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Abstract: This study presents the development and evaluation of a Multi-Task Long Short-Term
Memory (LSTM) model with an attention mechanism for predicting students’ academic performance.
The research is motivated by the need for efficient tools to enhance student assessment and support
tailored educational interventions. The model tackles two tasks: predicting overall performance (total
score) as a regression task and classifying performance levels (remarks) as a classification task. By
handling both tasks simultaneously, it improves computational efficiency and resource utilization.
The dataset includes metrics such as Continuous Assessment, Practical Skills, Presentation Quality,
Attendance, and Participation. The model achieved strong results, with a Mean Absolute Error (MAE)
of 0.0249, Mean Squared Error (MSE) of 0.0012, and Root Mean Squared Error (RMSE) of 0.0346 for
the regression task. For the classification task, it achieved perfect scores with an accuracy, precision,
recall, and F1 score of 1.0. The attention mechanism enhanced performance by focusing on the most
relevant features. This study demonstrates the effectiveness of the Multi-Task LSTM model with an
attention mechanism in educational data analysis, offering a reliable and efficient tool for predicting
student performance.

Keywords: e-learning; student; performance; multi-task; deep learning; attention mechanism

1. Introduction

Traditional student evaluation practices offer valuable insights into academic achieve-
ment and learning progress, providing a structured means to measure how well students
understand course material and achieve learning objectives [1]. These methods, such as stan-
dardized testing, summative assessments, grading, and multiple-choice tests, are designed
to assess a wide range of cognitive skills, from basic recall to higher-order thinking [2].

However, despite their utility, these traditional practices have long relied on methods
that are ethically and intellectually questionable [3]. A significant concern is that these
practices often do not allow students to explain their answers [4]. For instance, multiple-
choice tests and other standardized assessments typically offer limited opportunities for
students to demonstrate their reasoning or the process by which they arrived at their
answers [5]. This can lead to an incomplete understanding of a student’s true capabilities
and knowledge, as these formats prioritize the final answer over the thought process.

Moreover, traditional evaluation methods frequently fail to accommodate the diverse
physiological strengths and weaknesses of students [6]. Standardized tests, for instance,
are often designed with a one-size-fits-all approach that does not consider individual differ-
ences in learning styles, cognitive processing speeds, or test-taking abilities [7]. Students
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with different learning needs, such as those with learning disabilities or attention disor-
ders, may find these assessments particularly challenging and unreflective of their true
potential [8].

Student performance accountability should not rest solely on the students themselves.
Instead, assessing learning outcomes and guiding instructional practices should involve
a broader range of metrics, which are often overlooked [9]. Student evaluation extends
beyond mere testing and intellectual performance; it should not rely predominantly on
exam scores as the primary measure of academic achievement. Although exams offer
valuable insights into a student’s grasp of the course material, they often fall short in
capturing the multifaceted nature of learning and development [10].

For physiological differences, time-honored practices often overlook the importance
of providing a holistic view of student development [11]. Behavioral and practical skills,
critical thinking, creativity, and collaborative abilities are crucial aspects of learning that
are not adequately captured by conventional testing methods. As a result, students who
excel in these areas but struggle with traditional exams may not receive the recognition
they deserve for their overall capabilities and contributions [12].

Although traditional student evaluation practices provide essential insights into aca-
demic performance, their limitations in addressing ethical and intellectual concerns, along
with their failure to consider the diverse needs and strengths of all students, highlight the
need for a more comprehensive and inclusive approach to assessment [13]. This approach
should allow for greater flexibility, accommodate individual differences, and emphasize a
broader range of skills and competencies to truly reflect a student’s overall learning and
development [14].

Incorporating a broader range of metrics to assess student performance such as Be-
havioral Factors, Practical Skills, Class Participation, and Engagement has received some
attention from researchers [15]. However, these should be acknowledged as essential
components of the learning process that contribute significantly to a student’s overall
success [16].

Despite this recognition, incorporating diverse performance metrics into a cohesive
evaluation framework remains a significant challenge. Existing evaluation models often
lack the flexibility to accommodate multiple types of data and struggle to provide inter-
pretable insights into the factors driving evaluation outcomes [17]. As a result, educators
face difficulty in understanding the variations in student performance and tailoring their
instructional strategies accordingly [18].

To address these challenges, this study proposes the development of an innovative
holistic student evaluation model for e-learning environments. This model aims to incor-
porate a diverse array of performance metrics, including exams, behavior assessments,
practical assignments, presentations, class attendance, participation, and continuous assess-
ments. By leveraging advanced deep learning techniques, such as LSTM-based Multi-Task
learning and attention mechanisms, the proposed model seeks to capture the complex
relationships among various evaluation metrics, providing a more comprehensive under-
standing of student performance.

This paper makes the following key contributions:

1. Development of a Holistic Evaluation Model: A novel student evaluation model that
integrates a wide range of metrics beyond exams, including behavioral assessments,
practical assignments, attendance, and participation.

2. Application of Multi-Task Learning: The proposed model utilizes LSTM-based Multi-
Task learning, simultaneously addressing regression (total score prediction) and
classification (performance category) tasks, thus optimizing computational efficiency.

3. Attention Mechanism: An attention mechanism is also introduced in order to ren-
der the model more focused on relevant features, enhancing both the accuracy and
interpretability of its predictions.

4. Extensive Performance Analysis: In this context, the proposed model is evaluated
using a generated dataset that simulates detailed student performance metrics, demon-
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strating its ability to capture complex relationships across various evaluation criteria
and provide valuable insights into overall student performance.

5. Potential for Wide Application: The suggested method has great potential for use
in many educational areas as a powerful tool for the comprehensive assessment of
students in e-learning.

The paper is organized as follows: Section 2 presents a comprehensive review of
the related literature and empirical findings. In Section 3, the methodology is discussed,
outlining the research design, model specification, material used, and data processing
techniques. Section 4 focuses on the evaluation metrics and presents the experimental
findings. Finally, Section 5 offers a detailed discussion of the results, conclusions, and
recommendations for future research.

2. Related Works

The integration of technology in education has transformed the landscape of teaching
and learning, leading to the emergence of innovative approaches to student assessment,
prediction, and recommendation. As digital platforms become increasingly prevalent in
educational settings, researchers are exploring novel methods to enhance learning out-
comes, personalize instruction, and improve student engagement. This literature review
examines recent studies that investigate various aspects of e-learning, including a cognitive
classification of text, prediction of student behavior, performance analysis, and course
recommendation. Recently, Sebbaq [19] focused on the cognitive classification of text
in e-learning materials, employing Bloom’s taxonomy as a framework. The study intro-
duces MTBERT-Attention, a model combining Multi-Task learning (MTL), BERT, and a
co-attention mechanism to enhance generalization capacity and data augmentation. Com-
prehensive testing demonstrates the model’s superior performance and explainability
compared to baseline models. Furthermore, Liu et al. [20] address the prediction of student
behavior in e-learning environments. They propose a variant of Long-Short Term Memory
(LSTM) and a soft-attention mechanism to model heterogeneous behaviors and make mul-
tiple predictions simultaneously. Experimental results have validated the effectiveness of
the proposed model in predicting student behaviors and improving academic outcomes.
Additionally, Xie, 2021 [21], focuses on predicting student performance in online education
using demographic data and click-stream interactions. The study introduces an Attention-
based Multi-layer LSTM (AML) model, which combines demographic and click-stream
data for comprehensive analysis. Experimental results demonstrate improved prediction
accuracy and F1 score compared to baseline methods.

He et al. [22] explore Knowledge Tracing (KT) in e-learning platforms, proposing
Multi-Task Attentive Knowledge Tracing (MAKT) to improve prediction accuracy. The
study introduces Bi-task Attentive Knowledge Tracing (BAKT) and Tri-task Attentive
Knowledge Tracing (TAKT) models, which jointly learn hint-taking, attempt-making, and
response prediction tasks. Experimental results show that MAKT outperforms existing KT
methods, indicating promising applications of Multi-Task learning in KT. And more recently,
Su et al. [23] investigated cross-type recommendation in Self-Directed Learning Systems
(SDLSs), proposing the Multi-Task Information Enhancement Recommendation (MIER)
Model. The study integrates resource representation and recommendation tasks using an
attention mechanism and knowledge graph. Experimental results demonstrate the superior
performance of the MIER model in predicting concepts and recommending exercises
compared to existing methods. Ren et al. [24] focus on course recommendation in online
education platforms, proposing a deep course recommendation model with multimodal
feature extraction. The study utilizes LSTM and attention mechanisms to fuse course
video, audio, and textual data, supplemented with user demographic information and
feedback. Experimental results show that the proposed model achieves significantly higher
AUC scores compared to similar algorithms, providing accurate course recommendations
for users.
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Conclusively, the current literature on e-learning reveals significant gaps that justify
the need for designing a holistic student evaluation model using an LSTM Multi-Task
attention-based deep learning approach. Existing studies predominantly focus on isolated
aspects of e-learning, such as cognitive classification, behavior prediction, performance
analysis, and course recommendation, without integrating multiple performance metrics
for a comprehensive evaluation. There is also a lack of interdisciplinary integration of
advanced techniques like Multi-Task learning and attention mechanisms, which could
enhance model robustness. A holistic evaluation model that incorporates these aspects
would significantly improve the effectiveness and user experience of e-learning platforms.

3. Materials and Methods
3.1. Materials
3.1.1. Proposed Architecture

Figure 1 illustrates the architectural framework for the Multi-Task LSTM with an attention
mechanism (MLSTM-AM) model for accurate prediction of students’ academic performance.
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The proposed framework depicts the different components of the model, starting with
the dataset, data pre-processing, model design and training, and validation.

3.1.2. Dataset Creation

The typical student performance dataset traditionally revolves around two key vari-
ables: Continuous Assessment (CA) and Examination (Exam) scores. These metrics have
long been the sole basis for evaluating student’s academic achievement. However, this
research introduces a paradigm shift by expanding the dimensions of this performance
evaluation framework. By integrating additional variables such as Attendance, Demeanor,
Practical Skills, Class Participation, and Presentation Quality [25], this study pioneers a
more comprehensive approach to assessing student success.

The dataset needed for this kind of new model is not readily available anywhere,
hence the need to create a new dataset that captures the above-mentioned variables. To
achieve this, a suitable mathematical formulation was utilized, which was then translated
into a computer algorithm for creating such a higher dimensional dataset, as shown in
this section.

Let x1, x2, x3, ..., x7 be Attendance, Practical, Demeanor, Presentation, Participation in
class, Continuous Assessment, and Examination, respectively, where x1, x2, x3, ..., x6 can
take on 10 distinct values (i.e., 10% each), while x7 can take on 40 distinct values (i.e., 40%
only). The total score, which is the sum of all these components, must not exceed 100%, the
maximum score a student can achieve in a given course.

i.e.,
score = x1 + x2 + x3 + x4 + x5 + x6 + x7
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which can also be written as

score =
n

∑
i=1

xi ∀ i = 1, 2, . . . , n and n = 7

i.e., score ≤ 100%

To find the total number of combinations, multiply the number of possibilities for each
variable:

Total combinations = (Number of possibilities for x1) ×(Number of possibilities for
x2) × (Number of possibilities for x3) × (Number of possibilities for x4) × (Number of
possibilities for x5) × (Number of possibilities for x6) × (Number of possibilities for x7)

= 10 × 10 × 10 × 10 × 10 × 10 × 40
= 1,000,000 × 40
= 40,000,000
So, the total number of combinations is 40,000,000.In other words, the total number

of data points would be 40,000,000, i.e., the new dataset containing all the above fea-
tures would have 40,000,000 records, which is enough to train the proposed model. This
formulation was implemented in Python, and the code snippet is displayed in Algorithm 1.

Algorithm 1: Pseudocode for data pre-processing

Input: combinations of values for x1 to x6, then appends x7 to each combination.
Output: CSV file (“resultPredictionDataset.csv”)

import itertools
import csv
# Define the range of values for each variable

range_values = range(11) # Values for x1 to x6 (0 through 10)
range_x7 = range(41) # Values for x7 (0 through 40)

# Generate all combinations of the variables x1 to x6
combinations = list(itertools.product(range_values, repeat=6))

# Append x7 to each combination
combinations_with_x7 = [(c + (x7,)) for c in combinations for x7 in range_x7]

# Calculate the total for each combination (sum of x1 to x7)
combinations_with_total = [(c + (sum(c),)) for c in combinations_with_x7]

# Specify the file name
file_name = “resultPredictionDataset.csv”

# Write combinations with total to CSV file
withopen(file_name, ‘w’, newline=“) as csvfile:

csvwriter = csv.writer(csvfile)
# Write the header row
csvwriter.writerow([“x1”, “x2”, “x3”, “x4”, “x5”, “x6”, “x7”, “total”])
#Write the data rows
csvwriter.writerows(combinations_with_total)

print(f”Final Dataset Generated Successfully to {file_name}”)

3.1.3. Dataset Description

The dataset generated by Algorithm, which has been published in the Kaggle reposi-
tory (https://www.kaggle.com/datasets/olaniyanjulius/student-academic-performance-
dataset) assessed on 4 September 2024, contains a collection of 40,000,000 records, each
detailing various aspects important for evaluating student academic performance. These
records include Continuous Assessment (CA), Practical Skills proficiency, Demeanor, Pre-
sentation Quality, Attendance records, Participation in class, and Examination results. The
final two columns represent the overall performance (total score) and the performance class
(remarks), which range from 1 to 5, indicating different levels of student achievement.

To provide clarity and facilitate analysis, each feature is assigned a corresponding
variable; x1 corresponds to CA, x2 corresponds to Practical proficiency, x3 corresponds to

https://www.kaggle.com/datasets/olaniyanjulius/student-academic-performance-dataset
https://www.kaggle.com/datasets/olaniyanjulius/student-academic-performance-dataset
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Demeanor, x4 corresponds to Presentation Quality, x5 corresponds to Attendance, x6 corre-
sponds to Participation in class, and finally, x7 corresponds to Examination results. This
structured framework not only simplifies data interpretation but also lays the groundwork
for comprehensive analysis and insights into student academic performance.

The CA variable evaluates ongoing performance through assignments, quizzes, and
tests, providing insight into consistent engagement and mastery of material. The Practical
Skills variable assesses hands-on proficiency in applying theoretical knowledge through
lab work and projects [26]. Demeanor focuses on punctuality, attentiveness, and overall
conduct, reflecting social and emotional intelligence [27]. Presentation Quality is evaluated
through the clarity and effectiveness of student presentations, highlighting communication
skills [28]. Attendance records quantify commitment and consistency in attending classes.
Participation in class measures active engagement and contribution during discussions and
activities [29,30]. Together, these variables offer a comprehensive framework for assessing
student strengths, areas for improvement, and overall academic progress. Figure 2 presents
the structure of the dataset generated in this research.

 

Figure 2. Dataset sample.

3.1.4. Data Analysis

Given the generated dataset, this study aims to explore the differences in student
performance across various classes. To achieve this, an Analysis of Variance (ANOVA) was
employed to determine if there were statistically significant differences in the performance
scores among the different classes. To ensure the validity of the ANOVA results, normality
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was first checked using Q-Q plots, shown in Figure 3, and homogeneity of variance was
assessed using Levene’s test, as depicted in Tables 1 and 2.

Computers 2024, 13, x FOR PEER REVIEW 7 of 17 
 

 
Figure 2. Dataset sample. 

3.1.4. Data Analysis 
Given the generated dataset, this study aims to explore the differences in student 

performance across various classes. To achieve this, an Analysis of Variance (ANOVA) 
was employed to determine if there were statistically significant differences in the 
performance scores among the different classes. To ensure the validity of the ANOVA 
results, normality was first checked using Q-Q plots, shown in Figure 3, and 
homogeneity of variance was assessed using Levene’s test, as depicted in Tables 1 and 2. 

 
Figure 3. Q-Q plots. 

The Q-Q plots indicated that the normality assumption was reasonably met, while 
Levene’s test revealed a p-value of 0.0, indicating significant differences in variances 
across groups. 

As shown in Tables 1 and 2, the analysis of variance (ANOVA) performed on the 
dataset revealed significant differences in student performance across different classes. 
Levene’s test for homogeneity of variances produced a p-value of 0.0, indicating that the 
variances among the groups were significantly different. Although this result suggests a 
violation of the homogeneity of variance assumption, it was expected, given the context 
of the dataset, which comprises different classes of student performance. 

Table 1. ANOVA results. 

Levene’s Test: p-Value = 0.0 
Source sum_sq df F PR (>F) 

C (remarks) 3.701384 × 107 4.0 624,662.877938 0.0 

Figure 3. Q-Q plots.

Table 1. ANOVA results.

Levene’s Test: p-Value = 0.0

Source sum_sq df F PR (>F)
C (remarks) 3.701384 × 107 4.0 624,662.877938 0.0

Residual 2.962631 × 106 199,995 NaN NaN
Multiple comparison of means—Tukey HSD, FWER = 0.05.

Table 2. Tukey’s HSD multiple comparisons of means test.

Group1 Group2 Meandiff p-Adj Lower Upper Reject

1 2 12.6824 0.0 12.6151 12.7497 True
1 3 22.5543 0.0 22.4871 22.6215 True
1 4 32.2145 0.0 32.1428 32.2863 True
1 5 42.6735 0.0 42.5821 42.765 True
2 3 9.8719 0.0 9.8036 9.9402 True
2 4 19.5321 0.0 19.4593 19.6049 True
2 5 29.9911 0.0 29.8998 30.0834 True
3 4 9.6602 0.0 9.5876 9.7329 True
3 5 20.1192 0.0 20.027 20.2114 True
4 5 10.459 0.0 10.3634 10.5546 True

The Q-Q plots indicated that the normality assumption was reasonably met, while
Levene’s test revealed a p-value of 0.0, indicating significant differences in variances
across groups.

As shown in Tables 1 and 2, the analysis of variance (ANOVA) performed on the
dataset revealed significant differences in student performance across different classes.
Levene’s test for homogeneity of variances produced a p-value of 0.0, indicating that the
variances among the groups were significantly different. Although this result suggests a
violation of the homogeneity of variance assumption, it was expected, given the context of
the dataset, which comprises different classes of student performance.

The ANOVA results as depicted in Table 1 further support the presence of significant
differences between groups. The F-statistic was calculated to be 624,662.88 with a corre-
sponding p-value of 0.0. This extremely low p-value allows us to reject the null hypothesis
and conclude that there are significant differences in the mean performance scores among
the different classes of students as expected in this context.

Following the ANOVA, Tukey’s HSD post hoc test as shown in Table 2 was conducted
to identify which specific groups differed significantly from each other. The results showed
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that all pairwise comparisons between the groups were significant, with each group dis-
playing a mean difference that was statistically significant (p-adj < 0.05) as expected. This
indicates that the performance of students in each class is distinctively different from
the others.

In summary, the analysis demonstrates clear and significant differences in student
performance across different classes. Although the homogeneity of variance assumption
was not met, the context of varying student performance classes justifies these significant
differences. The results align with expectations and provide a robust indication of distinct
performance levels among the different classes.

3.1.5. Data Preprocessing

As illustrated in Algorithm 2, the dataset is first loaded from a CSV file, ensuring
that all subsequent operations are based on the complete dataset. Following this, relevant
features and target variables are extracted. The features include various metrics such as
‘x1’, ‘x2’, ‘x3’, ‘x4’, ‘x5’, ‘x6’, and ‘x7’, while the target variables consist of the ‘total’ score
and ‘remarks’. The ‘remarks’ target variable is adjusted to zero-based indexing in order to
align the target values with typical numerical representations used in model training. The
feature set is then reshaped to fit the input requirements of a Long Short-Term Memory
(LSTM) network. This reshaping transforms the data into the format required for LSTM
input, with dimensions corresponding to samples, timesteps, and features [31]. Then, the
dataset is divided into training and testing subsets, allowing the model to be trained on
one portion of the data and evaluated on a separate, independent portion to assess its
performance effectively. Finally, the input shape for the LSTM network is defined based on
the reshaped data, which is important for setting up the network architecture correctly.

Algorithm 2: Data Preprocessing

Input: X: Features, y_total: Total score, y_remarks: Performance levels
Output: Input shape of the data for LSTM

function dataPreprocessing(dataset)
# Step 1: Load the dataset from the CSV file
X, y_total, y_remarks = extractFeaturesAndTargets(dataset)
# Step 2: Adjust y_remarks for zero-based indexing (if needed)
y_remarks = adjustZeroBasedIndex(y_remarks)
# Step 3: Reshape the input features X to fit the LSTM input format
# (samples, timesteps, features) X_reshaped = reshapeForLSTM(X)
# Step 4: Split the dataset into training and testing sets X_train, X_test, y_total_train,
y_total_test, y_remarks_train, y_remarks_test = splitData(X_reshaped, y_total, y_remarks)
# Step 5: Define the input shape for the LSTM network based on the reshaped data
input_shape = defineInputShape(X_reshaped)
# Return processed datasets and input shape
return X_train, X_test, y_total_train, y_total_test, y_remarks_train, y_remarks_test,

input_shape
end function

3.2. Method
3.2.1. The Model

The proposed model integrates Multi-Task LSTM with an attention mechanism to
enhance the prediction of students’ academic performance. As detailed in Algorithm 3, the
model addresses two dependent variables: the total and remarks variables. Predicting the
total variable is a regression task, while predicting the remarks variable is a classification
task. Traditionally, handling these tasks would involve splitting the dataset into two and
training them separately, which is time-consuming and resource-intensive [32]. Therefore,
a Multi-Task LSTM model is employed to manage both tasks concurrently. Addition-
ally, an attention mechanism is utilized to identify and extract the most relevant features
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from the dataset for the Multi-Task LSTM model [33]. The integration of these models is
mathematically presented in this section.

3.2.2. LSTM Layer

For sequence S = [s1s2,. . ..sT] with input features St ∈ Rd, the input features St
represent a vector of dimension d at each time step t, LSTM layer computes forget gate,
input gate, cell state update, cell state, output gate, and hidden state as illustrated in
Equations (1)–(6), respectively.

fG = SAF
(

W f ∗ [ht−1, nt] + b f

)
(1)

iG = SAF(Wi ∗ [ht−1, nt] + bi) (2)

Zt = tan h(Wz ∗ [ht−1, nt] + bz) (3)

Ct = fG ∗ Ct−1 + iG ∗ Zt (4)

oG = SAF(Wo ∗ [ht−1, nt] + bo) (5)

hG = oG ∗ tan h(Ct) (6)

where SAF is the Sigmoid Activation Function; fG is the forget gate; Wf is the weight matrix
for the forget gate, Concatenation of the previous hidden state [ht−1] and the current input
nt; bf is the bias term for the forget gate; iG is the input gate; W i is the weight matrix for
the input gate; and bi is the bias term for the input gate. Zt is the candidate cell gate, Wz
is the weight matrix for the candidate cell gate, bz is the bias term for the candidate cell
state, Ct is the cell state update, Ct−1 is the previous cell state,oG is the output gate, hG is
the hidden state, and tan h is the hyperbolic tangent function.

3.2.3. Attention Mechanism

The attention mechanism is used to dynamically compute a context vector Ct, which is
based on the sequence of hidden states H = [h1,h2,. . .,hT]. The context vector Ct is derived
by taking a weighted sum of these hidden states, where each hidden state ht contributes to
the final context depending on its importance, as defined by its corresponding attention
score At. This process is described in Equation (7):

Ct = ∑T
t=1 At ∗ ht (7)

Attention score (At) is computed as depicted in Equation (8).

At =
exp(et)

∑T
j=1 exp

(
ej
) (8)

where et is a raw score that reflects the relevance of the hidden state ht to the current
context. ∑T

j=1 exp
(
ej
)

is the sum of the exponentials of all raw scores from time steps 1 to T,
ensuring that the attention scores are a proper probability distribution over the sequence. T
defines how many time steps are in the sequence, and j is used to compute the normalized
attention score by summing over all time steps

3.2.4. Regression Analysis

For the regression task, the output denoted by yt is given in Equation (9).

yt = Wr ∗ hr + br (9)
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where yt is the predicted output at time step t. Wr is the weight matrix for the output layer,
hr is the hidden state from the previous layer or the current hidden representation. And br
is the bias term for the output layer.

hr = ReLU(Wrh ∗ h + brh) (10)

where hr is the hidden state at time t, Wrh is the weight matrix for the hidden layer. h
represents the input or hidden state from the previous layer. brh is the bias term for
the hidden layer. ReLU is the activation function, defined as ReLU = max(0, x), which
introduces non-linearity.

3.2.5. Classification Analysis

For the classification task, the output layer denoted by yo is given in Equation (11).

yo = softmax(Wo ∗ ho + bo) (11)

where yo is the predicted output for the classification task, Wo is the weight matrix for the
output layer, ho is the hidden state from the previous layer or hidden representation and
bo is the bias term for the output layer. softmax is an activation function often used for
multi-class classification. It converts the raw output scores into probabilities that sum to 1,
making it suitable for categorical prediction.

hc = ReLU(Wc ∗ h + bc) (12)

The Equation (12) transforms the input h by applying a weight matrix Wc and bias
bc, followed by passing the result through the ReLU activation function. This creates a
non-linear hidden representation hc used for further processing in the network. Therefore,
the integration is modeled as in Equations (13)–(16).

LSTM Layer Output : H = LSTM(X) (13)

Attention Output : c = Attention(H) (14)

Regression Output : ytotal = Wo ∗ ReLU(Wr ∗ H + bo) + br (15)

Classi f ication Output : yclass = Wo ∗ so f tmax(Wo ∗ ReLU(W c.H + bc) + bo (16)

where H is the output sequence from the LSTM layer, and W, b are the respective weights
and biases for each task.

3.2.6. Combined Regression and Classification

Then, both regression and classification losses are computed as illustrated in
Equations (17) and (18), respectively.

Regression Loss : Lossreg =
1
N ∑N

i=1
(
ytotal −

.
ytotal

)2 (17)

Classi f ication Loss : Lossclass = − 1
N ∑N

i=1yclasslog
( .
yclass

)
(18)

where
.
y denotes the predicted values.

4. Results and Discussions

This section presents the results and findings of the experimental study focused
on developing the Multi-Task LSTM model with an attention mechanism for predicting
students’ academic performance conducted in this research.
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4.1. Performance Evaluation Metrics

The performance of the proposed model is assessed using a variety of metrics tailored
to both the regression and classification tasks. These metrics offer a detailed evaluation of
the model’s effectiveness in predicting students’ academic performance.

4.1.1. Regression Task

For the regression task, which involves predicting the ‘total’ variable, three primary
metrics are employed. The Mean Absolute Error (MAE) measures the average magnitude of
errors in the predictions, indicating how closely the predicted values align with the actual
values [34]. The MAE for the regression task is 0.0249, reflecting a low average prediction
error. The Mean Squared Error (MSE) calculates the average of the squared differences
between predicted and actual values, with a value of 0.0012. This metric penalizes larger
errors more significantly and indicates that the model maintains a low average squared
error. Additionally, the Root Mean Squared Error (RMSE) provides a measure of the average
magnitude of prediction errors in the same units as the target variable [35]. With an RMSE
of 0.0346, the model demonstrates a minimal average prediction error, underscoring its
regression accuracy.

4.1.2. Classification Task

For the classification task, which involves predicting the ‘remarks’ variable, several
performance metrics are considered. Accuracy measures the proportion of correctly classi-
fied instances out of the total instances [36], and the model achieves a perfect accuracy of
1.0, signifying flawless classification performance. Precision reflects the proportion of true
positive predictions among all positive predictions made by the model [37], and a precision
of 1.0 indicates that every positive classification was correct. Recall, which measures the
proportion of actual positive instances correctly identified by the model [38], also achieves
a perfect score of 1.0, demonstrating the model’s ability to identify all actual positive in-
stances. Finally, the F1 Score, the harmonic mean of precision and recall, balances these
two aspects of classification performance [39]. An F1 Score of 1.0 highlights the model’s
ideal precision and recall, illustrating its overall effectiveness in classification. The visual
depiction of the model’s performance metrics is illustrated in Figure 4 and Table 3.

0.02
0.015
0.01

0.005

MAE MSE

Regression

RMSE
0

Accuracy Precision

Classification

Recall F1 Score
0

0.5

1

1.5

Figure 4. MLST-AM performance plot.

Table 3. Performance metrics of the Multi-Task LSTM model.

Metric Value

Mean Absolute Error (MAE) 0.012
Mean Squared Error (MSE) 0.000254

Root Mean Squared Error (RMSE) 0.01594
Accuracy 1.0 (100%)
Precision 1.0

Recall 1.0
F1 Score 1.0
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4.2. Training and Evaluation Results

To further evaluate the model’s performance, both the training and evaluation accura-
cies and losses were plotted for visualization, as presented in Figure 5.
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4.2.1. Regression Task Result

Over the course of 50 epochs, the training and validation metrics of the MLSTM-AM
model demonstrated substantial improvement. The training and validation process of the
proposed model demonstrates its robust performance in both regression and classification
tasks. For the regression task, the model achieved a Mean Absolute Error (MAE) of 0.012,
indicating a low average magnitude of prediction errors, while the Mean Squared Error
(MSE) of 0.000254 and the Root Mean Squared Error (RMSE) of 0.01594 further confirm
the model’s precision, with minimal differences between predicted and actual values.
These metrics collectively highlight the model’s capability to accurately predict continuous
outcomes, ensuring reliable performance in the regression task.

4.2.2. Classification Task Result

For the classification task, the model exhibits exceptional accuracy, precision, recall,
and F1 score, all achieving a perfect value of 1.0. This indicates that the model correctly
classifies all instances without any errors. The high classification accuracy reflects the
model’s ability to distinguish between different classes effectively, while the precision and
recall values demonstrate its proficiency in identifying true positives and minimizing false
positives and negatives. The perfect F1 score balances these metrics, reinforcing the model’s
overall robustness in handling classification tasks. These results show the effectiveness
of the training and validation process, ensuring the model’s reliability and accuracy in
predicting both continuous and categorical outcomes.

4.2.3. Confusion Matrix

The performance of the model in the evaluation of the academic performance of
students is based on five categories: Fail = 0, Pass = 1, Good = 2, Very Good = 3, and
Excellent = 4. Figure 6 illustrates a confusion matrix that further shows the performance of
the model. From this matrix, correctly classified students are 20,307 as Fail, 18,575 as Pass,
19,111 as Good, 15,014 as Very Good, and 6993 as Excellent, while misclassifications do not
occur for any category. That means that at each level, the model has correctly classified
students without mistakes. The perfect classification of all categories proves the model’s
appropriateness for assessing and distinguishing various levels of academic performance
and affords reliability to it as a tool in the study of academic evaluation.
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4.3. Comparative Analysis

As illustrated in Table 4, this section presents the comparison of the performance
of the proposed model (MLSTM-AM) with several other recent e-learning studies. The
comparison is based on Focus Area, Techniques Used, Metrics, and Gaps Addressed since
they were all trained on the different dataset and performance metrics. The comparison
models shown in Table 4 show several significant improvements. Existing models such
as [19–21,23,24] MTBERT-Attention, Liu et al.’s best model, Xie et al. Multi-Task Attentive
Knowledge Tracing (Su et al.’s MIER Model), and Ren et al.’s deep recommendation model
offer significant insights in their respective area; they place emphases on particular text
classification or behavior prediction or course recommendations, but neither of these
leverages multiple performance metrics at once.

Table 4. Performance comparison.

Author Focus Area Techniques Used Metrics Gaps Proposed Model

[19]
Cognitive
classification
of text

Multi-Task BERT
(MTBERT-
Attention) with
co-attention
mechanism

Superior performance
and explainability in
text classification

Focuses on text
classification only,
lacks holistic
student evaluation

Integrates multiple
performance metrics,
captures complex
relationships

[20] Prediction of
student behavior

LSTM with
soft-attention
mechanism

Effective in predicting
student behaviors and
improving academic
outcomes

Does not consider
holistic student
performance,
limited to behavior
prediction

Uses LSTM with
Multi-Task learning
for both regression
and classification

[21] Predicting student
performance

Attention-based
Multi-layer LSTM
(AML)

Improved prediction
accuracy and F1 score
using demographic
and clickstream data

Limited to
performance
prediction, lacks
comprehensive
metric integration

Combines various
metrics for a complete
evaluation of student
performance

[22] Knowledge
Tracing (KT)

Multi-Task
Attentive
Knowledge
Tracing (MAKT)

Improved prediction
accuracy in KT tasks

Focuses on KT,
does not address
real-time feedback
or holistic
evaluation

Provides real-time
feedback, integrates
multiple metrics for
holistic evaluation
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Table 4. Cont.

Author Focus Area Techniques Used Metrics Gaps Proposed Model

[23]
Cross-type
recommendation
in SDLS

Multi-Task
Information
Enhancement
Recommendation
(MIER) Model
with attention and
knowledge graph

Superior performance
in concept prediction
and exercise
recommendation

Limited to
recommendation
systems, does not
provide holistic
student evaluation

Utilizes attention
mechanisms for
comprehensive
evaluation of multiple
student metrics

[24] Course
recommendation

Deep course
recommendation
model with LSTM
and Attention

Higher AUC scores in
course
recommendations

Focuses on course
recommendations,
lacks integration of
diverse metrics

Integrates multimodal
data for
comprehensive
student performance
evaluation

The proposed model eliminates the shortfalls by employing an LSTM-based Multi-
Task learning technique, encroached upon with attention mechanisms to offer a more
in-depth analysis of student achievement. It integrates various metrics, offers real-time
feedback, and demonstrates high precision in both regression and classification tasks,
thereby enhancing overall student evaluation in e-learning environments.

5. Conclusions and Outlook

In this study, a Multi-Task LSTM model with an attention mechanism was proposed
to predict student academic performance effectively. The model addressed both regression
and classification tasks, predicting the ‘total’ score as a continuous variable and the ‘remarks’
as a categorical variable. This approach allowed for the efficient use of computational
resources and time by handling both tasks concurrently.

The performance metrics demonstrated the model’s high accuracy and low error
rates. For the regression task, the model achieved a Mean Absolute Error (MAE) of 0.012,
a Mean Squared Error (MSE) of 0.000254, and a Root Mean Squared Error (RMSE) of
0.01594, indicating precise and reliable predictions. For the classification task, the model
reached perfect scores across all metrics, with an accuracy, precision, recall, and F1 score
of 1.0. These results highlight the model’s robustness and effectiveness in both predicting
continuous outcomes and classifying categorical data.

Overall, the integration of a Multi-Task LSTM model with an attention mechanism
proved to be a powerful approach for predicting student performance. The model’s
ability to accurately predict both types of outcomes showcases its potential for broader
applications in educational data analysis and other fields requiring multi-task learning
capabilities. Future work could explore further enhancements and applications of this
model to continue improving predictive accuracy and efficiency in diverse contexts.
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