
methodically reason through the details of the accident to determine both the cause and
the severity outcome, thereby ensuring a comprehensive and structured assessment based
on LLMs’ knowledge. The difference between ZS_CoT and plain ZS is highlighted in red
color in Figure 3.

The prompt designed for zero-shot with prompt engineering setting is demonstrated
in Figure 4. The provided prompt instructs LLM to serve as a professional road safety
engineer to classify the severity outcome of a traffic crash, using a descriptively modified
set of categories (see the revised class description in red in Figure 4). to accommodate
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alignment constraints in LLMs. The engineer must categorize the crash into one of three
revised descriptive labels: ’Serious accident with potentially fatal outcomes’, ’Serious injury
accident’, or ’Minor or non-injury accident’. The prompt explicitly requires the engineer to
output only the classification result.

Figure 3. Zero-shot with CoT (ZS_CoT).

Figure 4. Zero-shot with prompt engineering (ZS_PE).

This rephrasing aims to preserve classification accuracy while adhering to the align-
ment parameters of LLMs, which tend to avoid directly assigning the ’Fatal accident’ label
due to their training to steer clear of discussing unpleasant or unsafe topics related to
human death. With comparison to other settings, this could highlight whether prompt
engineering enhances LLMs’ performance in traffic safety analysis by addressing inher-
ent biases and improving the model’s ability to more reliably infer the fatal outcome of
traffic incidents.

The prompt designed for Zero-shot with PE & CoT setting is shown in Figure 5. In
this prompt design, we not only included the CoT, by requiring a logical deduction from
cause reasoning to severity outcome classification, but also changed the class label of ’Fatal
accident’ to the soft version of ’Serious accident with potentially fatal outcomes’. The
differences between ZS_PE_CoT and plain ZS are highlighted in red in Figure 5.

Figure 5. Zero-shot with prompt engineering & CoT (ZS_PE_CoT).
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4.2.2. Few-Shot

The prompt designed for the plain few-shot setting is shown in Figure 6. In this paper,
the few-shot setting refers to a three-shot scenario, where three examples, one from each
severity category, are provided for the LLMs to infer from.

Figure 6. Few shot (FS).

The only difference between the prompt for Few-shot with Prompt Engineering
(FS_PE) and that of the plain few-shot is that we substitute “Fatal accidents” with “Serous
accidents with potentially fatal outcomes”.
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4.3. Evaluation Metrics

Following standard practice in the context of multi-class classification, we adopt two
commonly used classification metrics: Macro-Accuracy, and F1-score. Additionally, we
include class-specific accuracies. These metrics are briefly discussed below.

(1) Accuracy. Accuracy measures the proportion of correctly classified instances in the
test dataset. It is calculated as:

Accuracy =
Correct Predictions

Total Predictions
(3)

where:

• Correct Predictions: The number of correctly classified instances in the test dataset.
• Total Predictions: The total number of instances in the test dataset.

It should be noted that we first calculate the accuracy for each class and then calculate
the macro-accuracy as the average of these class accuracies.

(2) F1-score. F1-score is defined as the harmonic mean of precision and recall, com-
puted as:

F1-score =
2 × Precision × Recall

Precision + Recall
(4)

The F1-score reported in the following section (Section 5) is at the macro level, which
is an averaged F1 of all classes.

Precision quantifies the accuracy of positive predictions for a specific class, com-
puted as:

Precision =
True Positives

True Positives + False Positives
(5)

where:

• True Positives: The number of correctly predicted instances of the class.
• False Positives: The number of instances wrongly classified into the class.

Recall, also known as sensitivity or true positive rate, measures the ability of the model
to correctly identify instances of a specific class. It is calculated as:

Recall =
True Positives

True Positives + False Negatives
(6)

where:

• False Negatives: The number of instances of the class wrongly classified as some-
thing else.

5. Findings
5.1. Exemplar Responses of LLMs to Crash Severity Inference Queries

The exemplar responses of GPT-3.5, LLaMA3-8B, and LLaMA3-70B in each of the six
settings, including ZS, FS, ZS_CoT, FS_PE, ZS_PE, and ZS_PE_CoT (outlined in Table 2),
are shown in Figure 7. It demonstrates that the LLMs can effectively respond to the
severity inference task, delivering expected results. Note that the examples in Figure 7 only
showcase correct severity inferences.

Given the prompt for each setting (see Section 4.2), each model can directly an-
swer or ultimately summarize its estimated severity for the given accident as one of the
defined categories.

In the plain Zero-shot and Few-shot settings, the models respond directly with one
of the three class labels, i.e., “Minor or non-injury accident”, “Serious injury accident”, or
“Fatal accident”. Similarly, in the ZS_PE and FS_PE settings, the models respond directly
as “Minor or non-injury accident”, “Serious injury accident”, or “Serious accident with
potentially fatal outcomes”.
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Figure 7. Exemplar responses of LLMs in different settings.

In contrast, in the CoT settings (ZS_CoT and ZS_PE_CoT), the models return longer
responses by reasoning first and then making inference of the severity outcome of each
accident. Generally, the GPT-3.5 model’s responses are more concise.
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5.2. Severity Inference Performance of the LLMs with Different Strategies

The performance metrics of GPT-3.5, LLaMA3-8B, and LLaMA3-70B for the crash
severity inference task under the six settings (see Table 2) are presented in Table 3.

Table 3. Performance of Models on Crash Severity Inference Task.

Model Macro F1-Score Macro-Accuracy Fatal Accident Serious Injury Accident Minor or Non-Injury
Accident

ZS
GPT-3.5 0.1812 0.3400 0.00 1.00 0.02
LLaMA3-8B 0.1818 0.3400 0.00 1.00 0.02
LLaMA3-70B 0.4541 0.4533 0.44 0.34 0.58

ZS_CoT
GPT-3.5 0.2073 0.3533 0.00 1.00 0.06
LLaMA3-8B 0.2496 0.3533 0.00 0.88 0.18
LLaMA3-70B 0.4747 0.4733 0.40 0.64 0.38

ZS_PE
GPT-3.5 0.3798 0.4533 0.62 0.72 0.02
LLaMA3-8B 0.3120 0.4000 0.34 0.86 0.00
LLaMA3-70B 0.4755 0.4933 0.60 0.66 0.22

ZS_PE_CoT
GPT-3.5 0.3509 0.4200 0.68 0.56 0.02
LLaMA3-8B 0.4033 0.4533 0.60 0.68 0.08
LLaMA3-70B 0.3581 0.4267 0.62 0.64 0.02

FS
GPT-3.5 0.2514 0.3667 0.04 0.96 0.10
LLaMA3-8B 0.4068 0.4267 0.22 0.72 0.34
LLaMA3-70B 0.4131 0.4200 0.26 0.64 0.36

FS_PE
GPT-3.5 0.2576 0.3667 0.18 0.92 0.00
LLaMA3-8B 0.2928 0.3933 0.08 0.98 0.12
LLaMA3-70B 0.3856 0.4600 0.56 0.80 0.02

Bold values are the best per column. Underlined values are the second best per column.

The results reveal varied performance across models and settings in inferring crash
severity outcomes. LLaMA3-70B consistently exhibited superior performance, particu-
larly with zero-shot prompt engineering (ZS_PE), achieving the highest macro F1-score
(0.4755) and macro-accuracy (49.33%). Furthermore, LLaMA3-70B attained the second-best
performance in macro F1-score (0.4747) and macro-accuracy (47.33%) under the zero-shot
with Chain-of-Thought (ZS_CoT) setting. These findings suggest that both prompt engi-
neering and Chain-of-Thought methodologies contribute positively to model performance.
Nevertheless, no single technique demonstrated consistent superiority across all severity
categories. For fatal accidents, GPT-3.5 with zero-shot prompt engineering and Chain-of-
Thought (ZS_PE_CoT) exhibited the highest accuracy (68%). In contrast, for “serious injury”
accidents, GPT-3.5 and LLaMA3-8B in the plain zero-shot setting (ZS), as well as GPT-3.5 in
the zero-shot with Chain-of-Thought scenario (ZS_CoT), achieved 100% accuracy. How-
ever, it is crucial to note that in these settings, these models performed poorly for fatal
and “minor or non-injury” accidents, indicating an inherent bias toward the intermediate
severity category of “serious injury”.

Interestingly, LLaMA3-70B with the basic zero-shot approach demonstrated the best
inference performance for “minor or non-injury” accidents (58% accuracy) while main-
taining a relatively balanced performance across fatal and serious injury accidents. This
suggests a robust generalization capability of LLaMA3-70B across crash severity categories.

The implementation of prompt engineering, particularly in zero-shot settings, gener-
ally enhanced performance across models. This improvement was especially pronounced
for fatal accident classification, where rephrasing the “Fatal accidents” label to the soft
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version of “Serious accident with potentially fatal outcomes” facilitated maintenance of
classification accuracy while adhering to LLMs’ aligned behaviors.

These results underscore the complexity inherent in crash severity inference task,
as no single approach consistently outperformed others across all metrics and severity
categories. These findings highlight the need for careful selection of models and method-
ologies based on specific task requirements and the emphasis of severity categories in the
application context.

5.3. Effectiveness of Prompt Engineering (PE) and Chain-of-Thought (CoT)

Figure 8 demonstrated the performance gains by CoT and PE as compared to the plain
zero-shot setting. Both ZS_CoT and ZS_PE consistently demonstrate enhanced performance
in terms of Macro F1-score and Macro-accuracy across all three models evaluated. This
improvement underscores the efficacy of CoT and PE in boosting model performance in
zero-shot scenarios.

Figure 8. Effect of PE or CoT separately.

Notably, the implementation of PE (ZS_PE) yields more substantial improvements
relative to CoT (ZS_CoT). This differential in enhancement suggests that, within the context
of this specific task, the reformulation of prompts may be particularly effective in guiding
model outputs as compared to the structured reasoning approach with CoT. The consistent
pattern of improvement across different model architectures and sizes indicates the broad
applicability of these techniques in zero-shot learning paradigms.

As illustrated in Figure 8, CoT improves both Macro F1-score and Macro-Accuracy
across all three models in the plain zero-shot (ZS) setting. Based on the results summarized
in Table 3, GPT-3.5 and LLaMA3-8B show improved recognition of “Minor or non-injury”
accidents. LLaMA3-70B demonstrates substantial gain in identifying “Serious injury”
accidents and “Minor or non-injury” accidents, with only a slight reduction in performance
for “Fatal” accidents. The use of CoT enables LLMs to better understand and reason
through questions, leading to more reliable and explainable inferences.

The PE technique also leads to increased Macro F1-score and Macro-Accuracy across
all three models compared to the plain zero-shot (ZS) setting, as depicted in Figure 8.
Notably, it greatly enhances the models’ ability to detect Fatal accidents by simply softening
the label description from “Fatal accident” to “Serious accident with potentially fatal
outcomes”, resulting in more balanced performance across severity categories. Compared
to the zero-shot baseline, GPT-3.5 with PE attains a remarkable increase in Fatal accident
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detection, with accuracy rising from 0% to 62%. Similarly, LLaMA3-8B and LLaMA3-70B
show increases in fatal accident accuracy from 0% to 34%, 44% to 60%, respectively.

These improvements may stem from the fact that PE directs LLMs to concentrate more
specifically on accident severity classification, potentially addressing any initial tendency
to be overly cautious or generalized in their responses. This targeted guidance enables the
models to make more precise distinctions among accident severity categories.

Figure 9 shows the comparative performance of the three models across incremental
settings from ZS to ZS_PE and ZS_PE_CoT.

Figure 9. Performance comparison of models in ZS, ZS_PE, and ZS_PE_CoT.

In both the zero-shot (ZS) and zero-shot with PE (ZS_PE) settings, LLaMA3-70B consis-
tently outperforms the other two models. In the ZS setting, LLaMA3-70B achieves a macro
F1-score of 0.4541 and a macro-accuracy of 45.33%, significantly higher than both GPT-3.5
(0.1812 and 34.00%) and LLaMA3-8B (0.1818 and 34.00%). This performance advantage is
maintained in the ZS_PE setting, where LLaMA3-70B shows further improvement with a
macro F1-score of 0.4755 and a macro-accuracy of 49.33%, compared to GPT-3.5 (0.3798 and
45.33%) and LLaMA3-8B (0.3120 and 40.00%).

However, the performance dynamics shift in the setting of zero-shot with PE and CoT
(ZS_PE_CoT). In this setting, LLaMA3-8B leads the performance with a macro F1-score
of 0.4033 and a macro-accuracy of 45.33%, surpassing both GPT-3.5 (0.3509 and 42.00%)
and LLaMA3-70B (0.3581 and 42.67%). GPT-3.5 and LLaMA3-70B experience slightly
decreased performance under the ZS_PE_CoT setting as compared to the ZS_PE setting.
In contrast, LLaMA3-8B show improved macro-F1-score from 0.3120 to 0.4033 as well as
increased macro-accuracy from 0.4000 to 0.4533. This shift in performance suggests that
the combination of PE and CoT reasoning are particularly more beneficial to small models,
such as LLaMA3-8B, than large models like GPT-3.5 and LLaMA3-70B for the crash severity
inference task.

In the ZS_PE_CoT setting, all three models, GPT-3.5, LLaMA3-8B, and LLaMA3-
70B, demonstrate improved recognition of fatal accidents, evidenced in Table 3. This
enhancement indicates that the combination of CoT and PE is particularly beneficial for
identifying more severe crashes than less severe ones.

5.4. Zero-Shot vs. Few-Shot Learning

In the FS setting, the inclusion of three examples improves both the macro F1-score
and macro-accuracy compared to the ZS setting, boosting classification accuracy of GPT-3.5
and LLaMA3-8B for “Fatal accident” and “Minor or non-injury accident”. However, this
comes at the expense of accuracy for “Serious injury accident”. This indicates a potential
trade-off in classification performance across severity categories or a decrease of the model
bias in the ZS setting.

Moreover, smaller models like LLaMA3-8B generally benefit more from few-shot
learning than larger models, such as GPT-3.5 and LLaMA3-70B, as evidenced by a notable
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increase in Macro F1 score from 0.1818 to 0.4068. Nevertheless, LLaMA3-70B, being a larger
model, performs slightly better in the zero-shot settings, suggesting it may have gained
some general knowledge in traffic safety domain during the pre-training stage, where the
zero-shot prompting can draw upon such knowledge.

In contrast, the effects of PE in the FS setting exhibit more variations across models.
GPT-3.5 demonstrates improvements in Macro F1-score and Fatal accident accuracy, and
LLaMA3-70B shows remarkably improved inference accuracy for “fatal accident” and
“Serious injury accident”. Conversely, LLaMA3-8B shows decreased macro F1-score and
macro-accuracy, indicating that PEin the few-shot setting may not be equally beneficial for
models of different sizes.

It important to note that we did not explore the aspect regarding the choice of the
examples in the FS setting, which might have a varying effect on different models.

6. Discussions

In this section, we focus on the reasoning abilities of LLMs with CoT by analyzing
their responses using word clouds. Additionally, We highlight the limitations of the current
work and suggest directions for future reseearch.

6.1. Can LLMs with CoT Yield Logical Reasoning for Their Inference Outcomes?

CoT is a unique technique to augment LLM’s reasoning capability. But how reasonable
is the reasoning by LLMs with CoT? We aim to examine the responses of LLMs with CoT
from the view of a traffic safety engineer. Specifically, the responses of LLaMA3-70B in the
ZS_CoT setting are evaluated due to its best performance in this setting (see Table 3).

As a qualitative assessment, three word clouds are drawn separately with respect to the
three severity categories, i.e., “Minor/non-injury”, “Serious injury”, and “Fatal” accidents
(see Figures 10–12). Note that only the correct inferred responses are used in creating
these word clouds, where the bigger sizes of words indicate their higher frequencies in
the LLMs’ responses. These visualizations offer insights into the LLM’s conceptualization
and reasoning processes regarding accident causation and factors considered during the
severity inference.

In the three word clouds (Figures 10–12), some words consistently appear regardless
of severity outcomes, including “collision”, “intersection”, “vehicle”, and “driver”. This
suggests a core set of concepts that the LLM associates with traffic accidents. Additionally,
LLaMA3-70B demonstrates consideration of diverse factors in its accident analysis, including:

• Crash-related factors (e.g., “rear-end collision”, “pedestrian”, “opposite directions”,
“corner”)

• Environmental conditions (e.g., “wet road surface”, “rain”, “dark”, “stop-go”)
• Driver behavior (e.g., “failing to yield”, “misjudgment”, “turning”, “give way”, “ex-

cessive speed”)
• Driver characteristics (e.g., “male” “older driver”, “age”)
• Vehicle factors (e.g., “bus”, “headlights”, “seatbelt”)
• Road design elements (e.g., “traffic lights”,“intersection”, “curved road”, “t intersection”)

The word cloud for “Minor or non-injury” accidents (Figure 10), is characterized by
distinct terms suggesting lower impact and preventative measures, such as “Low speed”
and “slow”, indicating the LLM associates lower velocities with less severe outcomes.
“Seatbelt” and “failed” suggest a focus on minor infractions and safety equipment. “Stop”
and “time” may relate to issues at intersections or reaction times. “Rear-end collision”, and
“corner” also are prominent, indicating that LLM associates rear-end collision or accident
impact on corners of vehicles with less severe outcomes.
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Figure 10. Word cloud for correctly inferred “Minor or non-injury accident” in the ZS_CoT setting.

Figure 11. Word cloud for correctly inferred “Serious injury accident” in the ZS_CoT setting.

The word cloud for “Serious injury accident”, shown in Figure 11, is characterized
by terms suggesting moderate impact, such as those relating to drivers (e.g., “give way”,
“misjudged”) and locations (e.g., “intersection”, “cross intersection”). “Wet”, “rain”, and
“visibility” emerge, highlighting adverse weather or environmental conditions. “60 km/h”
and “50 km/h” reveals relatively high speeds are associated with more severe outcomes.
“Four” and “three” appear, indicating potentially more vehicles or individuals involved in
an accident with severe outcomes. “Rear-end collision” appears again, which combines
with “intersections” and the higher speeds (e.g., “60 km/h”), could lead to “Serious
injury” accidents.
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Figure 12. Word cloud for correctly inferred “Fatal accident” in the ZS_CoT setting.

The word cloud for “Fatal accident” reveals a marked shift towards high-energy impact
scenarios (see Figure 12). “Head-on” and “high-impact” are among the most prominent
terms. Specifically, higher speeds and speeding (e.g., “100 km/h”, “excessive speed”)
are associated with fatal accidents. “Pedestrian” gains significance, reflecting heightened
vulnerability. “Losing control” and “out of control” suggest more catastrophic situations
or driver errors. “Rural road”, “curved road” are also important terms identified in the
word cloud. Furthermore, three distinct examples are provided in Figure 13 to illustrate
the CoT’s reasoning process.

Figure 13. Output examples for fatal accidents from LLaMA3-70B in ZS_CoT setting.
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6.2. Limitations and Future Research

One of the primary limitations of this study is the relatively small sample used,
including only 150 instances (50 for each of the three severity categories). This limited
dataset may not fully capture the variability and complexity of diverse real-world crash
scenarios, potentially affecting the generalizability of the findings.

For future research, several directions can be explored to further enhance the perfor-
mance and applicability of LLMs in crash analysis and modeling:

• Expanding the dataset to include a larger and more diverse set of samples will allow
for a more comprehensive evaluation of the models’ capabilities and improve the
robustness of the results.

• Fine-tuning LLMs with more extensive and domain-specific data (e.g., crash reports
and databases) can significantly enhance their domain knowledge to better understand
the nuances and specificities of traffic accidents, leading to more accurate and reliable
reasoning and inference.

• Investigating explanation methods in conjunction with LLMs can yield more inter-
pretable and trustworthy results.

7. Conclusions

In conclusion, this study demonstrates the efficacy of LLMs in crash severity reasoning
and inference using textual narratives of crash events constructed from structured tabular
data. Our comprehensive evaluation of modern LLMs (GPT-3.5-turbo, LLaMA3-8B, and
LLaMA3-70B) across different settings (zero-shot, few-shot, CoT, and PE) yields insightful
findings. LLaMA3-70B consistently outperformed other models, especially in zero-shot set-
tings. CoT and PE techniques lead to enhanced performance, improving logical reasoning
and addressing alignment issues.

Notably, the use of CoT provided valuable insights into LLM reasoning processes,
revealing their capacity to consider multiple factors such as environmental conditions,
driver behavior, and vehicle characteristics in the crash severity inference task. These
findings collectively suggest that LLMs hold considerable promise for crash analysis and
modeling. Future research may explore other safety applications beyond the severity
analysis and inference.
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