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Abstract: This article describes a novel method for the multi-step forecasting of PM2.5 time series
based on weighted averages and polynomial interpolation. Multi-step prediction models enable
decision makers to build an understanding of longer future terms than the one-step-ahead prediction
models, allowing for more timely decision-making. As the cases for this study, hourly data from three
environmental monitoring stations from Ilo City in Southern Peru were selected. The results show
average RMSEs of between 1.60 and 9.40 ug/m?> and average MAPEs of between 17.69% and 28.91%.
Comparing the results with those derived using the presently implemented benchmark models (such
as LSTM, BiLSTM, GRU, BiGRU, and LSTM-ATT) in different prediction horizons, in the majority of
environmental monitoring stations, the proposed model outperformed them by between 2.40% and
17.49% in terms of the average MAPE derived. It is concluded that the proposed model constitutes a
good alternative for multi-step PM2.5 time series forecasting, presenting similar and superior results
to the benchmark models. Aside from the good results, one of the main advantages of the proposed
model is that it requires fewer data in comparison with the benchmark models.

Keywords: PM2.5; multi-step forecasting; weighted averages; polynomial interpolation; deep
learning

1. Introduction

The global burden of disease associated with the exposure to air pollution causes
millions of deaths and years of healthy life lost annually [1]. The burden of disease
attributable to air pollution is estimated to be on par with other major global health risks,
such as unhealthy diet and smoking [2,3]; air pollution is now recognized as the greatest
environmental threat [4] to human health.

PM2.5 is one of the main pollutants [5-7], and it can accumulate in the respiratory
system. It is associated with numerous negative effects on the health, such as increased
respiratory diseases and decreased lung function. Thus, PM2.5 can cause premature
death in people with heart [8] or lung disease [9,10] and can lead to non-fatal myocardial
infarctions [11], irregular heartbeats [12], aggravated asthma [13,14], reduced lung function,
and increased respiratory symptoms, such as irritation in the airways [15], cough, and
difficulty breathing.

In this context, it is clear that there is a need to implement air quality monitoring
stations and, from these, develop tools that allow for the analysis and prediction of the
volumes of PM2.5 and other pollutants. According to the literature, numerous works
have been found that address the topic of PM2.5 forecasting; however, most studies have
addressed PM2.5 forecasting through the implementation of one-step-ahead forecasting.
This means that the models predict only one value, which is not very useful if the prediction
of more than one value is required; thus, in this context, multi-step forecasting models
become important.
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The proposed model is a novel and simple multi-step model for PM2.5 forecasting. It
is inspired by weighted moving averages [16,17] and polynomial interpolation [18]; it uses
data that are closer to the predicted values because these are more relevant [19], assuming
that the near future is close to the near past. In this sense, the proposed model uses data
from just two days (48 h) to predict 24, 48, and 72 h in the future; thus, it requires a small
amount of data to produce similar and superior results to those made by the state-of-the-art
techniques such as deep learning-based approaches, including long short-term memory
(LSTM), bidirectional LSTM (BiLSTM), gated recurrent unit (GRU), bidirectional GRU
(BiGRU), and LSTM with attention mechanism (LSTM-ATT).

The main contributions of this work are as follows:

- Anovel model for multi-step forecasting of PM2.5 time series;

- A comparative analysis between proposal results and benchmark models based on
deep learning;

- A web application for PM2.5 time series forecasting.

Some of the limitations of this work lie in the type of forecasting model that is proposed
here (a univariate model) and in the number of case studies which is limited to three
monitoring stations located in Southern Peru.

2. Literature Review
2.1. Overview of Forecasting Models

Forecasting models for time series have evolved from statistical models to machine
learning and deep learning models. Among the statistical models, one of the best-known
models is ARIMA [20]. Machine learning-based models include the support vector machine
(SVM) [21], nearest neighbors regression [22], and ensemble models such as random
forests [23], gradient boosting [24], and Adaboost [25]. Deep learning models such as those
based on recurrent neural networks include LSTM, GRU, BiLSTM, BiGRU, and RNNs with
attention layers; finally, those based on Transformers [26,27] are gaining popularity.

2.2. One-Step-Related Works in PM2.5 Forecasting

Most of the related works have proposed and implemented LSTMs; among these,
the research presented in [18,28-33] has included decomposition techniques, and others
have combined LSTM with other techniques. In [30], the authors added a decomposition
technique named Singular Spectrum Analysis (SSA). In [28,29], bidirectional LSTM (BiL-
STM) and LSTM were used, respectively. In [31], LSTM was combined with convolutional
neural networks (CNNs). In [33], a bidirectional LSTM model was combined with a CNN
model. In [32], an LSTM was used with decomposition techniques such as CEEMDAN and
FCM. Additionally, in [34,35], GRU was implemented with data augmentation and with
Q-Learning, respectively.

Support vector regression (SVR) and random forest have been used in works such
as [36-38]. The first uses SVR in a hybrid way with quantum particle swarm optimiza-
tion (QPSO), while the second adds a decomposition technique named hybrid modified
variational mode decomposition, and the last one uses a random forest model alone.

Furthermore, some related works, including [39-43], implemented different approaches
to those cited before. In [39], a Hammerstein recurrent neural network was proposed; in [24],
a decomposition ensemble learning model was used, based on the variation-mode decom-
position approach and a whale-optimization algorithm (IWOA); in [42], an attention-based
deep neural network was used; in [43], a multivariate deep belief network using PM2.5 and
temperature data was implemented; in [40], a multiple model adaptive unscented Kalman
filter was utilized.

2.3. Multi-Step-Model-Related Works in PM2.5 Forecasting

In [44,45], the authors proposed an extreme learning machine (ELM), which was used
to obtain MAPEs between 5.11% and 37.23% for three-step forecasting and MAPEs between
5.12% and 22.2% for seven-step forecasting.
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In [46], a hybrid CNN-LSTM model was used for a ten-step forecasting, obtaining
MAPEs between 22.09% and 25.94%.

In [47], AdaBoost was proposed, obtaining MAPEs between 15.32% and 23.75% for
three-step forecasting.

In [48], a support vector machine (SVM) was used for four-step predictions, obtaining
RMSEs between 8.16 and 39.04 ug/m?.

In [49], a self-organizing memory neural network was implemented for 1-, 4-, 8-, and
12-day forecasting, obtaining MAPEs between 6.66% and 14.08%.

In [50], a feature-selection approach based on a genetic algorithm was used to im-
plement an LSTM model for one- to six-step forecasting, obtaining MAEs between 3.592
and 6.684.

In [51], a BiLSTM was used for three-step forecasting, obtaining MAPEs between
27.33% and 40.73%.

In [52,53], a CNN was proposed for ten-step predictions and four-step predictions,
obtaining MAPEs between 28.51% and 33.29%.

Finally, in [54], a point system for three-step forecasting was implemented, obtaining
MAPEs between 7.53% and 16.18%.

According to the literature review for single and multi-step PM2.5 forecasting, most
researchers have focused on machine learning and deep learning techniques; some re-
searchers considered hybrid models, decomposition techniques, and data augmentation.
Most researchers addressed the problem of PM2.5 forecasting in a single step. According
to [55], decisions about air quality often need to be made more than 10 h in advance;
according to the literature, the maximum number of steps used for PM2.5 forecasting was
10 steps ahead (10 h). This finding served as a motivation for this work, prompting the
authors to propose a different multi-step forecasting proposal with a greater number of
steps than those reported in the literature. It is important to highlight that, according to the
literature, the term “steps” refers to the number of forecasted points.

The main differences between the related literature and the present study are summa-
rized in Table 1.

Table 1. Differences between related research and the present study.

Related Research This Work
- Most existing studies are based on - The present study is based on weighted
machine learning and deep learning. averages and polynomial interpolation.

- Most existing studies were implemented The present study was implemented for

for one-step forecasting. multi-step forecasting.
- The models proposed in existing studies - The model proposed in the present paper
require a lot of training data. requires very few training data.

- The models proposed in existing studies
are based on different and more complex
processes.

- The model proposed in the present paper
is based on the simple correlation of days.

3. Materials and Methods
3.1. Data Collection

The hourly data used for this work were downloaded from OEFA’s server (located
at https:/ /pifa.oefa.gob.pe/VigilanciaAmbiental /, accessed on 2 May 2023), and they
span the period between 1 August 2020 and 30 April 2023. They correspond to three
environmental monitoring stations (Pacocha, Bolognesi, and Pardo) located at Ilo city,
Moquegua region, Southern Peru.
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The downloaded data had several missing values, so the days that presented missing
values were discarded. The available records for each station remaining after this process
are shown in Table 2. Likewise, since the present study addresses a regression problem,
according to the literature for statistical models, the dataset was split into the following
two sets: the training set (80%) and the test (20%) set.

Table 2. Data of environmental monitoring stations.

Station Total Hours Train 80% Test 20%
Pardo 21,960 17,568 4392
Bolognesi 18,120 14,496 3624
Pacocha 16,344 13,080 3265

3.2. Selection of Days

The proposed model does not work with all the training data; it only works with the
two historical days. For this selection, first, the correlations of the hours between the last
24 days of the training data of the three stations were analyzed separately. For this, the
data were organized in a matrix manner, and the correlation matrix that is commonly used
for feature selection [56] in classification tasks using machine learning and deep learning
models was utilized. The respective correlation matrices for each monitoring station are
shown in Figures 1-3.
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Figure 1. The 20-day correlation of Pacocha station.
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Figure 3. The 20-day correlation of Pardo station.
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In this study, the correlation between a given day and the subsequent days is of interest;
this correlation can be determined by looking at the values above the main diagonal of the
respective correlation matrix, C. If the day to be analyzed is located on the main diagonal
in row i, then the prior days to i will begin in row i — 1, column j = i; thus, the average
correlation is given by Equation (1). For the following previous day, it also starts in row
i — 1 butin column j=i+1 (2). The following previous day starts in row i — 1, column j =i
+ 2 (3), and so on.

n—1

o ' Ci 1

Cl Zz:nl_zl 1,i (1)
n—2

o ' C: .

c, El=1n_zzl,z+1 2
n—3

o { C: 1

C l:ln : 31,l+2 (3)

Equations (1)-(3) can be summarized in (4) as follows:

n—j
X1 Cicvicgy
n—j

(4)

where C is the average correlation of day ;.
Using Equation (4), Table 3 was formulated.

Table 3. Average correlations between days.

Day Pacocha Bolognesi Pardo Avg

1 0.2637 0.1952 0.1450 0.2013 £ 0.06
2 0.1903 0.1301 0.1378 0.1527 £ 0.03
3 0.3079 0.1488 0.2632 0.2400 £+ 0.08
4 0.2539 0.0417 0.2411 0.1789 £ 0.12
5 0.2413 0.1026 0.1729 0.1723 £ 0.07
6 0.2404 0.0639 0.2595 0.1879 £ 0.11
7 0.3393 0.0650 0.2604 0.2216 £ 0.14
8 0.3589 0.0984 0.2152 0.2242 £+ 0.13
9 0.1939 0.0779 0.2572 0.1763 £ 0.09
10 0.2409 0.1284 0.1451 0.1715 £ 0.06
11 0.1685 0.0992 0.1410 0.1362 £ 0.03
12 0.2378 0.1378 0.1965 0.1907 £ 0.05
13 0.2683 0.2056 0.1785 0.2175 £ 0.05
14 0.1554 0.2822 0.2514 0.2297 £ 0.07
15 0.2515 0.2429 0.2888 0.2611 £ 0.02
16 0.2057 0.2890 0.1607 0.2185 £ 0.07
17 0.0924 0.4475 0.0662 0.2020 = 0.21
18 0.1612 0.2635 0.2781 0.2343 £+ 0.06
19 0.0845 0.2231 0.0313 0.1130 £ 0.10
20 0.1950 0.1938 0.2017 0.1968 £ 0.00
21 0.1806 —0.1380 0.1579 0.0668 + 0.18
22 0.2255 0.0505 0.3517 0.2092 £ 0.15
23 —0.2536 —0.2328 0.1823 —0.1014 £ 0.25

According to Table 3, on day i, there is an average correlation of 0.2013 with the
previous day, i — 1, an average correlation of 0.1527 with day i — 2, an average correlation
of 0.2400 with day i — 3, and so on.

It is important to highlight that, according to Figure 4, the different numbers of days
were used for estimating average correlations. Thus, for day i — 1, there are n — 1 days,
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for day i — 2, there are n — 2 days, and so on; for the last day, or the one furthest from the
main diagonal, there is only one day.

day3

day?

dayl

_ predicted dayl

dayl

predicted dayl
predicted day2

predicted dayl
predicted day2

predicted day3

Figure 4. How matrix M is used to make predictions.

Just two days were chosen for the implementation of the proposed model. A greater
number of days can be chosen, but the results do not improve significantly. According to
Table 1, for the implementation of the proposed model, days 1 and 3 were chosen. Day
1 was chosen because—despite not having the highest average correlation—it showed a
good correlation with the highest number of days (0.2013), with little deviation. It can be
seen in all stations that there are correlations greater than 0.14. Similarly, day 3 was selected
because it has an average correlation of 0.2400, which is higher than those of day 1, day 2,
day 4, day 5, day 6, and others. Days 7 and 8 present average correlations higher than 0.22
and are higher than day 1, but they were discarded due to their deviation. For the Pacocha
and Pardo stations, their correlations are higher than 0.30 and 0.20, respectively; for the
Bolognesi station, the correlations are less than 0.10.

The result of this stage is a matrix, M, of the order 3 x 4, with the data of the last
72 h, according to Equation (5). The first row corresponds to day 3, the second to day 2,
and the third to day 1. New rows (4th, 5th, 6th, ...) are added according to the performed
predictions.

Sn-71 -+ Sp-48
M= |Sy-47 ... Sp-m ®)
Sy o3 ... Sy

Here, S is the training data vector of an environmental monitoring station and # is the
vector length.

The first row contains the 24 h of day 3, the second contains the 24 h of day 2, and the
third contains the 24 h of day 1.

According to Figure 4, in the first step, M was used to obtain the predicted day 1 (24 h
ahead) using day 1 and day 3. Then, the predicted day 2 was obtained using day 2 and the
predicted day 1. Finally, the predicted day 3 was obtained using day 1 and the predicted
day 2. More details about the estimation of predicted days are presented in the next section.

3.3. Estimating Weighted Averages (WAs)

The hours of the two selected days in the previous stage were averaged; however,
this was not performed in the traditional way, considering the same weight for each day.
Instead, the values from Table 2 were used to create the matrix Corrs (6). The weights were
important since the days did not have the same correlation.

0.2637 0.3079
Corrs = |0.1952 0.1488 (6)
0.1450 0.2632

The first row of the matrix represents the weights of days 1 and 3 for the Pacocha
station, the second represents the weights of days 1 and 3 for the Bolognesi station, and the
third represents the weights of days 1 and 3 for the Pardo station.

From (5), the weights for each station were obtained according to (7) as follows:

wj = Corrs;j/(Corrs;; + Corrsilz) (7)
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where i is the environmental monitoring station. According to (5), j is the day, 1 is the first
day, and 2 is the third day. wy is the weight for the first day and wj3 is the weight for the
third day.

According to Figure 4, in the predicted day 1, S;,_71 and S, _»3 were used for the first
hour, S;,_7y and S;,_, were used for the second hour, S, _g9 and S;,_»; were used for the
third hour, and so on.

Then, the weighted average (WA) Equations (8)—(10) for different predicted days were
implemented.

El = erj * Wy + M3,]' * W3 (8)
Er, = MZ,j * W + M4,]' * W3 )
E3 = M3,]' * Wy + M5,]' * W3 (10)

E1, E», and Ej are the vectors of predicted days 1, 2, and 3, respectively. Equations (8)—(10)
can be summarized in (11) as follows:

E;, = Mi,j * Wp + Mi+2,j * W3 (11)

where i is the predicted day, j is the j-th hour of the day, w; is the weight for day 1, and w;
is the weight for day 3.
An example of how WA (11) predicts 24 h for Pardo station can be seen in Figure 5.

13

12

1

10

ug/m?

0 5 10 15 20
Hour

Figure 5. The 24 predicted hours with the weighted average equation.

3.4. Applying Polynomial Interpolation (PI)

To reduce the error of the weighted average (WA) predictions, in this stage, polynomial
interpolation (PI) was used to smooth the curve of the predicted values, bringing them
closer to the observed ones.

For this, from the 24 predicted points in each iteration of WA, a representative number
was selected; in this case, the optimal number was seven, being the seven positions, 0, 3, 7,
11, 15,19, and 23. Then, NumPy’s polyfit function was used with the optimal degree of
five. Finally, the obtained function was used to predict the 24 values. The corresponding
polynomial function is expressed in Equation (12) as follows:

pi=ag+a1x+ apx? + azx® + a4x4 + as5x® (12)
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where ay, a1, a, a3, a4, and as are the coefficients of the polynomial function.
Figure 6 shows a comparison between the observed values, the WA, and the WA + PI

predicted values for 24 h for the Pacocha station.

13 { — Observed
=== WA
=== WA+PI

12 A1

11 A

10 A

ug/m?

6 T T T

0 5 10 15
Hour

Figure 6. Multi-step predictions of WA and WA + PL

The corresponding algorithm for the WA + PI proposal is shown in Figure 7.

1 procedure WA PI(RW,wl,wZ)
2 begin
3 n=length (RW[O])}
4 preds=[]
5 days=3
B i=0
7 points=[0,3,7,11,15,19,23]
B8 ¥=points
g9 while i<davys
10 begin
11 res=[]
12 for =0 -»n
13 begin
14 p=RW[1] [J]1Fwl+RW[14+2] []] *w2
15 res.append (p)
16 end
17 v=]
15 for k = 0->length{points)
19 v.append (res [points [k]])
20 poly = numpy.polvld (numpv.polyfit{x, v, 53}
21 resl=[]
22 for k=0 ->n
23 resl.append {poly (k)]
24 preds.append (resl)
25 EW.append (resl)
26 i+=1
27 end
28 end

Figure 7. The WA + PI algorithm.

20
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According to Figure 7, the procedure receives RW, wy, and w, as parameters. RW is a
matrix with the data from the last three days of the training data. The algorithm was set to
predict 3 days (72 h); for this, an iterative process (while) was performed, going from 0 to 2,
predicting 24 h in each iteration. Between lines 12 and 16, the WA predictions were made.
Between lines 17 and 20, from the WA predictions, the polynomial function was obtained
using the array points. Between lines 21 and 25, the polynomial function was used to make
predictions, and the RW matrix was updated. The process continued, with the next day
being used to predict the following 24 h. The loop ended when 72 h had been predicted.

The corresponding obtained results are described in the Results and Discussion section.

3.5. Evaluation

The evaluation of the results was carried out through the root mean squared error
(RMSE), which allows one to measure the error in terms of ug/m3, mean absolute percent-
age error (MAPE), which allows one to measure the error of the predictions in percentage
terms, and finally the correlation coefficient R?, which allows one to measure the correla-
tion between the predicted and observed values. These metrics are implemented through
Equations (13)—-(15) as follows:

Yy (Pi - Oi)?

RMSE = - (13)
MAPE = %2;;1 (Oioi * 100‘ (14)

Y74 (0i—0)’xiy (P —P)?

where P is the predicted value vector, O is the observed value vector, O is the mean of
observed values, and P is the mean of the predicted values.

4. Results and Discussion

In this section, the achieved results are described.

4.1. Results
4.1.1. Weighted Averages and Polynomial Interpolation (WA + PI)

Tables 4-6 show comparisons between WA and WA + PI for each environmental
monitoring station.

In Tables 4—6, it can be seen that, in terms of RMSE (66.67%) and MAPE (50.00%), in
most cases, polynomial interpolation (PI) allows one to improve the results derived using
the weighted average (WA), improving the WA between 0.0582% and 1.6433%; hence, one
can see the importance of PI in the implementation of the model proposed in this work.

Table 4. Results of WA and WA + PI (Pacocha).

. Predicted Hours
Technique
24 48 72
RMSE
WA 4.8293 10.9212 12.9891
WA +PI 4.0954 11.1827 12.9212
MAPE
WA 37.8821 31.0839 30.6611
WA +PI 27.2208 29.95 29.5541
R2
WA 0.7781 0.1642 0.1293

WA + PI 0.5412 0.1175 0.1209
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Table 5. Results of WA and WA + PI (Bolognesi).

. Predicted Hours
Technique
24 48 72
RMSE
WA 2.9791 6.5504 5.7880
WA + PI 3.2104 6.6086 5.7738
MAPE
WA 19.9318 25.1731 26.1533
WA + PI 21.5751 25.2608 25.3131
RZ
WA 0.0111 0.0025 0.0031
WA +PI 0.0086 0.0000 0.0054
Table 6. Results of WA and WA + PI (Pardo).
. Predicted Hours
Technique
24 48 72
RMSE
WA 1.7193 2.1458 2.1535
WA + PI 1.2283 1.7856 1.8002
MAPE
WA 13.3863 18.0499 20.9966
WA + PI 13.5280 19.1461 20.3845
RZ
WA 0.2852 0.1614 0.0000
WA +PI 0.6414 0.2315 0.0014

4.1.2. A Web Application Based on WA + PI

The constructed model was used for the implementation of a web application. It has a
simple architecture, which includes the front-end and the back-end. HTMLS5, Javascript,
Bootstrap, and Chart.js were used to implement the front-end. The back-end was Python,
and the Flask framework was used for the development of the web application. Figure 8
shows the main view of the web application.

v [E Prediccidn dePM2.5 x  + - o x

<« C @ Hhttp/flocalhost/2024/pm2.5/pm2.5/index] himl# Qv B9 O @ Renicaparasctuslizar

WAPI10  Home  PM25 Forecasting
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4.2. Discussions
4.2.1. Comparison with Benchmark Models

To evaluate how the proposed model contributes to advancing the state of knowledge
in this field, well-known, multi-step, deep learning-based, state-of-the-art models—such as
LSTM, BiLSTM, GRU, BiGRU, and LSTM-ATT—were implemented.

LSTM is a type of recurrent neural network (RNN) that is used to process and predict
data sequences. An LSTM cell is composed of an input gate, an output gate, and a forget
gate, which enables useful information to be remembered.

The BiLSTM is based on LSTMs, with the main difference being that it is bidirectional.
In LSTMs, information flows in a single direction from left to right; meanwhile, with
BiLSTM, information flows in both directions, from left to right and from right to left.
BiLSTMs can learn more complex relationships, but the computational cost is higher.

GRU is a type of RNN; GRU has fewer gates (only two: reset and update) and fewer
parameters than LSTMs. LSTMs are more complex and effective in modeling complex
patterns; meanwhile, GRU is more efficient and easier to train. The choice between an
LSTM and a GRU depends on the specific problem and the available resources.

BiGRU is similar to BILSTM, with the main difference being that the BiGRU is based
on GRU.

LSTM-ATT is a variant of LSTMs that incorporates an attention mechanism to improve
the ability to model data sequences. The attention mechanism allows the model to focus on
certain parts of the input sequence that are more relevant to a specific task. This is useful
when working with long sequences, where only some parts of the sequence are important
for predictions.

A graphical view of the benchmark model architectures can be seen in Figure 9.

The hyperparameters of the benchmark models are listed in Table 7.

Table 7. Hyperparameters of the benchmark models.

Model Hyperparameters
LSTM [30,30,30,n *], Ir = 0.001, drop_rate = [*,0.1,0.1]
BiLSTM [30,30,30,n *], Ir = 0.001, drop_rate = [*,0.1,0.1]
GRU [30,30,30,n *], Ir = 0.001, drop_rate = [",0.1,0.1]
BiGRU [30,30,30,n *] Ir = 0.001, drop_rate = [",0.1,0.1]
LSTM-ATT [100,1100,n *], Ir = 0.001

* n is the number of hours to be predicted (24, 48 or 72).

The lock-back for each model was set to 24 h. RNNs, with no attention mechanism, in-
clude three layers of 30 neurons each, while RELU is the activation function, and drop_rates
of 0.1 were used after each layer to avoid overfitting.

An LSTM with an attention mechanism includes one LSTM layer with 100 neurons,
followed by a dense layer with one neuron and tanh as activation, an activation layer
(softmax), a repeatVector(100), a permute layer, a multiply layer, a lambda, and a final
dense layer with n neurons, depending on the number of hours to be predicted.

All models were trained with 100 epochs, using adam as the optimizer and mse as the
loss function. The 100 epochs used produced the best results for each model.

The obtained results are summarized in Tables 8-10.

According to Table 8, for the Pacocha station, in terms of RMSE, the proposed model
outperformed the benchmark models in most cases (66.67%) for 24 and 72 predicted hours,
obtaining RMSEs of 4.0954 and 12.9212, respectively. For 48 predicted hours, the proposed
model was only surpassed by the BiILSTM and LSTM. In terms of MAPE, the proposed
model outperformed all the benchmark models (100%). In terms of RZ, it outperformed all
benchmark models for 24 predicted hours; it was outperformed by BiLSTM and BiGRU for
48 predicted hours; and for 72 predicted hours, it was outperformed by BiLSTM only.
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Figure 9. Architectures of the benchmark models: (a) LSTM, (b) GRU, (c) BiLSTM, (d) BiGRU, and
(e) LSTM—ATT.

Attention layer

Table 8. The benchmark models vs. the proposed model in Pacocha station.

Predicted Hours
Technique
24 48 72
RMSE
LSTM  6.2482 11.1098 12.9222
BiLSTM  5.0760 11.0872 12.8388
GRU 5.9334 11.4898 13.2358
BiGRU 5.2568 11.7640 13.5366
LSTM-ATT 5.7577 12.7558 15.3852
WA +PI  4.0954 11.1827 12.9212
MAPE
LSTM  49.9085 45.6897 43.9890
BiLSTM  36.7623 38.0884 38.0875
GRU  49.1408 45.6031 44.4407
BiGRU 32.0877 36.7171 37.1657
LSTM-ATT 30.5190 36.9551 40.6333

WA +PI  27.2208 29.9500 29.5541
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Table 8. Cont.

Predicted Hours

Technique
24 48 72
R2

LSTM 0.1101 0.1057 0.0336
BiLSTM  0.4451 0.3815 0.1410
GRU 0.0069 0.0068 0.0062
BiGRU  0.1653 0.1986 0.0377
LSTM-ATT 0.0227 0.0738 0.0725
WA +PI  0.5412 0.1175 0.1209

Table 9. The benchmark models vs. the proposed model in Bolognesi station.

Predicted Hours

Technique
24 48 72
RMSE
LSTM  2.6880 5.6406 5.1198
BiILSTM  2.7096 6.0241 5.3871
GRU 25525 5.7999 5.2771
BiGRU  2.5477 6.2492 5.5734
LSTM-ATT  2.2942 5.7173 5.0636
WA +PI  3.2104 6.6086 5.7738
MAPE
LSTM  20.3258 19.8867 24.0068
BiLSTM  20.0818 21.6240 24.8745
GRU  18.9890 19.5996 24.2701
BiGRU  17.4580 21.2114 24.5218
LSTM-ATT 17.2521 18.6097 20.9124
WA +PI  21.5751 25.2608 25.3131
R2
LSTM  0.0543 0.0455 0.2520
BiLSTM  0.0569 0.0002 0.0890
GRU  0.0248 0.0203 0.1359
BiGRU 0.1528 0.1011 0.0001
LSTM-ATT  0.1875 0.0003 0.2360
WA +PI  0.0086 0.0000 0.0005
Table 10. The benchmark models vs. the proposed model in Pardo station.
Predicted Hours
Technique
24 48 72
RMSE
LSTM  1.5667 22181 2.5044
BiLSTM  1.4403 2.0565 2.3202
GRU 15048 2.0773 2.3194
BiGRU 1.5725 1.8373 1.8743
LSTM-ATT  1.4485 1.8306 2.4208
WA +PI  1.2283 1.7856 1.8002
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Table 10. Cont.

Predicted Hours

Technique
24 48 72
MAPE
LSTM  17.0770 25.9310 30.9449
BiLSTM  15.4638 23.7230 28.3142
GRU 16.0796 23.7334 28.2635
BiGRU 17.0590 21.0457 22.1567
LSTM-ATT 15.7723 19.3737 28.1934
WA +PI  13.5280 19.1461 20.3845
R2
LSTM  0.6403 0.3008 0.1022
BiLSTM  0.6472 0.3075 0.1133
GRU 0.4997 0.2422 0.0007
BiGRU  0.0876 0.0505 0.1475
LSTM-ATT 0.6343 0.1627 0.0170
WA +PI  0.6414 0.2315 0.0014

According to Table 9, for the Bolognesi station, the proposed model obtained the worst
results. In terms of RMSE, for the 24 predicted hours, the proposed model was the worst,
with 3.2104 ug/m?3; for the 48 predicted hours, the proposed model was outperformed
by LSTM-ATT and LSTM. For the 72 predicted hours, the proposed model was the worst
model, with 7.7738 ug/m?3. In terms of MAPE, the proposed model was outperformed by
all the benchmark models. In terms of R?, the proposed model was outperformed by all
models for 24 and 48 predicted hours, and for 72 predicted hours, it outperformed only
BiGRU. The best model for Bolognesi station was LSTM-ATT.

According to Table 10, for the Pardo station, the proposed model obtained the best
results. In terms of RMSE and MAPE, the proposed model outperformed all the bench-
mark models. In terms of R?, for 24 predicted hours, the proposed model (0.6414) was
outperformed by BiLSTM (0.6472); for 48 predicted hours, the proposed model (0.2315)
was outperformed by BiLSTM (0.3075), LSTM (0.3008), and GRU (0.2422); for 72 predicted
hours, the proposed model was outperformed by all the benchmark models except GRU.

Graphical comparisons can be viewed in Figures 10-12.

—— Observed
=== Proposal
60 LSTM
e BILSTM
-- GRU
BiGRU
50 LSTM-ATT

20

Hour

Figure 10. The 72 predicted hours for Pacocha station.
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Figure 12. The 72 predicted hours for Pardo station.

In this work, three different prediction horizons were experimented with for multi-
step forecasting—24, 48, and 72 h. The proposed model produced similar and superior
results to the benchmark models, surpassing them in most cases in terms of RMSE and
MAPE. However, it is important to explain why the proposed model produced these results
for the different environmental monitoring stations; for this purpose, correlations were
determined between the first day of the test data and the last training days. Table 10 shows
these correlations.

According to Table 11, it can be seen that in the case of the Bolognesi station—which
is where the proposed model presented the worst results—the last training data that
correspond to day 1 present a very low correlation (0.0115). Likewise, the data for the other
day used, which is day 3, also present a very low correlation (—0.009).

However, for the Pacocha and Pardo stations, for the first day and third day, there are
better correlations of between 0.293 and 0.6018, and this is reflected in the results of the
proposed model.

The above means that the average correlation used for the selection of days may not
be good in some cases; because it is an average, it may only be good for some cases. For
future work, different day selections could be made for each station and not just the ones
used in this work.
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Table 11. Correlations between the first day of test data and the last training days.

Day Pacocha Bolognesi Pardo
1 0.293 0.0115 0.5334
2 0.0054 0.5976 -0.2219
3 0.4315 —0.009 0.6018
4 0.3573 0.5646 0.1011
5 —0.3451 0.6147 0.2458
6 0.3808 0.1252 0.1812
7 0.323 0.0238 0.2447
8 0.2735 0.5718 0.3889
9 0.3125 0.3951 0.1212
10 0.275 0.7076 0.1224
11 —0.2403 0.2895 —0.0402

4.2.2. Comparison with Related Works

Next, the proposed model results were compared with the results of multi-step re-
lated works.

Finally, the results of the proposed model were compared with those reported in
related works; according to Table 12, in terms of the five studies addressing MAPE, the
research presented in [44,45,47,49,54] obtained MAPEs of 5.11%, 5.12%, 15.32%, 14.08%,
and 7.53%. These studies reported MAPEs higher than those obtained by the proposed
model (17.69%); three of them used three-step forecasting, and two of them used twelve-
and seven-step forecasting. Therefore, there is an enormous difference between the number
of steps in the related works and the proposed model. This is a factor that is in favor of the
results presented in these other studies; this is because, as the number of steps increases,
the accuracy of the results worsens.

Table 12. Related works vs. proposal.

Work Technique Freq. Steps Metric Value

[45] ELM Hourly 3 MAPE [5.11-37.23]
[46] ELM Hourly 7 MAPE [5.12-22.2]
[47] CNN-LSTM Hourly 10 MAPE [22.09-25.94]
[48] Adaboost Hourly 3 MAPE [15.32-23.75]
[49] SVM Hourly 4 RMSE [8.16-39.04]
[50] LSTM Daily 1,12 MAPE [6.66-14.08]
[34] LSTM Hourly 1,6 MAE [4.395-7.246]
[51] BiLSTM Hourly 3 MAPE [27.33-40.73]
[52] CNN-BP Hourly 10 RMSE [5.42-10.21]
[53] ResCNN Hourly 4 MAPE [28.51-33.29]
[54] TMSG Hourly 3 MAPE [7.53-16.18]
Proposal WA + PI Hourly 24, 48,72 %\f[’gg 5722252787]911

On the other hand, the results for the proposed model surpass the results presented
in [46,51,53]; the authors of these works implemented techniques similar to the benchmark
models implemented in the present paper.

In terms of RMSE, the proposed model considerably exceeds the RMSEs reported
in [48,52].

5. Conclusions and Future Work

According to the obtained results, it can be concluded that the proposed model based
on weighted averages (WAs) and polynomial interpolation (PI) constitutes a good alterna-
tive for the multi-step forecasting of PM2.5 time series. The proposed model outperformed
the other models for most of the analyzed environmental monitoring stations. The well-
known, state-of-the-art models that were used for these comparisons included LSTM,



Computers 2024, 13, 238 18 of 20

BiLSTM, GRU, BiGRU, and LSTM-ATT. The proposed model outperformed these models
in terms of the average MAPE obtained (between 2.4010% and 17.6208%). One of the main
advantages of the proposed model is that it requires few data compared to these benchmark
models, which are based on deep learning.

Although the results are interesting, and the implemented benchmark models had
been outperformed in most cases, some aspects still need improvement. The achieved
MAPEs were between 17.69% and 28.91%. According to [57], if the MAPE is less than 10%,
then the model is highly accurate; if the MAPE is between 10% and 20%, then the model
is good; if the MAPE is between 20% and 50%, then the model is reasonable. Thus, the
proposed model can be considered as being between good and reasonable; it should be
highly accurate. In pursuit of a highly accurate rating, in future work, instead of working
with only two days, it could be adjusted to function with three or more days, depending
on the level of the correlations. Similarly, instead of polynomial interpolation, other types
of interpolation, such as linear, Stineman, inverse distance weighting, or kriging, could
be used. On the other hand, ensemble and hybrid models could be created with other
forecasting techniques, such as autoregressive integrated moving average (ARIMA).
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