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Abstract: With the rapid development of the education industry and the expansion of university
enrollment scale, it is difficult for the original teaching resource operation and maintenance manage-
ment mode and utilization efficiency to meet the demands of teachers and students for high-quality
teaching resources. OpenStack and Ceph technologies provide a new solution for optimizing the uti-
lization and management of educational resources. The educational resource private cloud platform
built by them can achieve the unified management and self-service use of the computing resources,
storage resources, and network resources required for student learning and teacher instruction.
It meets the flexible and efficient use requirements of high-quality teaching resources for student
learning and teacher instruction, reduces the construction cost of informationization investment in
universities, and improves the efficiency of teaching resource utilization.
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1. Introduction

As education expands, focus shifts from teacher-centric to student-centric resource
demands. Growing student numbers and broader education needs highlight the need for
innovative learning environments with tailored resources [1]. However, open educational
resources (OERs) face challenges in monitoring progress, with educators hesitant due to
control concerns [2]. OERs may lack accuracy, completeness, and customization options [3].

OpenStack and Ceph offer open-source solutions for large-scale virtualization, support-
ing petabytes of data, unlimited scale, and configurable networking [4]. Ideal for education
and government, they reduce costs and optimize resource utilization. Cloud providers offer
software-as-a-service (SaaS), platform-as-a-service (PaaS), and infrastructure-as-a-service
(IaaS) services [5]. Bhatia et al. [6] have provided a design of a private cloud for higher
education and proof-of-concept implementation methodology for the OpenStack platform
and analyzed the advantages and disadvantages of a private cloud.

Recent experimental research on the application of the open-source infrastructure
service platform OpenStack underscores that its key technology aspects provide a solid
foundation for advancing modern technology [7]. Cloud management platforms (CMPs)
play a pivotal role in sustaining both private and public cloud computing by facilitating
the management, provisioning, and monitoring of resources and their utilization [8].

Cloud computing enables low-cost access to shared resources. Load balancing op-
timizes resource use, preventing overload/underload due to operating system updates,
task times, server failures, etc., [9]. OpenStack uses orchestration for cloud service deploy-
ment and management [10]. Aregbesola et al. [11] compared cloudStack, OpenStack, and
Eucalyptus for business and research, assessing their strengths, limitations, and viability.

IaaS offers flexibility and control over networking resources [12]. Private clouds blend
public cloud benefits with enhanced control and customization [13]. HA systems ensure
resilience through redundant nodes and clusters [14]. OpenStack, a cloud OS, manages
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computing, storage, and network resources efficiently [15]. Lima et al. analyze OpenStack’s
growth and market impact, guided by the OpenStack Foundation [16]. Zhang et al. [17]
have developed a distributed block-level storage system called ORTHRUS, which is inte-
grated into this IaaS system, and deployed a Ganglia monitoring system in the IaaS system
to monitor all the physical node VM instances.

The objective is to establish a private cloud model with OpenStack for IaaS, PaaS, and
SaaS [18]. As an open-source cloud platform, OpenStack enables users to deploy service
models. Integrating OpenStack with Ceph distributed storage creates a flexible educa-
tional resource private cloud for the unified management and self-service utilization of
computing, storage, learning, and network resources [19]. Bonner et al. [20] introduced the
deployment methods and configurations for OpenStack along with the security provisions
that were taken to deliver computer hardware. The rationale behind the provisions of
virtual hardware and OS configurations have been defined in great detail, supported by
examples. This study constructs a teaching-focused private cloud management platform
to improve resource management efficiency and standards. The key contributions of this
paper encompass the following:

(1) This paper presents the construction scheme of a campus teaching private cloud platform.
(2) This paper introduces the construction process of a campus teaching private cloud

platform in detail.
(3) It provides a solution for the management and full utilization of teaching resources.

The rest of this paper is organized as follows. Section 2 introduces the related work.
Section 3 explains combining OpenStack with Ceph. Section 4 explains the design of
the educational resource private cloud platform. Section 4 shows the implementation
of the educational resource private cloud platform. The implementation of HA for the
OpenStack educational resource private cloud platform is introduced in Section 5. The test
and analysis of the private cloud platform for educational resources is shown in Section 6.
Finally, Section 7 presents the conclusions.

2. Related Work
2.1. OpenStack

OpenStack, a NASA–Rackspace collaboration, is an Apache-licensed open-source
cloud computing software. It offers a full suite of cloud platform solutions for computing,
storage, networking, and developer APIs [21]. Enabling seamless app creation, deployment,
and management, OpenStack provides stable, flexible, reliable, and scalable cloud services
for diverse cloud businesses.

The OpenStack community embraces open development, welcoming all to contribute
code, functions, tests, etc. Since “Austin”, releases follow a six-month cycle, named
alphabetically [22]. OpenStack runs on diverse hardware and operating systems, supports
various virtualizations, and is popular in production for public, private, and hybrid clouds.

OpenStack’s core is resource virtualization, centered on VMs. Its seven key modules
are as follows: Nova (compute), Neutron (networking), Cinder (block storage), Swift (object
storage), Keystone (auth/authz), Glance (image mgmt), and Horizon (UI) [23]. Together,
they offer VM computing, networking, and storage resources.

2.2. Ceph

Ceph, a popular distributed storage system, offers scalable, high-performance, and
available storage. It integrates resources across nodes, providing block, file, and object
storage. Data are distributed and replicated, supporting POSIX and RESTful APIs.

Ceph ensures data reliability with multi-replica storage [24]. It automatically stores
replicas to prevent loss from disk failures, crashes, outages, etc. Ceph clusters have multiple
nodes for storage, computing, and networking, ensuring continuous data reliability.

Ceph comprises OSDs, Monitors, and MDSs for functionality. OSDs manage cluster
data, handling snapshots, replication, recovery, and migration, while monitoring OSD
processes. Monitors maintain cluster state charts, including OSD, placement group, and
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CRUSH maps. MDSs handle metadata computation, caching, and sync for consistency,
ensuring Ceph’s scalability, performance, and reliability.

3. OpenStack with Ceph

OpenStack and Ceph deliver high-performance, reliable, scalable private clouds, cater-
ing to the flexible and efficient use of teaching resources [25]. Ceph, a distributed storage
platform, balances loads with CRUSH for low-latency, high-throughput access. OpenStack
manages and schedules computing resources optimally [26]. Ceph, as OpenStack’s storage
backend, (1) cuts costs by avoiding expensive storage; (2) offers diverse storage types; and
(3) provides persistent storage services.

OpenStack and Ceph ensure high reliability with data redundancy, recovery, fault
isolation, and self-healing [27]. Ceph uses replication/erasure coding for data reliability
and auto-recovery [28]. OpenStack has robust fault detection and isolation, with automated
scheduling and load balancing for stable operations [29]. OpenStack utilizes Ceph’s dis-
tributed storage for data archiving and sharing, with concurrent reads. Ceph setup initially
needs firewall off for communication, supporting block, file, and object storage.

The scalability and elasticity of OpenStack with Ceph are bolstered by their storage and
compute expansion features. Ceph’s distributed design allows for seamless storage scaling;
new nodes can be added to the cluster, which Ceph integrates into storage pools for linear
capacity increases [30]. OpenStack’s nova component gathers data via the nova-scheduler,
records them in the database, and then dispatches them to a message queue, which reassigns
tasks to the nova-scheduler. OpenStack dynamically adds/removes compute nodes to
adapt to changing demands [31]. Adding nodes boosts power, while removing excess ones
conserves resources, making it ideal for private cloud education platforms with Ceph.

4. Design of Educational Resource Private Cloud Platform

Prior to designing the private cloud platform, we surveyed educational institutions,
teachers, and students on cloud resource needs and usage. Analysis of the public ed
cloud DB literature revealed data inaccuracies, incompleteness, and privacy/security
weaknesses [32]. Based on the identified research gaps, this paper clarified the research
direction and focus, proposed corresponding research strategies, and determined the
database design and implementation plan.

4.1. Functional Architecture Design

The educational resource private cloud platform boasts a three-tier functional architec-
ture: Infrastructure, Resource Management, and Resource Application. This architecture
underpins cloud-based services like computing, storage, and networking, accommodating
devices like x86 servers, mainframes, and storage devices. It fosters seamless management
and self-service access to educational resources, as depicted in Figure 1.

Infrastructure Layer: Serving as the cornerstone of the cloud computing platform,
this tier encompasses servers, storage, networking, and security devices. Leveraging x86
servers, it enables resource migration via advanced technologies. Virtualization underpins
the cloud infrastructure, enabling dynamic resource allocation and streamlined educational
resource management [33].

Resource Management Layer: The cloud computing platform’s core tier encompasses
resource partitioning, high availability, elastic allocation, load balancing, and security. With
compute, storage, and network virtualization, it securely supports upper-level services,
providing tailored, efficient, and reliable cloud resources [34].

Resource Application Layer: The top layer of the cloud platform offers users access
via various OSs on PCs/mobiles. Users, like students and teachers, can request tailored
resources like computing, storage, and education. They can also customize servers, OS,
experimental platforms, and configure computing, storage, and network resources [35].
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4.2. Deployment Architecture Design

The cloud platform built with OpenStack combined with Ceph adheres to the principle
of “centralized control and division of labor”. Based on the high degree of loose coupling
and distributed characteristics among the modules, the platform adopts a multi-node
deployment design. The server configuration information for each node is as shown in
Table 1.

Table 1. Server configuration.

Nodes Configuration

Proxy Nodes 1 × CPU Intel i9-13900K with 24 cores, 4 × 32 GB RAM, 2 × 2 TB SAS
disks, 2 × 2-port Gigabit Ethernet network cards

Control Nodes 2 × CPUs Intel i9-13900K with 24 cores each, 5 × 32 GB RAM, 2 × 2 TB
SAS disks, 2 × 2-port Gigabit Ethernet network cards

Network Nodes 2 × CPUs Intel i9-13900K with 24 cores each, 5 × 32 GB RAM, 2 × 2 TB
SAS disks, 2 × 2-port Gigabit Ethernet network cards

Compute Nodes 2 CPUs of Intel i9-13900K with 24 cores each, 5 × 32 GB RAM, 2 × 2 TB
SAS disks, and 2 × 2-port Gigabit Ethernet network cards.

Storage Nodes 2 × Intel i9-13900K CPUs with 24 cores each, 5 × 32 GB RAM, 2 × 2 TB
SAS disks, and 2 × 2-port Gigabit Ethernet network cards

The platform environment utilizes thirteen Great Wall servers, with two configured
as proxy nodes, two as highly available control nodes, three as highly available network
nodes, three as compute nodes, and three as Ceph distributed storage nodes. Each server is
equipped with 2 Intel i9-13900K CPUs, each CPU featuring 24 cores, 32 GB of RAM, 2 TB
SAS hard drives, and dual-port Gigabit Ethernet network cards for Ethernet connectivity.

Additionally, there are auxiliary devices such as routers, switches, and external net-
works. The detailed deployment architecture is illustrated in Figure 2.
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Proxy Nodes: For cloud platforms based on OpenStack, communication is mostly
performed through APIs using the TCP protocol to control traffic. Our private cloud plat-
form is no exception, utilizing Haproxy for traffic monitoring, distribution, and restriction.
In the haproxy.cfg file, traffic distribution protocols are configured. Haproxy provides
the Leastconn algorithm, which directs new requests to the server with the least pressure,
maintaining long-lasting sessions without automatic interruption and without connection
limits. Additionally, Keepalived’s Virtual IP (VIP) technology safeguards against Haproxy’s
single-node failure. During operation, the VIP constantly monitors node heartbeats. If
a node remains active, the VIP stays put. However, upon detecting a node failure, the
VIP seamlessly migrates to a backup node, maintaining proxy functionality. This prevents
downtime and ensures platform stability and continuous availability [36].

Control Nodes: The platform boasts a high-availability architecture with two control
nodes, each hosting Keystone, Glance, Placement, Nova, Neutron, Horizon, and Cinder.
Deployment starts with the primary Keystone node and its keystone.conf configuration,
followed by a backup node with synchronized keystone.conf. Haproxy proxies control both
nodes, completing the high-availability setup. Glance, Placement, Horizon, and Cinder
also have primary and backup nodes, with Haproxy managing traffic between them. Nova
and Neutron focus on control node services, with Haproxy overseeing traffic control and
monitoring. This custom-built cloud platform guarantees high availability, scalability, and
stability, catering to the educational needs of students and teachers with premium resource
services [37].

Network Nodes: The Neutron component serves as the networking element within
the OpenStack cloud computing platform. It is responsible for managing and connecting
networks between virtual machines (VMs) and other computing resources. Neutron, with
its extensive API and plugin system, supports diverse network topologies and services,
facilitating the management, configuration, and scheduling of both virtual and physical
networks. It covers IP allocation, connectivity, security policies, and more, while provi-
sioning isolated virtual networks for tenants, enforcing network security and resource
separation through isolation policies. Neutron’s plugin mechanism seamlessly integrates
with hardware/virtualization platforms like OVS and Linux Bridge, ensuring flexibility
and scalability. Its L2/L3 agents and plugins enable advanced networking technologies
(GRE tunnels, VLANs, VxLANs), connecting VMs to the physical WAN and facilitating
VM-to-VM communication [38].

Compute Nodes: The private cloud platform leverages multiple x86 servers for com-
putational tasks, catering to students’ learning and teaching needs. It ensures the scalability
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and expandability of compute nodes, maintaining business continuity during upgrades,
without disrupting the platform. Nova and Neutron collaborate on three servers to virtual-
ize CPU, memory, storage, and network resources, enabling the deployment and manage-
ment of multiple cloud hosts. The efficient operation of the cloud platform relies on Nova
and Neutron’s virtualization, along with Nova-compute and Neutron-openvswitch-agent
services. Yet, for sustained and stable performance, the private cloud platform necessitates
thorough consideration of technical support and parameter optimization across networking,
storage, and security domains [39]. The deployment of compute node servers is illustrated
in Figure 3.
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Data Nodes: The cloud platform’s data interactions are orchestrated by three key
components: MariaDB cluster, RabbitMQ cluster, and Memcache cluster. MariaDB, a rela-
tional database server, houses libraries and tables vital to platform components. RabbitMQ,
leveraging its clustering capability, forms a three-server cluster for real-time message queu-
ing and synchronization. The Memcache cluster enhances platform efficiency by caching
temporary data, minimizing database hits and load. For high availability and real-time data
sync, we opted for the Galera Cluster’s multi-master mode, enabling concurrent service
provision across nodes and optimizing resource utilization over traditional master–slave
setups [40]. The deployment of the data servers is illustrated in Figure 4.

Storage Nodes: Utilizing Ceph distributed storage technology, we have constructed a
distributed storage resource pool that aggregates the hard drives of three servers, forming
a large storage pool. Our privately built cloud platform provides two types of storage:
block storage and shared storage. Block storage is used to store data blocks, while shared
storage is used for file sharing. To enhance reliability, we have deployed three Monitor
monitors, two Manager cluster managers, and three Metadata Server metadata servers
in this solution [41]. The planning and design of these servers adopt a multi-node and
fault-tolerant approach, ensuring that even if one server fails or one-third of the total
number of hard drives become dysfunctional, it will not affect the normal operation of



Computers 2024, 13, 241 7 of 17

the entire distributed storage cluster. This solution can also provide storage services for
various types of data. The deployment of storage node servers is illustrated in Figure 5.
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5. Implementation of HA for OpenStack Educational Resource Private Cloud Platform

Currently, the data accuracy and integrity of open-source public educational cloud
resource databases are insufficient, user privacy protection and data security are relatively
weak, and there is insufficient support for highly customizable and directly controllable
resource allocation, resulting in the inefficient utilization of teaching resources that cannot
meet the needs of high-quality education development. To address these issues, this paper
proposes the construction of a teaching resource private cloud platform based on the open-
source OpenStack. This platform not only supports deep customization to meet specific
business needs and operational processes but also allows for complete control over its
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data and applications, enabling the configuration of security measures based on specific
business security standards. By incorporating a modular architecture design, independent
upgrades and expansions of individual components can be achieved. Additionally, various
virtualization technologies allow users to further optimize private cloud performance and
costs based on their requirements and preferences.

5.1. Deployment of Basic Environment

This paper adopts the stable versions from the official websites of OpenStack and
Ceph to construct a private cloud platform for teaching resources. The primary focus is on
deploying and configuring key components such as proxy nodes, control nodes, network
nodes, data nodes, compute nodes, and storage nodes. The required hardware and software
resources are as follows:

Hardware Resources: Utilize 13 physical servers to set up the required 13 nodes for
the platform. The total resource allocation across all servers includes 128 CPU cores, 768 GB
of RAM, 20 TB of hard disk space, and 10 Gbps Network Interface Cards (NICs). Each
node is equipped with two network cards, and two Layer 3 switches along with a router
are used for communication configuration.

Software Resources: Each server is installed with Ubuntu 22.04 as the system environ-
ment. The private cloud platform for teaching resources, built using two control nodes and
three compute nodes, uses OpenStack’s Yoga release software repository. The three storage
nodes are set up with Ceph Quincy release, and the three data nodes are used to deploy
services such as MariaDB, Memcached, and RabbitMQ. After the system environment is
deployed on each server, the basic server environment is initialized, such as hostname and
network card segment configuration.

5.2. HA Implementation for Proxy Nodes

Proxy servers are a common network architecture that can help manage and secure
server access. Implementing a proxy server using HAProxy and Keepalived is a simple yet
reliable method to enhance server availability and security.

Firstly, it is necessary to install and configure HAProxy and Keepalived. When
configuring HAProxy, one can achieve a proxy server by adding listeners for OpenStack
service ports and configuring relevant options and servers. For instance, it can listen to
HTTP services (port 80) and HTTPS services (port 443), while configuring the IP addresses
and port numbers of backend OpenStack servers.

Using Keepalived, one can configure high availability for the HAProxy instances,
implementing a master–backup mechanism. This ensures that if the primary instance fails,
the backup instance can automatically take over the service, maintaining the continuous
availability of OpenStack services.

Finally, testing is required to ensure that the proxy server correctly forwards requests
to the backend OpenStack servers. By accessing the IP addresses and port numbers of Open-
Stack services, the normal operation of the proxy server can be tested. The implementation
steps are as follows:

Update configuration /etc/nova/nova.conf; /etc/neutron/plugins/ml2/ml2_conf.ini;
Open vSwitch, configuring OVS, ovs-vsctl add-br br-eth1; ovs-vsctl add-port br-eth1

eth1; restart service, systemctl restart nova-compute; systemctl restart neutron-openvswitch-
agent; verification configuration, systemctl status nova-compute; systemctl status neutron-
openvswitch-agent. The HA implementation effect of the proxy node is shown in Figure 6.
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5.3. HA Implementation for Control Nodes

The control node servers are primarily comprised of two physical servers deploying
core components such as Keystone, Glance, Placement, Nova, Neutron, Horizon, and Cin-
der. Keystone’s deployment starts with component installation, followed by the creation of
users, projects, and roles, and finally, the completion of node control deployment through
identity authentication. When accessing the private cloud platform, identity authentication
is performed first, and upon successful authentication, access to various OpenStack com-
ponents is granted through tokens issued by Keystone. The management and renewal of
these tokens are handled by HAProxy to ensure their validity and timeliness.

Glance is deployed either from the source code or through software packages, with the
specification of the listening port and host IP for the Glance service. Similarly, HAProxy is
installed from the source or packages, incorporating load balancing algorithms to distribute
requests across different Glance servers, achieving HAProxy’s load balancing service
through the listening ports and host IPs specified by the backend.

In OpenStack, the HAProxy program provides load balancing for OpenStack Service
APIs and MariaDB Galera services, with its own high availability implemented in an
Active–Passive mode by Pacemaker+Corosync. Pacemaker is responsible for providing a
Virtual IP (VIP) to HAProxy, ensuring that at any given time, only one HAProxy instance is
in the Active state and providing services. The specific implementation steps are as follows:

Pcs resource create rip ocf: heartbeat: IPaddr2 params ip = “Server-VIP” cidr_netmask = “48”
op monitor imerval = “30s”, Pcs resource create lb-haproxy systemd: haproxy-clone, Pcs
constraint order start vip then lb-haproxy-clone kind = Optional, Pcs constraint coloca-
tion add vip with lb-haproxyclone, the Memcached component inherently supports an
Active–Active configuration, requiring only the configuration of all its node names within
OpenStack, for example, memcached_servers = controller01:11211, controller02:11211. In
the event that controller01: 11211 fails, the OpenStack service components will automati-
cally switch to using controller02:11211. The HA implementation effect of the control node
is shown in Figure 7.
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5.4. HA Implementation for Data Nodes

The data node servers deploy data cluster components, including the MariaDB
high-availability database cluster, Memcached caching cluster, and RabbitMQ messag-
ing queue cluster.

Multiple MariaDB instances are deployed across multiple servers, with each instance
being a collection of databases and tables that share the same data and schema. Database
replication is configured to utilize MariaDB’s replication mechanism for master–slave
replication, replicating updates from the primary database to standby databases. Addi-
tionally, a load balancer distributes client requests to achieve load balancing. Monitoring
and failover mechanisms are implemented to monitor the health of each MariaDB instance
and the performance of the load balancer. In case of an instance failure, the failover mecha-
nism removes the failed instance from the cluster, initiates a standby instance, and makes
it active.

A Memcached cluster is deployed across three physical servers with corresponding
parameters set, such as memory size and port numbers. During cluster configuration, a
consistent hashing algorithm is adopted to form a cluster of multiple Memcached nodes,
where each node is responsible for caching a portion of the data. Node-to-node commu-
nication protocols, such as UDP or TCP, are also configured. The cluster’s performance
and stability are tested and monitored to ensure it can handle high volumes of concurrent
requests and promptly identify and resolve issues.

A RabbitMQ cluster is deployed across three physical servers to work in coordination
to ensure reliable message delivery. In a RabbitMQ cluster, each node operates indepen-
dently, capable of receiving, storing, and forwarding messages. Nodes communicate over
the network, utilizing Erlang’s distributed system architecture for data synchronization
and failure recovery. When setting up the cluster, it is crucial to ensure that the same
version of RabbitMQ is installed on each node, and the node hostnames and IP addresses
are configured correctly. Nodes hosting the service are joined to the cluster. Mirrored
queues are configured to ensure message delivery even in case of node failures, and load
balancing is set up to distribute messages evenly among nodes. After all deployments and
configurations are complete, queue messaging is used to test the accuracy of information
transmission within the RabbitMQ cluster. The implementation steps are as follows:

Install Cinder and Ceph on the data node, apt install cinder-volume ceph ceph-
common; configure Cinder to use Ceph as the backend, /etc/cinder/cinder.conf, vol-
ume_driver = cinder.volume.drivers.rbd.RBDVolumeDriver, volume_backend_name = ceph,
rbd_pool = ZLC_volumes, rbd_user = ZLC_cinder, rbd_secret_uuid = <secret_uuid>,
ceph_conf = /etc/ceph/ceph.conf, systemctl restart cinder-volume, journalctl -u cinder-
volume. The HA implementation effect of the data node is shown in Figure 8.
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5.5. HA Implementation for Compute Nodes

To meet diverse teaching requirements, the private cloud platform utilizes three
physical machines as compute nodes to provide highly available, elastic, and scalable
computing resource services.

In terms of networking, the platform has chosen the FLAT and VXLAN networks.
The FLAT network is a simple Layer 2 network that enables communication between
virtual machines and physical machines. The VXLAN network, on the other hand, is a
virtualization network based on tunneling technology, suitable for expansion across data
centers. For storage, distributed storage Ceph is employed to provide functions such as
object storage, block storage, and file system storage.

In addition to networking and storage technologies, optimizations have been carried
out on the compute nodes to enhance their stability and reliability. These optimizations
primarily focus on optimizing virtual machine configuration and management, physical
machine storage and monitoring, as well as fault tolerance and backup mechanisms for
the entire compute node cluster. Through these optimization efforts, efficient and stable
computing resource services can be provided, fulfilling the flexible and efficient usage needs
of high-quality teaching resources for both students’ learning and teachers’ instruction.

To achieve live migration of virtual machine instances using Ceph distributed storage,
we leverage Ceph as the distributed file system to ensure high availability across compute
nodes. With Ceph Monitor installed and configured on the Controller node, and Ceph-
Client installed and configured on the Compute nodes, we can build an HA implementation
effect of the compute node, as shown in Figure 9. The specific configuration statements
would be outlined as follows:

Live_migration_flag = vir_migrate_undefine_source, vir_migrate_peer2peer, vir_migrate_
live, vir_migrate_tunnelled.
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5.6. HA Implementation for Storage Nodes

The distributed storage system combining OpenStack with Ceph realizes the integra-
tion and unified management of storage resources across multiple nodes. OpenStack +
Ceph provides the private cloud platform with object storage, block storage, and file system
storage, achieving the efficient integration of various storage resources.

The deployment of storage resources begins with the installation of the Ceph RADOS
Block Device driver, followed by the construction of the Ceph storage cluster. The Ceph
storage cluster comprises multiple distributed storage nodes, with each storage node
running in the ceph-osd process. The Ceph-core daemon ensures high availability and
scalable storage resource services. During the deployment of Ceph storage nodes, storage
pools are also created to store data such as virtual machine images, volumes, and objects.
These storage pools not only allow specifying different storage policies but also enable
features like replicas, snapshot replicas, and data protection, providing users with elastic
and scalable storage services. The implementation steps are as follows:

Configure Cinder to use Ceph as a high-performance block storage backend, /etc/cinder/
cinder.conf, enabled_backends = ceph, volume_driver = cinder.volume.drivers.rbd.
RBDVolumeDriver, volume_backend_name = ceph, rbd_pool = volumes, rbd_user = cinder,
rbd_secret_uuid = <secret_uuid> ceph auth get-key client.cinder, ceph_conf = /etc/ceph/
ceph.conf, rbd_flatten_volume_from_snapshot = false, rbd_max_clone_depth = 5,
rbd_store_chunk_size = 4. The HA implementation effect of the storage node is shown in
Figure 10.
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5.7. HA Implementation for Network Nodes

Neutron’s high availability utilizes the native high-availability modes provided by
OpenStack, implementing different high-availability approaches for various services. The
high-availability architecture for network nodes is achieved by Neutron components. These
methods rely on Neutron components to implement L2 and L3 layer agents and plugins
for networking.

The L2 agent only provides services on the network or compute node where it resides;
therefore, it does not require HA. The DHCP Agent, being a scheduler of OpenStack
networking services, allows running agents across multiple nodes. The DHCP protocol
inherently supports multiple DHCP servers. Thus, multiple DHCP Agents can be created
for each tenant network by configuring the number of DHCPs per network on multiple
network controller nodes, by modifying the dhcp_agents_per_network parameter in the
/etc/neutron/neutron.conf file to 2 or more.

For LBaaS (Load Balancer as a Service) high availability, it cannot be achieved through
the HAProxy plugin that comes with Neutron LBaaS. Instead, HAProxy’s high-availability
solution leverages the Virtual Router Redundancy Protocol (VRRP). Therefore, an Active–
Passive LBaaS Agent HA deployment is implemented using Pacemaker + DRBD (for the
/var/lib/neutron/lbaas/ directory).

There are three ways to achieve Neutron L3 high availability: (1) utilize Pacemaker+
corosync to implement Active–Passive high availability; (2) for compatibility with high
availability and scalability, employ VRRP-based Active–Active high availability; (3) imple-
ment Neutron L3 high availability using Distributed Virtual Routing (DVR) introduced in
the Juno release. With DVR, this solution deploys DHCP and SNAT only on the network
control nodes, while deploying NAT and L3 Agent to the compute nodes where VMs reside.
This simultaneously resolves the high-availability issues of L3 Agent and Metadata Agent,
with specific configurations outlined in Table 2 and the HA implementation effect of the
network node is shown in Figure 11.

Table 2. Distributed Virtual Routing (DVR) Configuration.

Nodes Configuration

Proxy Nodes /etc/nova/nova.conf/etc/neutron/plugins/ml2/ml2_conf.ini
Control Nodes /etc/neutron/neutron.conf router_distributed = True

Data Nodes /etc/cinder/cinder.conf/etc/ceph/ceph.conf systemctl restart cinder-volume

Compute Nodes /etc/neutron/l3_agent.ini/etc/neutron/plugins/ml2/ml2_conf.ini agent_mode = dvr
enable_distributed_routing = True
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Table 2. Cont.

Nodes Configuration

Storage Nodes /etc/cinder/cinder.conf rbd_flatten_volume_from_snapshot = false

Network Nodes /etc/neutron/l3_agent.ini/etc/neutron/plugins/ml2/ml2_conf.ini agent_mode = dvr_snat
enable_distributed_routing = True
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6. Test and Analysis of the Private Cloud Platform for Educational Resources

The private cloud education platform built with OpenStack + Ceph can provide cus-
tomized educational resource services, including tailored Learning Management Systems
(LMS), course content, teaching tools, and assessment methods. Furthermore, it allows
educational institutions or users to control the storage and processing of their data, ensur-
ing compliance with data protection regulations. Disconnecting any network cable from a
relevant node of the OpenStack cloud platform triggers warnings while the platform con-
tinues to function normally. Upon restoring the network, the OpenStack cloud platform’s
warnings disappear, and the platform resumes normal operations. Disconnecting any
load balancer node ensures that the OpenStack cloud platform can still provide services
normally, indicating the absence of a single point of failure (SPoF). Disconnecting any
OpenStack cloud platform control node reveals that the service components, databases,
and messaging queue clusters associated with the control node can all continue to provide
normal services. Disconnecting a small number of nodes from the Ceph cluster maintains
the smooth operation and stability of the virtual machine instances within the OpenStack
cloud platform.

Compared to a private cloud education platform built with OpenStack + Swift, the
OpenStack + Ceph platform utilizes simpler modules, handles data backups more ef-
fectively, offers better OSD location addressing, supports unified storage, boasts high
reliability, and exhibits a high degree of automation and scalability. The replicas in the
OpenStack + Swift platform are written asynchronously, which can potentially lead to
incomplete updates and the reading of incorrect data. Moreover, the architectural design of
OpenStack + Swift may not be as strong in terms of transfer speed and latency. The proxy
server nodes in Swift also have traffic limits, and apart from object storage functionality, it
does not provide block storage or file storage capabilities.

Compared to cloud platforms such as Google Cloud Platform (GCP) and Amazon
Web Services (AWS), the cloud platform built on OpenStack and Ceph in this context offers
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superior performance, reliability, flexibility, and scalability, along with multi-user support
and resource isolation, rich service and integration capabilities, community support, and
continuous improvement. However, both OpenStack and Ceph are complex systems
comprising multiple components and modules, requiring regular updates and maintenance
to ensure stability and security. It is crucial to closely monitor security issues and implement
corresponding security measures to mitigate risks.

In summary, the educational resource private cloud platform built by combining
OpenStack + Ceph boasts significant advantages such as high performance, reliability,
flexibility, and scalability. However, it also presents potential drawbacks, including com-
plexity, maintenance costs, challenges in performance and stability, and security risks.
When implementing this platform, it is essential to comprehensively consider and evaluate
one’s own business requirements and actual situation.

7. Conclusions

The private cloud platform built with OpenStack + Ceph features high availability,
capable of detecting and handling single points of failure and service instance failures,
automatically switching between service nodes, and achieving high-availability services
for the OpenStack cloud platform. It can rapidly switch service instance resources between
high-availability nodes, ensuring uninterrupted cloud platform services and stable virtual
machine instances. Compared to a private cloud platform built with OpenStack + Swift,
OpenStack + Ceph can reduce deployment time by 50%, enhancing computing speed.
Through Ceph technology, it achieves up to three 9s (99.9%) data reliability, which translates
to only 52.6 min of downtime per year, significantly improving data reliability and integrity.

OpenStack + Ceph also supports rapid horizontal scaling, enabling the addition of
several compute nodes within hours to meet the resource demands of students and teachers.
The automated management of OpenStack + Ceph can enhance resource utilization, reduc-
ing resource waste by up to 20%. Furthermore, through optimization of OpenStack and
Ceph, the response time for user requests can be significantly reduced, achieving a decrease
from 10 s to 2 s compared to optimizations with OpenStack and Swift. The combination
of OpenStack and Ceph can also improve service availability, minimizing service inter-
ruption time to less than 5 min per year. As a result, the pairing of OpenStack with Ceph
provides educational institutions with a high-performance, highly reliable, and elastically
scalable private cloud service, catering to the flexible and efficient utilization requirements
of high-quality teaching resources needed for student learning and teacher guidance.

As educational resources continue to proliferate and become more complex, the future
holds the potential to further enhance storage performance by incorporating additional
high-performance underlying technologies such as SPDK and BlueStore, thereby satisfying
the efficient read–write requirements of large-scale educational data. Concurrently, the
resource scheduling and management capabilities of OpenStack can be optimized to allocate
computing, networking, and storage resources more intelligently, ultimately improving the
overall platform’s resource utilization and response speed.
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