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Abstract: Deep Neural Networks (DNNs) have been widely adopted in several advanced
artificial intelligence applications due to their competitive accuracy to the human brain.
Nevertheless, the superior accuracy of a DNN is achieved at the expense of intensive com-
putations and storage complexity, requiring custom expandable hardware, i.e., graphics
processing units (GPUs). Interestingly, leveraging the synergy of parallelism and edge
computing can significantly improve CPU-based hardware platforms. Therefore, this
manuscript explores levels of parallelism techniques along with edge computation offload-
ing to develop an innovative hardware platform that improves the efficacy of deep learning
computing architectures. Furthermore, the multitask learning (MTL) approach is employed
to construct a parallel multi-task classification network. These tasks include face detection
and recognition, age estimation, gender recognition, smile detection, and hair color and
style classification. Additionally, both pipeline and parallel processing techniques are
utilized to expedite complicated computations, boosting the overall performance of the
presented deep face analysis architecture. A computation offloading approach, on the other
hand, is leveraged to distribute computation-intensive tasks to the server edge, whereas
lightweight computations are offloaded to edge devices, i.e., Raspberry Pi 4. To train
the proposed deep face analysis network architecture, two custom datasets (HDDB and
FRAED) were created for head detection and face-age recognition. Extensive experimental
results demonstrate the efficacy of the proposed pipeline-parallel architecture in terms
of execution time. It requires 8.2 s to provide detailed face detection and analysis for an
individual and 23.59 s for an inference containing 10 individuals. Moreover, a speedup of
62.48% is achieved compared to the sequential-based edge computing architecture. Mean-
while, 25.96% speed performance acceleration is realized when implementing the proposed
pipeline-parallel architecture only on the server edge compared to the sever sequential
implementation. Considering classification efficiency, the proposed classification modules
achieve an accuracy of 88.55% for hair color and style classification and a remarkable
prediction outcome of 100% for face recognition and age estimation. To summarize, the
proposed approach can assist in reducing the required execution time and memory capacity
by processing all facial tasks simultaneously on a single deep neural network rather than
building a CNN model for each task. Therefore, the presented pipeline-parallel architecture
can be a cost-effective framework for real-time computer vision applications implemented
on resource-limited devices.

Keywords: computation offloading; deep learning; CNN; edge computing; face recognition;
parallelism; pipelining; multithreading; multitask learning; SIMD and MIMD architecture;
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1. Introduction
Face detection and analysis techniques are being targeted as a biometric verification

tool to address challenging issues related to computer vision and security such as face
recognition, identity verification, human–computer interactions, etc. [1,2]. Face recognition
technology (FRT) has garnered significant attention and has been the subject of extensive
research and development since the 1990s [3–5]. The concept of face recognition technology
refers to a model’s ability to distinguish a human face in an image or video stream [6]. Face
recognition involves two primary tasks: face detection, which entails finding and locating
human faces, and face verification, which relies on recognizing an individual facial features
to determine and confirm the identification.

Researchers initially targeted modeling FRT using concepts such as the Markov model
and genetic algorithms. However, since AlexNet [7] emerged as the winner of the Ima-
geNet competition in 2012, the trend for modeling FRT has shifted towards using deep
learning. Deep Convolutional Neural Networks (CNNs) have been widely adopted to
provide intelligent solutions for complex programming scenarios since they can learn new
pattern representations and make accurate decisions [8,9]. The use of CNNs to identify a
person’s facial features has yielded impressive results [2]. For example, the VGG group
at the University of Oxford introduced VGGFace [10] for facial features analysis. Sub-
sequently, numerous deep neural networks (DNNs) for face detection and recognition
have been developed in the field of deep learning, such as FaceNet, DeepFace, VGGFace
and VGGFace2, OpenFace, ResNet Face, etc. [11,12]. Among these, VGGFace has shown
excellent results in face recognition for various applications. This can be attributed to its
good training using millions of diverse facial images [10]. Furthermore, implementing
a real-time face recognition model, i.e., VGGFace, requires an object detector to locate
targeted objects and surround them within a bounding box [13]. Several improvements
of CNN-based improvements with remarkable detection performance were introduced
as object detectors, such as region-based CNNs (R-CNNs), fast R-CNN, and single-shot
multibox detector (SSD) [14,15]. However, the YOLO (you look only once) algorithm has
become a leading model for object detection due to its ability to accurately detect various
objects in real-time [13]. Building on the improvements of earlier YOLO versions, YOLOv8
introduces new features and optimizations, such as incorporating an anchor-free split,
to make it an excellent detector for a variety of object detection tasks across numerous
applications. Additionally, it offers an optimal accuracy–speed tradeoff while delivering
cutting-edge object detection performance [16].

Additionally, tasks related to human faces, such as age estimation, hair detection and
classification, gender recognition, and smile detection, have been conveyed in a variety of
advanced artificial intelligence (AI) applications such as gesture recognition, pedestrian
face tracking, forensic investigations, automated authentication, etc., to provide more
accurate descriptions and conformations [4,5]. These facial-based tasks have typically
been explored individually using CNNs. However, since tasks based on facial features
share correlated attributes, they can be learned simultaneously to significantly reduce
training and inference time [2]. Single-task learning (STL) focuses on optimizing models
for individual independent tasks. Each model is trained separately for its specific objective,
which allows the model to specialize effectively in solving particular problems. Thus, it
is inefficient for systems requiring solutions to multiple related tasks simultaneously. It
is often used for optimizing task-specific objectives to maintain simplicity and special-
ization due to its suitability to solve problems with abundant labeled data. Thus, unlike
single-task learning (STL), which incurs extensive training time, multitask learning (MTL)
has emerged to boost learning performance by concurrently learning multiple correlated
tasks [2,17]. The multitasking pipeline aligns more closely with the principles of MTL. In
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this context, MTL improves the computational efficiency of the computing architecture
by enabling simultaneous face detection and analysis tasks, resulting in improved perfor-
mance and further generalization of the classifiers. However, the common challenge facing
MTL is that learning multiple tasks simultaneously may cause interference and increased
model complexity. Interestingly, this can be addressed by balancing classes in the dataset,
hyperparameter tuning, and assigning adaptive weights to the loss functions [18].

Several scholarly studies have demonstrated that the MTL approach has improved
the performance of individual tasks while also reducing training time, inference time, and
computational cost [17–20]. This is due to MTL involving the simultaneous learning of mul-
tiple related tasks by sharing features and parameters across complementary classification
modules. For instance, training a classifier to learn the gender and age of an individual,
rather than training them separately in a sequential manner, can be accomplished in parallel
as long as both attributes contribute the same extracted face feature map [1,2].

On the other hand, researchers are intensively concentrating on reducing the need
for GPU clusters for AI inference by deploying computationally intensive operations of
complicated models with a high-speed, scalable, and cost-effective architecture on CPU-
based computing devices [21]. This is due to the accelerated computational ability of a
DNN architecture, which can increase its capability to perform computeationally intensive
applications with a relatively short execution time, allowing for further human–machine
interactions in real-time such as face detection and recognition. Moreover, significant
effort has been devoted to enhancing the sophistication of DL models, particularly those
deployed on resource-constrained devices [22]. Consequently, edge computing (EC) has
proven to be an efficient computing architecture for distributing DL tasks across edge
devices and expediting the execution via parallel processing [23]. However, the complexity
of DL tasks presents a major burden that hinders the ability to offload computationally
intensive models on resource-constrained edge devices. Hence, computation offloading
has emerged as an equivalent solution that offloads intensive computations to a powerful
processing unit, i.e., a CNN-based feature extraction phase. In contrast, lightweight tasks
for decision-making are distributed to edge computing devices [22].

Moreover, partitioning a multi-layer DNN network between on-device inference and
edge nodes has been introduced to speed up inference time [8]. In this case, the edge
inference handles the initial layers and then uploads the intermediate result to the edge
server to process the remaining layers and produce the final result. Nevertheless, when
uploading an extensive task to the edge server, it requires a long processing time, impacting
overall system performance [24,25]. Therefore, partitioning a DNN model among multiple
edge computing devices allows for collaboration on DNN inference between edge devices
and the edge server to improve DNN inference performance [25].

A method of distributing DNN inference to an edge device and then dividing the task
into multiple threads was presented in [23] to enable parallel processing on a multicore edge
processor to further improve processing performance. Despite mainstream adoption of
the multicore architecture, there is a lack of studies exploring the use of parallel multicore
architectures to speed up the training and, more importantly, inference time for DNN
architectures. Therefore, in this study, we propose a novel architecture that offers an
innovative approach to optimize the training of deep learning models via the use of
MTL and accelerate the inference time on CPU-based resource-constrained edge devices.
The proposed architecture employs pipelining and parallelism techniques among the
multicores of an edge server and lightweight edge computing devices to efficiently tackle
the complexity of the required operations, enabling them to overcome the expense of
powerful CPUs. Our proposed parallel-multithreaded model is a fully pipelined neural
network architecture that is mainly designed to accelerate the inference of deep face
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analysis without compromising accuracy. We leverage multitask learning, pipeline, and
multithreading techniques with edge computing to optimize the training and inference time
using multiple cores of processors. The proposed architecture involves multiple dependent
DNN models incorporated to perform consecutive tasks for deep face analysis. Below, we
list the primary contributions of this manuscript as follows:

1. This paper is the first to utilize multithreading to distribute face detection and anal-
ysis algorithms across multiple processing cores while exploiting pipelining and
parallelism techniques.

2. We combine deep neural networks, computer architecture, and edge computing as
complementary fields to develop an innovative computing offloading pipeline-parallel
architecture for deep face analysis.

3. The presented model distributes and classifies face analysis tasks (algorithms) based
on their level of computational complexity such that intensive computational tasks
are assigned to powerful processor cores, whereas lightweight tasks are offloaded
to resource-constrained edge computing devices located at the edges of the pro-
posed framework.

4. We implement a unified multitask learning approach throughout the training phase,
which allows the model to learn multiple correlated tasks simultaneously, thereby
significantly reducing training and inference time and memory usage.

5. We created two custom datasets for head detection and face-age recognition. These
datasets were essential for conducting parallel multiple-task training using the
MTL approach.

6. We develop a framework architecture that employs edge computing to perform in-
depth analyses of facial features. The framework can be implemented in forensic
intelligence or adapted for use in human–computer interactive (HCI) applications
such as measuring the concentration levels of students in educational systems.

The remainder of this paper is structured as follows. In Section 2, we review a wide
range of relevant previously presented approaches that have been developed for face
analysis applications such as face detection and recognition, age estimation, hair color and
hairstyle classification, gender recognition, and face smile classification. Additionally, we
point out how various techniques of computer science and engineering can be combined to
deliver improved performance for deep face analysis. Section 3 covers dataset creation and
preparation for our proposed face analysis model. The proposed pipeline-parallel archi-
tecture for deep learning face analysis is introduced and discussed in Section 4. Section 5
explains the experimental setup steps and deployment process of the required hardware
equipment and software IDE environments. The results are elaborated on and deeply
analyzed in Section 6. Finally, Section 7 summarizes the manuscript and suggests potential
applications for deployment.

2. Related Work
In this section, we provide a comprehensive and up-to-date review of several deep

learning networks for human face detection and verification, edge computing, and multi-
task learning that have been recently published in the literature. The selected prior works
span different levels of abstractions, including deep learning [26], face recognition [3,27],
hair analysis [5,28], edge computing and computation offloading [29–32], parallelism ap-
proaches [30,33], multithreading and multi-processes [23], and multitask learning [1,2,34]
to capture feature maps of faces and perform different facial analysis tasks such as face
detection and verification, landmark localization, smile detection, gender recognition, age
estimation, hair color and style classification, etc. Our aim is to provide a comprehensive
review that is valuable for designers of cost-effective computing paradigms for face anal-
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ysis based on deep neural network architectures in order to achieve high-performance
computing architectures based on edge computing.

Deep CNNs have been extensively utilized in detection and recognition tasks [35]. For
instance, age estimation based on the VGGFace model was conducted in [26] to estimate the
age of individuals based on their facial features. Deep face recognition datasets including
VGGFace [10] and VGGFace2 [36] were introduced by the VGG group to train several CNNs
and deliver remarkable facial recognition accuracies. In a recent study by Hasan et al. [3],
an improved model for facial recognition is presented by training ResNet-50 using the
VGGFace architecture, presented in [10]. The proposed model addressed the issue of
training a DL model with a limited number of facial images per individual. To increase
its recognition performance, the authors re-trained a pre-trained facial recognition model
with a different dataset. Combining VGGFace2 for facial feature extraction with PCA was
explored in [27] to reduce Gabor features, increasing recognition accuracy.

Additionally, deep learning has been widely used for hair analysis and classification
across various helpful applications. For instance, human appearance can be categorized
based on hair. Additionally, hair can be a crucial feature for recognizing familiar faces [37],
and more accurate gender recognition can be achieved via hair analysis [38]. Moreover,
hair color classification can be a beneficial toolkit for forensic intelligence [39]. Therefore,
DL-based hair recognition and classification have been explored across a wide range of
applications. Hair detection and hairstyle classification was examined in [28]. The authors
were the first to attempt to perform hair detection and hairstyle classification to classify
seven different classes. A principal component analysis (PCA) was employed to shrink the
extracted feature maps into a flattened vector containing 4096 pixels. A CNN based on
the CaffeNet-fc7 model with random forest (RF) provided the best-obtained hair features
at the patch level, while local ternary patterns (LTP) for features with a support vector
machine (SVM) for decision-making realized the best segmentation results at the pixel
level. A systematic review was conducted in [5] recently regarding hair and skin analysis.
The review confirms that machine learning approaches such as artificial neural networks
(ANNs) and SVMs achieved the highest prediction accuracy (95% and 90%, respectively).

A fully convolutional multi-task neural network was introduced in [40] to extract
external facial image features (baldness and hair color). The proposed framework achieved
an accuracy of 92% and 93% for non-hair and average hair color prediction, respectively,
using the random forest classifier. Likewise, a novel diffusion-based generative model was
presented in [41] to segment human hair and non-hair from the background of an image.
The model accuracy was validated on three datasets (Figaro-1k, CeleA Mask-HQ, and Face
Synthetics) and realized accurate hair segment predictions of 98.03%, 95.34%, and 98.79%
for the tested datasets, respectively. However, these hair analysis models performed the
tasks sequentially without using overlapping methods, such as in a pipeline, and they did
not implement parallel processing to exploit multitask learning (MTL) simultaneously.

On the other hand, intrinsic attributes such as age, gender, and smile recognition have
been examined in various face images. The authors in [42] examined the relationships
between age, head pose estimation, and gender recognition. Similarly, an MTL-based facial
analytics framework was introduced in [43], which integrates gender recognition and age
estimation with other facial expression analyses. The hybrid learning approach for smile
recognition (HLSR) was introduced in [44]. The authors fused a CNN with the XGBoost
algorithm for real-time facial smile expression recognition.

Parallel module processing was proposed in [45] for medical diagnosis to distinguish
between depressed and normal patients based on facial expression analysis. The proposed
Dep-FER model is capable of distinguishing facial expressions including fear, anger, sad-
ness, happiness, surprise, and more using three parallel modules. These module were
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mainly designed to identify samples, learn general similarities, and predict an intrinsic rela-
tionship between normal and depressed patients. Likewise, considering parallel computing
paradigms, the study conducted by Gamatie et al. [33] was the first to explore the integration
of lightweight, low-power cores dedicated to parallel processing with high-speed processor
cores designed for sequential execution. The authors investigated energy efficiency by
implementing multicore architectures on resource-constrained edge computing devices,
aiming to establish a cost-effective computing paradigm. Later on, energy efficiency with
AI edge computing was explored in a study by Cheikh et al. [30], which employed an
interleaved multithreading approach to distribute heavy computations across multiple
edge computing devices. The study demonstrated the efficacy of the presented approach by
exploiting the synergy between thread-level parallelism (TLP) and data-level parallelism
(DLP). It was confirmed that leveraging TLP and DLP to configure a multiple-instruction
multiple-data (MIMD) architecture achieves higher speedup for more complicated 2D
convolutions compared to a single-instruction multiple-data (SIMD) architecture.

On the other hand, situating computationally intensive DNN tasks on mobile edge
computing devices for real-time DNN inference execution was first introduced in [8].
The authors proposed the neurosurgeon approach, referred to as the DNN partitioning
method, which partitions the computations of a DNN between the cloud and a mobile
device. It achieves significant performance improvements such as reduced latency and
energy consumption. To further improve inference on edge computing, an optimized deep
learning model was presented to classify vehicle images and whether they were stolen [29].
Fine-tuning the tested model reduced the model’s size, increased the model’s accuracy, and
slightly improved the model loading time on edge devices. Likewise, the authors in [46]
investigated the tradeoff between computing accuracy and latency of computationally
intensive deep learning applications deployed on edge devices with limited resources.
Moreover, in [47], a collaborative approach for thread-offloading was proposed to reduce
the energy consumption of multithreading by provisioning optimized TLP on mobile edge
computing (MEC). Similarly, the TLP was leveraged on multiple edge devices to shorten
the inference time and maximize cloudlet throughput [48]. Notably, prior research related
to enabling DNN inference on the edge can be divided into three categories: cloud-assisted
inference, edge-assisted inference, and multi-device collaboration [49,50]. Herein, we
concentrate on reviewing offloading tasks on multiple edge devices. A distributed DNN
computing architecture known as CoEdge was presented in [50], in which inference tasks
were divided into feature extraction and target classification. The input image is split into
small patches of different sizes and distributed on the edge devices during the feature
extraction phase, then the outcomes are aggregated during classification to compute the
final execution. Similarly, the DNN inference was divided into two parts deployed on
the user equipment (UE) and edge server [32]. The UE performs feature extraction, then
compresses the feature map and sends it to the edge server. The edge server then passes it
to the remaining DNN part to provide the predicted outcome, which is then sent back to
the UE. Additionally, to expedite the processing tasks of DNN models, a parallel-pipeline
inference was introduced by Goel et al. [31]. This architecture splits the DNN network
into sets of hierarchical consecutive layers, and each set is run on a different device. By
balancing the workload between the cooperative devices, the presented approach is capable
of concurrently processing multiple video frames, thus achieving improved throughput.

Multitask learning (MTL), on the other hand, has been adopted in several computer
vision problems for efficient automation of deep learning applications [1,2,34,51]. Caruana
et al. [52] were the first to introduce and generalize the MTL concept. Subsequently, MTL
has expanded to enable CNN deployment for detailed facial analysis. A VGG-based unified
network architecture called UberNet, expanding the training of multiple tasks on a single
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CNN network, was introduced in [51] using diverse datasets. UberNet employs MTL for
simultaneous training of CNNs by fusing all intermediate layers [51]. Moreover, a region-
based CNN (RCNN) model was proposed in [34] to perform human pose estimation and
action recognition. The model achieved an action mean average precision (mAP) of 70.5%.
Nevertheless, action classification models are still targeted to improve their classification
performance. Additionally, for images containing occlusions with faces, Zhang et al. [1]
presented a task-constrained deep learning model that performs multiple correlated tasks
of facial features concurrently. The proposed task-constrained deep convolution network
(TCDCN) model is utilized for facial landmark detection, gender recognition, and object
detection of smile and glasses. In a similar manner, real-time facial analytics based on event
surveillance cameras were presented later in [17] to estimate individuals’ visual attention
such as head pose, eye gaze, and facial occlusions for the analysis of human attention levels.

Additionally, facial feature analysis to recognize and classify multiple face-based
tasks was presented in the HyperFace deep CNN model in [2]. The model effectively ex-
ploits multitask learning, such as face detection, gender recognition, landmark localization,
and head pose estimation simultaneously. The approach utilizes a diffusion method that
leverages combinations of rich features among low, intermediate, and high convolutional
layers; therefore, various extracted facial features are fused from different layers of the
network. The authors first used a truncated AlexNet [7] as a backbone, which consists of
five convolutional layers for evolving feature maps. These fused features are then fed to
five ANN classifiers that operate in parallel to perform different face tasks. Following that,
the ResNet-101 [53] model was tested with a fiducial extractor to investigate the fusion
of intermediate layers with MTL, which was found to deliver more accurate prediction
performance for all tasks. Using HyperFace for the AlexNet-based model, accuracies of 97%
and 94% were achieved for gender recognition tested on CelebA and LFWA, respectively,
whereas 98% and 94% gender prediction outcomes were realized using HyperFace ResNet
as the backbone, validated on the same datasets. Moreover, using the IBUG dataset, ResNet-
101 was discovered to deliver the highest landmark localization (91.82%) for 68-point.
However, this achievement was realized at a high layer density, which incurs larger storage
capacity costs and requires massive, computationally intensive operations. Likewise, sev-
eral facial-related tasks such as face detection and recognition, age and gender estimation,
and emotion prediction were addressed by a single framework in [23]. However, this study
was mainly conducted to compare employing multithreading versus multi-processes on an
edge computing device for low-cost deep learning applications. The experimental results
showed that when the hardware resources—i.e., the number of CPU cores and memory
cells—of the edge device are limited, leveraging multithreading improves performance
compared to deploying multi-processes architecture. Moreover, running two threads in
parallel on two modules, each processing an image, results in an 18.87% speedup when
using an NVIDIA Jetson TX2 device and a 19.83% speedup when using an AGX edge
computing device. Nevertheless, employing MTL approaches for parallel facial feature
analysis to detect faces, determine identity, recognize gender, and estimate age has not
yet been adequately addressed. In other words, efficient employment of MTL with face
analysis requires more in-depth analysis of human faces.

To summarize, these relevant prior DL networks and computing architectures offer
individual benefits such as accelerated training, deployment of DL models on resource-
constrained computing devices, and parallel implementation. They have confirmed the
employment of a single or dual-combined specific technique, but there is no attempt to
combine desirable techniques of computer science and engineering such as parallelism,
pipelining, computation offloading, multitask learning, and multithreading in a single
framework architecture to provide deep face analysis. Considering these aforementioned
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challenges, in this paper, we leverage DLP and TLP, pipelining, computation offloading,
and multitask learning with edge computing paradigms to develop a pipeline-parallel
architecture for deep face analysis. Primarily, our paper is the first to integrate the pipeline
technique between the edge server and edge devices to maximize the throughput of DNN-
based tasks. The innovative pipeline-parallel with a computation offloading architecture
delivers a thorough facial analysis of the captured faces in an image taken in the wild. It
can detect multiple faces in a scene, crop all detected heads surrounded by bounding boxes,
and create their corresponding face images. These images are then saved in the database
on the hard disk, which is then processed through the pipeline-parallel architecture for
feature extraction using the VGGFace network. This involves feeding the extracted feature
maps into three MTL-based classifiers (hair-module, gender-module, and faceID-module)
designed for deep face analysis including hair color and style prediction, gender and
smile recognition, and face identification and age estimation, respectively. Notably, these
classifiers operate in parallel based on a multithreading approach that distributes tasks
among seven processing units (cores); four cores are for the server edge, while the remaining
three are for the edge devices to achieve a low-cost and efficient computing architecture.

3. Dataset Creation and Description
In this section, three categories of datasets with distinct attributes are utilized for

training and testing the proposed deep face analysis architecture, as listed in Table 1. The
datasets were used to train the object detection and cropping model (YOLOv8) and three
classification modules (hair, gender, and faceID module) working in parallel to provide
MTL simultaneously. Next, we discuss the creation and preparation of the used datasets.

Table 1. Summary of the utilized datasets.

Dataset Task
Encoded Total # of # of Train # of Valid. # of Test

Vector Length Samples Images Images Images

HDDB Head Detection 5-label 2706 1894 406 406
CelebA Gender and Smile recognition 5-bit 20,000 16,000 2000 2000

CelebA Hair color and style prediction 7-bit 20,000 16,000 2000 2000

FRAED Face recognition and Age estimation 32-bit 1400 1120 140 140

3.1. Head Detection Dataset

Face recognition technology has been embedded in several biometric-based access
and control devices such as smartphones, attendance verification devices, entrance of
smart buildings, etc. [6,54]. Such applications and technologies mainly function based
on deep neural networks (DNNs). DNNs have been trained and validated based on
numerous standard face detection datasets such as Annotated Face in the Wild (AFW) [55],
Disguise Faces in Wild (DFW) [56], and Face Detection Dataset and Benchmark (FDDB) [57].
However, despite the availability of several face detection datasets, there is still a need
for datasets containing annotations not only for faces but also for heads. This is due
to existing datasets concentrating merely on facial features, leading to much valuable
information about the head being ignored. For instance, further details about a person’s
identity description can be their hair color and style. Consequently, a new dataset for
head detection and analysis is introduced herein, namely Head Detection Dataset and
Benchmark (HDDB).

The created dataset facilitates training DL-based models for face detection and ID
verification to detect the entire head, including the hair color and style, which in turn
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can provide a deeper analysis of individuals and achieve accurate descriptions. Thus, the
created HDDB dataset is the first dataset that explicitly annotates the borders of humans’
heads rather than only their faces. HDDB has 4932 head annotations of 2706 images.
We randomly selected 2706 images from the FDDB dataset. Then, using the VGG Image
Annotator (VIA) tool [58], a bounding box around each existing head was drawn for all
selected images. These 2706 images contain 4932 annotated heads, and they were used to
train the nano-based YOLOv8 head detection model. The annotations are stored as CSV
files in a COCO format. Thus, after retrieving the dimensions of each image, we added
two new columns (‘img_w’ and ‘img_h’) to the image annotation CSV file. Afterward, we
transformed the head annotation information from the COCO format, which uses top-left
corner coordinates (‘x’ and ‘y’), width (‘w’), and height (‘h’) values for bounding boxes, to
the YOLO format, which represents bounding boxes with the center coordinates (‘center_x’
and ‘center_y’) and dimensions (‘width’ and ‘height’) normalized according to the image’s
size. The transformation process is further discussed in Algorithm 1. The final dataset is
organized into two separate directories, one for images and the other for their annotations.
Lastly, the dataset is split into subsets for training, validation, and testing. Initializing the
data (.yaml) file is essential for training the YOLOv8 model. Figure 1 depicts the concept of
the head detection bounding box versus face detection. As observed, the modified YOLOv8
model crops the heads to capture detailed features of individuals, including their hair.

Figure 1. Head detection dataset versus face detection dataset using nano-based YOLOv8.

Algorithm 1 HDDB Dataset Creation

Input : FDDB Dataset
Output : New Head Detection Dataset (HDDB) with data.yaml file

1: procedure ANNOTATE_HEADS()
2: for each image in HDDB_Images_Directory do
3: Manually annotate head bounding boxes in the image using the VIA tool
4: COCO_CSV ← Save COCO-format head bounding boxes to CSV in

COCO_Directory.
5: end for
6: end procedure
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Algorithm 1 Cont.

7: procedure CONVERT_COCO_TO_YOLO()
8: for each image in HDDB_Images_Directory do
9: yolo_annotation← NULL

10: Get the retrieved image dimensions:
image_width = image[‘width’], image_height = image[‘height’]

11: Get the image’s COCO annotation CSV from COCO_Directory.
12: for each annotation in the image’s COCO annotations file do
13: Convert the COCO bounding box coordinates to YOLO format:

yolox =
coco[‘X’] + coco[‘W’]/2

image_width
, yoloy =

coco[‘Y’] + coco[‘H’]/2
image_height

yolow =
coco[‘W’]

image_width
, yoloh =

coco[‘H’]
image_height

14: Append YOLO-formatted annotation to the YOLO annotation string:
yolo_annotation+ = f"{annotation[‘category_id’]} {yolo_x} {yolo_y}

{yolo_w} {yolo_h} \n"
15: end for
16: Create YOLO annotation.txt after the image in Yolo_Directory.
17: end for
18: end procedure
19: procedure MAIN()
20: HDDB_Images_Directory ← Randomly Select 2706 images from FDDB and

add to HDDB_Images_Directory.
21: COCO_Directory, Yolo_Directory ← Create directories for COCO and YOLO

CSV files
22: Execute Annotate_Heads(),Convert_COCO_to_YOLO() Procedures
23: Create data.yaml, essential for training the YOLOv8 model
24: end procedure

3.2. Gender-Smile Dataset

To train and test the proposed gender-smile module, a balanced subset of data samples
from the CelebA dataset [59] was selected, with each class containing about 10,000 image
samples. CelebA consists of more than 200,000 celebrity images. Each image is annotated
with 40 binary facial attributes. To deliver accurate gender and smiling recognition of
an individual in a variety of head pose situations, the gender-smile module requires a
well-trained classifier. Thus, careful consideration was given to selecting a diverse range of
images that capture individuals’ faces from multiple viewpoints, including frontal and far
views, in both smiling and non-smiling scenarios. Each image in the prepared gender-smile
dataset is annotated with five labels, including [“image_id”, “male”, “female”, “smiling”,
and “non-smiling”]. Moreover, one-hot encoding is utilized to represent each attribute,
where presence is encoded as ‘1’ and absence as ‘0’. Therefore, each image has two separate
one-hot vectors to accurately reflect the binary nature of the "gender" and "smile" attributes,
as can be seen in Algorithm 2 (lines 9 to 20).
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Algorithm 2 Gender-Smile Dataset Preparation
Input : CelebA Dataset
Output : Gender-Smile Dataset

1: procedure GENDER_SMILE_DATASET_CREATION()
2: Temp_Dataset_Directory← Select an equal number of images from the CelebA

dataset, divided into four categories: male smiling, male not smiling, female
smiling, and female not smiling.

3: Gender_Smile_Directory← Create directory to store images of Gender_Smile
Dataset

4: Gender_Smile.CSV ← Create CSV file to save Gender_Smile Dataset Annota-
tions.

5: for each each image in Temp_Dataset_Directory do
6: Add image to Gender_Smile_Directory
7: image_id← image_name
8: Extract binary attributes: gender, smile
9: Initialize gender_vector

10: if (gender == “male”) then
11: gender_vector = [1, 0]
12: else
13: gender_vector = [0, 1]
14: end if
15: Initialize smile_vector
16: if (smiling) then
17: smile_vector = [1, 0]
18: else
19: smile_vector = [0, 1]
20: end if
21: Create one_hot_encoding = [image_id, gender_vector, smile_vector]
22: Append one_hot_encoding as a new row to the Gender_Smile.csv
23: end for
24: end procedure

3.3. Hair Color-Style Dataset

Here, the hair color-style module was trained and tested using a subset of data samples
that were also chosen from the CelebA [59] dataset. A careful selection of images was made
from the CelebA dataset, similar to the gender-smile dataset, to create a subset that includes
various hair colors and styles. Each class contains between 5000 and 7000 image samples,
except for the gray hair category, which has approximately 700 image samples due to the
limited number of images available for that color in the original CelebA dataset. However,
the primary focus of this manuscript is to demonstrate the architectural efficiency of the
pipeline-parallel design rather than to fine-tune model learning loss strategies, which have
been well-studied in the literature. Each image in the hair color-style dataset is annotated
with seven labels, which are [“image_id”, “black-hair”, “blond-hair”, “brown-hair”, “gray-
hair”, “wavy-hair”, and “straight-hair”]. Likewise, to encode the binary representation
for the attributes of hair color and style, two distinct one-hot vectors were configured
for each image, in which presence was encoded as ‘1’ and absence as ‘0’ using one-hot
encoding. These steps are deeply explained in Algorithm 3. In Figure 2, we show groups of
the hair color and style dataset used to train the hair module of the proposed deep face
analysis architecture.
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Figure 2. Sample images from the hair dataset used to train the hair color-style module.

Algorithm 3 Hair Color-Style Dataset Preparation
Input : CelebA Dataset
Output : Hair Color-Style Dataset

1: procedure HAIR_COLOR_STYLE_DATASET_CREATION()
2: Temp_Dataset_Directory← Select a subset of images from the CelebA dataset

that includes hair color and style attributes.
3: Hair_Color_Style_Directory ← Create directory to store images of

Hair_Color_Style Dataset
4: Hair_Color_Style.CSV ← Create CSV file to save Hair_Color_Style Dataset

Annotations.
5: for each each image in Temp_Dataset_Directory do
6: Add image to Hair_Color_Style_Directory
7: image_id← image_name
8: Extract binary attributes: color, style
9: Initialize color_vector

10: if (hair_color == “black”) then
11: hair_color_vector = [1, 0, 0, 0]
12: else if (hair_color == “blond”) then
13: hair_color_vector = [0, 1, 0, 0]
14: else if (hair_color == “brown”) then
15: hair_color_vector = [0, 0, 1, 0]
16: else
17: hair_color_vector = [0, 0, 0, 1]
18: end if
19: Initialize style_vector
20: if (style == “wavy”) then
21: hairstyle_vector = [1, 0]
22: else
23: hairstyle_vector = [0, 1]
24: end if
25: Create one_hot_encoding = [image_id, color_vector, style_vector]
26: Append one_hot_encoding as a new row to the Hair_Color_Style.CSV
27: end for
28: end procedure
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3.4. Face Recognition and Age Estimation Dataset

To create a multitask dataset for face recognition and age estimation, we initially
categorized individuals into four groups representing people in their 10s, 30s, 50s, and 70s.
Within each group, we carefully selected seven famous people of a specified age to serve as
references for both facial recognition and age estimation tasks. Figure 3 depicts selected
image samples from the created face recognition and age estimation dataset (FRAED). As
observed, the individuals were divided into four age groups. The first group consisted of
people under 10, and the last group included individuals in their 70s.

Furthermore, Google Images and Pinterest were used to collect 50 images for each
person. The Shotwell application, which can be reached on Ubuntu 23.10, was then used
to crop the region of interest (head) from each image. The created database consists of
28 individuals grouped into 4 subsets, with each subset containing 7 people. In total, we
collected 1400 images for face recognition and age estimation, as listed in the last row
of Table 1. After that, each image in the created face-age dataset was annotated within
32 labels, including [“image_id”, individuals_names, 10’s, 30’s, 50’s, 70’s]. Moreover, one-
hot encoding was utilized to represent each attribute, where ‘1’ represents presence and
‘0’ represents absence. Since there were two tasks, i.e., face recognition for 28 people and
age estimation based on 4 age groups, 2 separate vectors were combined and encoded for
image annotation. Thus, each annotation vector was encoded as 32-bit, containing two
active bits to determine the person’s identification and the estimated age of each head
image. The entire procedure for creating the dataset is further explained in Algorithm 4.

Figure 3. Selected image samples of the created face recognition and age estimation dataset.

Algorithm 4 Face Recognition and Age Estimation Dataset Creation

Input : Google Images and Pinterest are used to collect 50 images for each individual
Output : Face Recognition + Age Estimation Dataset (FRAED)

1: procedure FACE_RECOGNITION_AGE_ESTIMATION_DATASET_CREATION()
2: Initialize the required age groups and the names of famous individuals
3: Age_Groups = [10’s, 30’s, 50’s, 70’s]
4: Famous_People_in_10s = [“Dakota Fanning”, “Jin Miran”, “Macaulay

Culkin”, “Prince George”, “Prince Louis”, “Princess Charlotte”, “Shirley
Temple”]

5: Famous_People_in_30s = [“Angelina Jolie”, “Cristiano Ronaldo”,
“Johnny Depp”, “Kate Middleton”, “Princess Diana”, “Prince William”,
“Queen Rania”]
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Algorithm 4 Cont.

6: Famous_People_in_50s = [“Brad Pitt”, “Celine Dion”, “Jennifer Anis-
ton”, “Oprah Winfrey”, “Robin Williams”, “Steve Jobs”, “Tom Cruise”]

7: Famous_People_in_70s = [“Elizabeth II”, “Harrison Ford”, “Helen
Mirren”, “Meryl Streep”, “Morgan Freeman”, “Richard Gere”, “Steven
Spielberg”]

8: No_of_Images_per_person← 50
9: Face_Rec_Age_Directory ← Create directory to store the dataset’s

images
10: Face_Rec_Age.CSV← Create a CSV file, with 33 columns: one for the

image ID, 28 for the famous individuals, and four for the age groups
themselves.

11: for each age in Age_Groups do
12: for each Famous_Person in age do
13: for i = 0 to No_of_Images_per_person do
14: image ← Download image for Famous_Person from Pinterest and

Google Images
15: head_Img← Crop the head from the image using Shotwell tool
16: Store head_Img in the Face_Rec_Age_Directory
17: Annotate the head_Img:
18: Set “image_id” label to the unique ID of the head_Img
19: Encode Face_Rec hot-vector: For each famous person, set its label

from the face recognitions 28 labels to ‘1’ if present, else ‘0’.
20: Encode Age hot-vector: For each age group, set the label from the 4

Age_Groups to ‘1’ if present, else ‘0’.
21: Create one hot encoding = [image id, Face_Rec vector, Age vector]
22: Append one_hot_encoding as a new row to the Face_Rec_Age.CSV
23: end for
24: end for
25: end for
26: end procedure

4. The Developed Parallel MTL-Based Face Analysis Framework
Deep learning applications such as face analysis require billions of intensive compu-

tational operations. To run these applications in real-time, computationally efficient and
low-latency architectures are desired. Therefore, pipeline and parallel implementation
approaches are utilized to achieve high-speed performance for iterative computations. The
pipelining technique is primarily employed to overlap the execution of DNN models to
improve performance. It is used to achieve two main goals: first, to perform dependent
tasks in parallel on different input data, i.e., different input images, and second, to speed
up the processing performance by dividing the workload on the available processing cores.
The overlap among algorithms is accomplished via multithreading, in which multiple
threads (algorithms) are executed in a parallel manner. The proposed architecture performs
computer-intensive operations on the server edge (core i5 processor), which employs paral-
lelism and pipeline techniques to deliver a high throughput. Meanwhile, the lightweight
tasks are offloaded to edge nodes, i.e., Raspberry Pi 4. Therefore, the input images are
processed incrementally through multiple DNN models configured using pipeline and
parallel techniques. The general framework of the proposed deep face analysis architecture
is depicted in Figure 4.
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Figure 4. The general framework of the proposed deep face analysis architecture.

The concept of the proposed architecture is similar to the HyperFace analysis network
proposed in [2]. However, it differs in several key aspects. First, our developed architecture
is based on YOLOv8 from Ultralytics [16] and VGG-Face [10] as backbone structures.
These DNN models were implemented using pipeline and parallel techniques to realize
high-computing performance. Additionally, we created a task-specific dataset, the HDDB
dataset, which is tailored for head detection. Essentially, we annotated the HDDB dataset
with the YOLO format for training YOLOv8 to detect heads instead of faces. The detected
heads are then cropped and stored on the hard disk of the server computer to be passed
through the next stage of the pipeline network for feature extraction. Second, to capture
complex features of heads, small kernels need to be utilized in the convolutional layers
of the CNN [35]. Therefore, we employ a pre-trained model of VGG-Face to accomplish
hair and facial feature extraction since it adopts only 3 × 3 kernels in all convolutional
layers. Thus, the input to the VGG-Face network is a head image resized to a resolution of
227 × 227. In the third stage of the pipeline, feature maps are offloaded to edge computers to
perform parallel multitask classification. Finally, during stage four, the classification results
are sent from the edge device back to the edge server to provide detailed face analysis and
decision-making. Therefore, the developed framework is designed to process four images
incrementally through four pipeline stages. For instance, when all four stages become full,
it indicates that the output decision-making of the first head image is in the write-back stage.
The second image is being classified using three parallel MTL-based classification modules.
The third image is undergoing feature extraction using VGG-Face. Lastly, YOLOv8 scans
the fourth image for head detection in the first stage. These parallel incremental operations
are clearly illustrated in Figure 5.

Moreover, a producer–consumer technique, a well-known approach in concurrent
programming, is adapted to maintain synchronization and temporary storage sharing
between the pipeline stages. The approach is employed to handle two categories of threads:
producers and consumers. A producer inserts items into the buffer, whereas a consumer
takes items out of the buffer. Furthermore, to achieve efficient shared-memory allocation, a
dynamic-size buffer (queue) is utilized in which the buffer size is altered depending on the
number of detected individuals (heads) in the input image.

In the proposed pipeline-parallel architecture, we leveraged the producer–consumer
approach to facilitate memory sharing. Initially, at stage #1, the YOLO producer thread
generates paths of the cropped images and adds them to YOLO queue. During stage
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#2, the VGG-thread serves as both a producer and a consumer. It retrieves the paths of
the cropped images from the YOLO queue and passes each head image to the VGG-Face
model to generate a tensor that represents the extracted feature map for the corresponding
individual. In this case, the YOLO queue is shared between the YOLO producer thread and
the VGG consumer thread. The generated tensors at the output of the VGG-Face model
are then placed into the offloading queue(s). Depending on the number of distributed
edge devices, illustrated in Figure 6a,b, two offloading producers were considered. For the
architecture involving a multithreaded server with a single Raspberry Pi (Rpi), there exists
a single offloading queue where the VGG-thread deposits the feature maps.

On the other hand, in the case of a multithreaded edge server with three Rpi devices,
the VGG-thread copies the feature tensors to three offloading queues, each corresponding
to an Rpi. We discuss this further in Section 4.3. When an edge device connects to the edge
server, the corresponding client thread consumes a feature map from the client’s queue
and sends it to the respective device. For instance, when Rpi1 sends a request to the server
asking to send an image tensor for hair color and style classification, the server accesses
the feature map queue of Rpi1, retrieves an image tensor, offloads it to Rpi1, and waits
for prediction outcomes. Once Rpi1 finishes predicting hair color and style, it sends the
predicted classes back to the server. The server enqueues the received outcomes of hair into
the prediction queue. Meanwhile, it obtains another image tensor from the tensor queue
of Rpi1 and offloads it to edge node Rpi1. Thus, in stage #3, the server assigns a thread
for each edge device request. However, each thread performs two sub-tasks. The first
sub-task retrieves a new feature tensor from the feature map queue and offloads it to the
client, while the second sub-task enqueues the received predictions into the CSV prediction
queue. During stage #4, a write-back thread assigned by the server consumes predictions
from the prediction queue and writes the results to a CSV file for saving. Consequently,
as depicted in Figure 5, the inference of the proposed architecture is designed to process
four images (im1, 2, 3, and 4) of different individuals concurrently. This implies that when
the first image (im1) reaches the write-back stage to be saved in a CSV file, the predicted
classes of im2 are enqueued into the prediction queues, the tensor of im3 is inserted into
the offloading queue, and the path of the cropped head (im4) from the YOLO model is
placed into the YOLO queue.

The synchronization in the proposed pipeline-parallel architecture was achieved
by incorporating storage units (SUs) and the producer–consumer approach between the
pipeline stages. Therefore, the use of these mechanisms effectively addresses variations in
processing delays, such as those induced by computationally intensive tasks like YOLOv8
for head detection and cropping or VGG-Face for feature map extraction, ensuring seamless
data flow between the stages despite task dependencies or variations in execution time. To
the best of our knowledge, the proposed edge computing-based architecture is the first to
employ pipeline and multithreading techniques in a single framework for in-depth face
analysis of multiple people. In Section 6.3, we analyze the performance evaluation of the
proposed pipeline-parallel architecture over the sequential design along with the STL and
MTL approach. Next, we further discuss our proposed pipeline-parallel architectures.



Computers 2025, 14, 29 17 of 33

Figure 5. Stages of the pipeline-multithreading architecture, showing four images being processed
in parallel.

Figure 6. Proposed pipeline-parallel architectures with thread distributions; (a) multithreading three
MTL-based classifiers on a single edge device, (b) multithreading three MTL-based classifiers on a
cluster containing three edge computing devices.

4.1. The Proposed Pipeline-Parallel Face Analysis Architectures

In this paper, three DNN architectures for deep face analysis are presented, since the
procedure of face analysis architecture is a multithreaded application. The first design is
sequential-based and involves cascaded networks. It is considered as the baseline archi-
tecture. The second and third architecture designs utilize pipeline and parallel processing
techniques with multithreading to expedite the computationally intensive operations of
the DNN models. These developed designs are as follows:

• The sequential-based architecture: It deploys a conventional fully sequential design.
In this design, the processing is divided into three well-tailored cascaded modules
(YOLOv8 module1, VGG-Face module2, and Classification module3), and each mod-
ule must be finished before the next one can start.

• Pipeline-parallel architecture with multithreading on a cluster of edge device: This
employs parallel and pipeline techniques on the edge server and multithreading of
the classifiers on a cluster of three homogeneous edge devices, running multiple
lightweight processors to perform multiple classification tasks.

• Pipeline-parallel architecture with multithreading on a single edge device: Similar to
the previous parallel design, this utilizes multithreading on the server edge between
module1 and module2. However, here, all classification tasks are offloaded to a single
edge device. Thus, under this design, four threads run on a quad-core processor of the
edge device; each core performs a single classification task at a time. Notice that one
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of the four cores of the edge device is allocated for the main thread, which handles the
threads’ organization with other processing cores.

Figure 6 depicts the proposed pipeline-parallel architectures. As seen, Figure 6a
illustrates the design of the pipeline-parallel architecture with multithreading on a single
edge node, while the design of the pipeline-parallel architecture with multithreading on
three edge devices is shown in Figure 6b. These proposed architectures employ pipeline
and parallel techniques along with multithreading to realize high-speed performance for
deep face analysis.

4.2. Multi-Task Learning

Herein, we propose an expandable pipelined and parallel implementation for deep
facial feature analytics. Multitask modules are proposed to identify various facial expres-
sions such as hairstyle, hair color, gender, smile, age, and face verification. We adapt
the approach of learning multiple related face analysis tasks to train two complementary
classifiers using a single MTL module simultaneously. This is because the feature maps
extracted from an image are correlated among the proposed classifiers. To implement MTL
for facial features, a pre-trained VGG-Face [10] model is used as a backbone for hair and
face feature extraction. However, only the structure of the feature map extraction was
maintained without modifications. Thus, the convolutional portion of the VGG-Face archi-
tecture is employed for feature extraction in our proposed architecture. This indicates that
transfer learning was used to preserve the learning of the VGG-Face network for feature
extraction. Meanwhile, an additional 13 dense layers are dedicated, i.e., our modification
process, to support the realization of multitask learning and to implement 6 classification
tasks. Moreover, two different datasets, i.e., FDDB and FRAED, were used to train the
classification modules of the modified VGG-Face network architecture. Therefore, we
trained six facial attributes in parallel using three classification modules, each of which is
composed of two complementary tasks. Figure 7 illustrates the developed classification
modules. These are module3-1 (hair-module), which performs hair color and hairstyle
classification, module3-2 (gender-module), which detects facial smile detection and gender
recognition, and module3-3 (faceID-module), which distinguishes face ID verification and
age estimation.

The input to these modules is a feature map, extracted in the previous pipeline stage
(module2) and fed as a flattening vector to the next stage (module3). When a classification
module completes its task, the decision is sent to the edge server to complete the write-
back stage (module4) for decision-making. At the server terminal, a list is used to gather
decisions and write them into a CSV file as observations for all individuals detected in
the input image during stage #1 (module1) using YOLOv8. It is important to note that we
trained each module (hair, gender, and faceID) separately during the training phase, since
the datasets are different. However, in the inference deployment, all three classification
modules perform simultaneously. This indicates that when the feature maps of an inference
from the previous stage (VGG-Face module) become available, all classifiers run to provide
decisions, as shown in the lower portion of Figure 7. As observed, all the classification
models require two fully connected layers for decision-making, except the face recognition
model, which is constructed using three fully connected layers to increase the efficiency
of face recognition. It is important to note that the ability to generalize the proposed edge
computing-based architecture across various models primarily relies on two factors: the
capability of the tasks to be learned simultaneously through the multi-task learning (MTL)
approach, and the model’s flexibility to be adapted for different tasks.
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Figure 7. Modified VGG-Face network to support the multitask classification approach.

4.3. Computation Offloading of the Proposed Classification Modules

Here, we aim to implement edge intelligence, which combines AI and edge computing,
in a pipeline-parallel embedded system to quickly analyze multiple individuals’ faces. Edge
computing has emerged recently to accelerate the execution of heavy computations for
big data streaming applications. It involves leveraging multiple lightweight processing
units at the edges of the cluster. Nevertheless, the majority of existing technologies send
raw data to a remote server, which can be a burden for embedded systems equipped
with resource-constrained edge devices. To address this limitation hindering the ability
to distribute computational-intensive tasks on edge devices, computation offloading is
used, through which intensive computations are assigned to the edge server to provide
processing for raw data and extract feature maps. Meanwhile, lightweight computations,
i.e., the classification modules, are offloaded to the edge devices. These modules receive
the extracted feature maps from the server and perform corresponding classification tasks
for seamless decision-making. Figure 8 depicts the offloading process of the proposed
pipeline-parallel architecture described in Figure 6b. The cluster involves four computing
devices, including a single powerful edge server and three Raspberry Pi edge computing
devices. To enable the server to handle multiple clients’ requests simultaneously, it is
configured as a multithreaded server. Thus, the server assigns a thread for each edge
device, and each thread works on two main temporary buffers (queues). It enqueues
tensor elements to the feature map queue, whereas the received prediction outcomes for
the edge nodes are inserted into the prediction queue. The two queues allocated to each
edge device enable parallel processing for multiple classification tasks and parallel saving
of prediction outcomes. Consequently, the deployed computation offloading approach
refers to distributing face analysis computations based on task complexity and resource-
rich/limited edge devices. In this context, extracted feature maps from detected heads
are offloaded to the developed MTL-based classification modules, where these modules
represent the dense layers of the modified VGG-Face model, illustrated in Figure 7. The
modules are embedded in three edge devices and run a multithreading approach to perform
three independent threads concurrently. Next, we discuss the levels of parallelism involved
in the proposed pipeline-parallel architecture.
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Figure 8. Offloading feature maps of detected heads to edge devices using multithreading.

4.4. Levels of Parallelism Leveraged in the Proposed Parallel Architecture

In computing paradigms, the levels of parallelism mainly include instruction-level
parallelism (ILP), data-level parallelism (DLP), and thread-level parallelism (TLP). These
levels of parallelism have been efficiently exploited in the design of the proposed pipeline-
parallel architecture. For example, multiplying the kernel of a CNN filter with the same
size image window, i.e., a 2-dimensional (2D) array taken from the input image, is achieved
via the dot product that performs ILP and DLP on the filter coefficients and elements of
the selected 2D array. It produces partial products, which are then summed to provide the
feature maps. This natural parallelism is carried out intra-processor (within a processor
core), which indicates that ILP and DLP can be very limited to exploiting only six cores of
our edge server or three similar operations performed on an edge device equipped with a
quad-core processor. Consequently, it is favorable to incorporate both ILP and DLP along
with TLP for ultra-fast processing. This can be achieved by using pipeline and parallelism
techniques among the processors to enable cooperation between intra- and inter-processor
cores, resulting in high-speed performance for DL-based complex applications. However,
to enable parallelism within dependent tasks, overlapping between them is required. This
has been achieved via a hybrid approach that combines pipelining and producer–consumer
techniques, as discussed in Section 4.

On the other hand, multithreading allows multiple threads to share processing units,
which can be either among dependent tasks run on a single processor with an overlapping
approach or among multiple independent threads run across a cluster of edge computing
devices. Multithreading utilizes TLP to shrink the execution time per task. Therefore, to
achieve high-speed performance with TLP, multicore processors can collaborate to run mul-
tiple independent threads simultaneously [60,61]. Hence, we utilize multithreading across
multiple cores of processors to increase parallelism, allowing for the concurrent execution
of independent threads on multiple cores of multiple processors. Moreover, the proposed
pipeline-parallel design employs a multi-instruction stream multi-data stream (MIMD)
architecture. This is due to multiple processing components executing various instruction
streams and multiple images are processed by different processors’ cores simultaneously.
In contrast, the single-instruction stream multi-data stream (SIMD) architecture is imple-
mented within each processor core by executing the same instruction stream, i.e., multipli-
cation or addition, on different data streams, since each image is passed through multiple
pipeline processing stages. Implementing the MIMD architecture instead of the SIMD archi-
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tecture for the proposed deep face analysis system is advantageous. This approach allows
for the simultaneous processing of multiple distinct instructions on different data streams,
making it well-suited for the diverse tasks involved in various stages of the pipeline. Our
architecture utilizes a multitask pipeline-parallel strategy, where different stages of the
pipeline operate concurrently on separate processors. Consequently, the MIMD architec-
ture supports this design by enabling distinct operations, such as detection and feature
extraction, to occur in parallel without the synchronization constraints that are inherent
in SIMD systems. Consequently, the proposed architecture utilizes parallelism at three
levels (instruction, data, and thread). Furthermore, parallelism occurs across the multicore
processor of the edge server and different processors of the edge cluster, including cores for
the edge server and edge computing devices. This implies that the processing mechanism
of the proposed architecture has been accelerated by running multiple independent threads
simultaneously. Each algorithm is forwarded to a specific core, where each core performs
a single module of the proposed pipeline-parallel face analysis architecture. For instance,
DNN models that involve computationally intensive operations are directed to one core
of the edge server processor, i.e., YOLOv8 and VGG-Face models are assigned to run on
two cores of the edge server. On the other hand, the classification modules encompass
lightweight operations compared to the YOLOv8 or VGG-Face networks; thus, a single
co-processor of an edge device is dedicated to each classification module, as illustrated in
Figure 9. Therefore, it perfectly aligns with the computationally intensive and task-diverse
nature of the proposed edge computing-based framework.

Figure 9. Multithreading of parallel modules on edge server and edge node processors.

5. Implementation and System Deployment
This section briefly introduces the required hardware and software tools for training,

configuring, and implementing the proposed deep face analysis architecture. System
deployment is also discussed at the end of this section.

5.1. Hardware

The testing cluster, in which tests have been deployed and executed, is a bare-metal
cluster made up of four nodes: one master and three worker nodes, each one deployed
in a different physical machine. The master is deployed on a laptop computer equipped
with an Intel core i5 Processor, 16 GB of RAM, 1 TB disk capacity, and an NVIDIA GeForce
GTX 1050 graphics card. The cluster of edge devices consists of three Raspberry Pi 4 Model
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B single-board computers. Each Raspberry Pi has the following characteristics: 64-bit
quad-core ARM Cortex-A72 processor, 8 GB of LPDDR4 RAM. A Hikvision Ethernet switch
with five ports was used to connect the edge devices with the edge server through an
Ethernet cable connection.

5.2. Software

Different software environments and tools were utilized to set up and configure these
experiments. VGG Image Annotator (VIA) was used to manually generate the annotations
of 2706 images selected from the FDDB dataset to create our HDDB dataset, which was
essential to train the YOLOv8 head detection model. Likewise, the Shotwell program,
available in Ubuntu OS, was used to manually crop 1400 head images and create the
developed face recognition and age estimation dataset. Table 2 summarizes the utilized
software and third-party library specifications. Two main operation systems were used:
Ubuntu ran on the edge server, while Debian ran on the edge devices. Python versions
3.11.4 and 3.11.2 were installed on the server and edge computing devices, respectively.
Moreover, Anaconda Navigator was used for smooth package management and launch.
Among the various built-in IDEs provided by Anaconda Navigator, a Jupyter notebook was
used as an integrated development environment (IDE) for training and building our deep
learning MTL classifiers and YOLOv8 head detection model. To support faster parallel
training on GPU, high-level feature tensor computation was leveraged with the PyTorch
package through the torch.cuda library, thereby providing strong GPU acceleration. Thus,
our developed multitask learning modules were implemented using the PyTorch deep
learning framework to accelerate the models’ training on a GPU. Note that the MTL-based
classifiers were trained and constructed on the edge server. Then, they were deployed onto
the edge devices for the multithreading inference architecture. The deployment process
involved exporting them with the standard PyTorch extension, denoted by the (.pth file)
extension. Figure 10 illustrates the practical deployment of the proposed face analysis
framework architecture. As observed, the classification modules are offloaded on three
resource-constrained edge computing devices. These edge devices work independently to
provide parallel classification outcomes of multiple complementary tasks.

Figure 10. The framework of system deployment for the proposed deep face analysis.
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Table 2. Software and third-party required libraries for training and deploying the proposed deep
face analysis architecture.

Environment/Software Version Function

Ubuntu 23.10 Edge server OS
Debian 12 (bookworm) Edge nodes OS
Edge Server Python 3.11.4 Development language
Edge Nodes Python 3.11.2 Development language
VGG Image Annotator 2 Manual annotation software
Shotwell 2.1 Cropping heads
Anaconda Navigator 2.4.2 Management tool
Jupyter Notebook 6.5.4 Integrated DL development environment
CUDA version 12.2 Edge server training DL models computing platform
Yolo Ultralytics YOLOv8.0.194 Head detection algorithm
Server PyTorch version 2.1.0+cu121 DL framework
Nodes PyTortch version 2.1.1 DL framework
PyCharm version 17.0.10+1-b1087.17 AMD64 Server system development environment
Thonny version 4.1.4 Nodes system development environment
Socket General socket API Performing offloading operations

In the offloading process for system deployment, we depend on using a leader/follower
architecture, where Python was utilized as the programming language for building the
programs on both edges. On the server edge, PyCharm was used as the integrated IDE,
whereas Thonny, a lightweight and resource-efficient IDE, was utilized on the edge nodes
side. For communication between the edge server and edge devices, we employed Python’s
socket library and multithreading, through which efficient utilization and management
of system resources were achieved. The edge server depends on using two main types of
sockets working in different threads. The server socket thread listens for incoming con-
nections from three Raspberry Pi devices via a transmission control protocol (TCP) socket,
ensuring reliable and error-checked data transfer. Meanwhile, the client socket threads are
responsible for managing the connections with edge nodes. For instance, when a client
connects, i.e., Rpi1, the multithreaded server creates a new thread to handle server–client
communication. Upon establishing, the thread becomes responsible for consuming feature
tensors from the feature maps queue and pushing received prediction outcomes into the
prediction queue, assigned for the corresponding connected edge device (Rpi1). Thus,
employing multithreading at the server edge enables it to handle multiple clients’ requests
simultaneously without blocking. Similarly, socket threading is run on edge devices, where
each device receives the tensor of the feature map from the server and passes it to the
embedded MTL classification module for decision-making. After that, the predicted out-
come is sent back to the server to be written in a CSV file, as illustrated in Figure 10. Next,
we analyze and discuss the obtained results in terms of the prediction accuracy of the
classification modules and the speedup of the proposed pipeline-parallel face recognition
architecture compared to the sequential implementation.

6. Results and Discussion
The discussion and evaluation of the results are divided into three parts. In the first

portion, we evaluate the detection performance of the YOLOv8 algorithm for head detection
in terms of mean average precision (mAP) and inference time. Thus, the training of the
YOLOv8 nano-version for face and head detection is evaluated on the edge server. In the
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second part, accuracy, precision, recall, F1 score, and required training time are evaluated
to validate the efficacy of the proposed classification modules. Therefore, we mainly
concentrate on discussing and highlighting the results of the training phase, which was
conducted on the server edge by running the Python CUDA package on the server’s GPU.
In the deployment phase, we evaluate the proposed pipeline-parallel architecture in terms
of inference time and speedup. We deployed four computing architectures, two sequential
(baseline) implementations with STL and MTL classification modules, respectively, and our
two proposed pipeline-parallel architectures. In this context, the inference is implemented
on both the edge server and edge computing devices.

6.1. Accuracy Evaluation of YOLOv8 Model

To evaluate the prediction accuracy of YOLOv8, we trained the model using the created
HDDB dataset, which was specifically modified and tailored to train the YOLOv8 model
for head detection. The dataset was divided into 70% training, 15% validation, and 15%
testing (1894, 406, and 406, respectively). Precision, recall, and mAP are the most common
object detection and performance evaluation metrics, as they comprehensively analyze the
model’s performance. Figure 11 validates the training processing of the YOLOv8 model.
The model achieves a max mAP of 98.7% at epoch number 86 and an average loss of 1.2 for
100 epochs. Likewise, the mAP is around 75% when increasing the threshold for intersection
over union (IOU) with the ground truth to become between 50 and 95. Considering the
confusion matrix, the YOLOv8 model achieves high head detection outcomes, detecting
693 true-positive, 23 true-negative, and 47 false-negative in 608 images, as seen in Figure 12a.
Moreover, Figure 12 shows YOLOv8 testing performance in terms of precision, recall, and
the F1 score confidence curve. The model realizes precision-recall of 98.5% of all classes
with mAP set up with a threshold level of 0.5, while the F1 score reaches 96% of all classes
at a confidence of 0.662.

Figure 11. Training and validation performance of the YOLOv8 model for head detection. The x-axis
represents the number of epochs.

On the other hand, the processing speed, such as the frame latency, is another valuable
metric to ensure timely results for real-time applications. When deploying the proposed
system and offloading the YOLOv8 algorithm to the edge server, with the specifications
illustrated in Section 5.1, it takes roughly 34 ms to detect existing heads in the input image.
Figure 13 illustrates sample results for head detection from the HDDB dataset. It further
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demonstrates the validity of the model to accurately detect existing individuals’ heads in
an image.

Figure 12. YOLOv8 testing performance; (a) confusion matrix, (b) precision, (c) recall, (d) precision-
recall, and (e) F1 score confidence curve.

Figure 13. Head detection result samples of YOLOv8, where a red box denotes a detected head with
its corresponding confidence level.

6.2. Accuracy Evaluation of Proposed Classification Modules

Here, the hair module, gender module, and face ID verification module were trained
using two datasets (HDDB and FRAED), each divided into three subsets (train [80%],
validation [10%], and test [10%]). To train the classification modules, we utilized the
Stochastic Gradient Descent (SGD) optimizer with a momentum of 0.9, a learning rate of
0.002, and a batch size of 8. For the loss function, we used cross-entropy, which is well-
suited for classification tasks as it emphasizes error distance and motivates the model to
provide confident predictions. However, the Adam optimizer was found to work better for
the face recognition and age estimation module; thus, we used the Adam optimizer for our
third proposed classification module. Furthermore, to prevent interference while learning
multiple tasks simultaneously, we first balanced the classes within the dataset to reduce
the risk of overfitting to dominant classes. This balancing helps to enhance convergence
across all tasks. Additionally, we optimized both the learning rate and batch size to further
improve convergence across tasks. Finally, we monitored the performance of each task
such that if a task experienced a delay in progress, its loss was temporarily increased to
emphasize its importance during training.
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The proposed MTL hair module provides competitive prediction performance com-
pared to STL, as observed in Figure 14b,d. The MTL for color prediction slightly improved
the prediction for black hair while misclassifying the brown class. Meanwhile, it provided
almost the same color prediction performance for the hair modules of STL and MTL (88.4%
and 88.55%, respectively), while the accuracy of the hairstyle was 88.55% in both learning
approaches. In terms of training time, the STL hair color and hairstyle module incurred
(4.37 and 4.33 ms) and (1.75 and 1.83 h) for epoch time and overall training time, respec-
tively. However, the MTL reduced the training time almost by 50% since both features
of hair color and style were learned concurrently. Furthermore, the MTL hair module
achieved comparable outcomes for precession, recall, and F1 score compared to those of
STL, as listed in Table 3. On the other hand, the proposed MTL gender-smile module
achieved comparable prediction outcomes to the STL module. Figure 14f,h depict the
confusion matrix of the module; as seen, the true and false negatives of both gender and
smile were nearly identical to that in the STL-based module. This confirms the validation
of the MTL training. In terms of training time, the MTL module of gender-smile required
4.39 ms for each epoch, whereas the STL modules required 4.37 and 4.33 ms for gender
and smile, respectively. The evaluation of the module based on other metrics, such as
precision, recall, and F1 score, demonstrates competitive prediction performance for the
gender-smile module.

Figure 14. Confusion matrices for classification modules using STL and MTL; (a) hair color STL,
(b) hair color MTL, (c) hairstyle STL, (d) hairstyle MTL, (e) gender STL, (f) gender MTL, (g) smile
STL, (h) smile MTL, (i) Face STL, (j) Face MTL, (k) age STL, and (l) age MTL module.

Moreover, the FaceID module, which provides face recognition and age estimation,
was evaluated based on the created face recognition and age estimation dataset (FRAED).
As discussed in Section 3.4, each individual is represented by 50 images representing 4 life-
age intervals, used for training, validation, and testing. Figure 14j,l depict the confusion
matrices of face recognition and age estimation, respectively. The outcomes of both the STL
and MTL modules show impressive prediction performances of 100%. Meanwhile, the pro-
posed MTL module for face recognition delivered reduced training time; an improvement
of 24.84% was realized. Considering the training time for age estimation, the proposed
MTL module incurred a slightly higher training time, less than 1% (0.73%), as presented in
the last three columns in row 2 of Table 3.
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Table 3. Comparison of training the proposed classification modules using MTL versus STL. Note
that the number of epochs is set to 20 for all conducted experiments.

Metric

Module 1 Module 2 Module 3

STL (Hair) MTL (Hair) STL MTL STL MTL

Color Style Color Style Gender Smile Gender Smile Face Age Face Age

Epoch Time
4.37 4.33 4.4 4.37 4.33 4.39 38 21 22

(mins)

Training Time
1.75 1.83 1.75 1.78 1.75 1.77 10.95 8.17 8.23

(h)

Accuracy
88.4 88.35 88.55 88.55 98.15 90.25 98.05 90.45 100 100 100 100

(%)

Recall
88.4 88.35 88.55 88.55 98.15 90.25 98.05 90.45 100 100 100 100

(%)

Precision
88.45 88.55 88.5 88.56 98.15 90.43 98.05 90.45 100 100 100 100

(%)

F1 Score
88.4 88.4 88.51 88.55 98.15 90.24 98.05 90.44 100 100 100 100

(%)

6.3. Speedup Evaluation of Proposed Pipeline-Parallel Architecture

The inference time of each algorithm in the proposed pipeline stages is computed to
quantitatively evaluate the speed performance of the proposed deep face analysis architec-
ture. As listed in Table 4, the pipeline-parallel architecture provides an improved execution
time compared to the baseline sequential architecture with MTL, achieving a speedup of
23.95% when offloading the proposed pipeline-parallel architecture on a single-edge device.
Despite the fact that the pure SIMD architecture incurs higher energy consumption due to
low TLP exploitation [30], the proposed pipeline-parallel architecture increases processing
efficacy by utilizing both DLP and TLP in a single edge device, running SIMD within each
core and MIMD across the processor’s cores. Therefore, a speedup of 44.88% was realized
by distributing the classification modules on three edge computing devices. This was due to
our proposed architecture utilizing data parallelism through multilane SIMD execution and
thread parallelism through fully symmetric MIMD execution, enabling parallel execution
of multiple threads running on multiple cores of microprocessors. Thus, offloading the
classification tasks on a single edge device incurs a higher execution time (by 3.12 s) than
deploying them on a cluster of three edge devices working in parallel. However, this
speedup was achieved at the expense of deploying three edge computers instead of one
edge quad-core computer. For instance, when the multithreading process of the classifiers
is offloaded on a single edge device, the multithreading is performed on all four cores,
where a single core is allocated for the software organization, and the other three cores
are assigned for performing classification tasks. Each classification thread runs on a single
core. Therefore, the speedup improvement factor for designs utilizing parallelism and
multithreading is a tradeoff between the available edge devices in the deployed cluster and
the execution time of the classification tasks.

To further demonstrate the efficacy of the proposed pipeline-parallel architecture, we
evaluated its performance by executing a sequence of images ranging from 10 to 300, as
illustrated in Figure 15. Offloading the classification modules on three edge devices resulted
in the lowest execution time, as shown in Figure 15a. In terms of speedup, the proposed



Computers 2025, 14, 29 28 of 33

pipeline-parallel architecture provided enhanced speedup when increasing the number of
offloaded images. However, offloading the images on a single edge device delivered im-
proved speed performance up to 120 images, whereas offloading the classification modules
on three edge computing devices provided improved speedup even when reaching 300 im-
ages, as shown in Figure 15b. On average, a speedup of 32.61% and 62.48% was realized
when distributing the classification modules on a cluster characterized by single-edge and
three-edge devices, respectively, compared to the sequential implementation with MTL.
Likewise, an average speedup of 44.4% could be achieved when offloading the classification
modules onto three-edge computing devices compared to a single-edge device.

Table 4. Execution time of deploying the proposed deep face analysis architectures.

Architecture
Exec. Time Exec. Time Exec. Time Exec. Time Overall
of YOLOv8 of VGGFace of Classification of Write-Back Infer. Time

(s) (s) (s) (ms) (s)

Sequential implementation
0.849 0.111 20.384 27 21.346

with STL

Sequential implementation
0.857 0.112 13.931 33 14.901

with MTL

Pipeline-parallel with
1.102 0.128 10.102 0.2 11.332

multithreading on 1 edge

Pipeline-parallel with
1.197 0.156 6.86 0.4 8.214

multithreading on 3 edges

Figure 15. Speed performance evaluation of the proposed pipeline-parallel architecture; (a) execution
time for pipeline-parallel configurations versus sequential implementation, (b) speedup comparisons
of implemented configurations.

Additionally, we deployed the proposed pipeline-parallel architecture only on the
server edge to further examine its speed acceleration efficacy using only the server edge.
We evaluated the speedup obtained by executing a sequence of images ranging from 30 to
5000. Table 5 lists the execution time of each pipeline stage and the execution time of the
sequential implementation with STL. As seen in the last column, an average speedup of
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25.96% is achieved when implementing the innovative pipeline-parallel architecture only
on the server edge.

Table 5. Speedup comparisons of the proposed deep face analysis architectures implemented on the
server edge.

Architecture
# of

Exec. Time Exec. Time Exec. Time Write-Back Overall
Speedup

Images
of YOLOv8 of VGGFace of Classifi. Time Exec. Time

(s) (s) (s) (ms) (s) (%)

Sequential + STL
1

0.88 0.181 0.014 0.00016 2.06
30.79

Pipeline-Parallel + MTL 1.257 0.136 0.012 0.00001 1.426

Sequential + STL
30

5.519 3.099 0.381 0.00021 9.96
22.94

Pipeline-Parallel + MTL 7.526 6.248 6.065 6.054 7.675

Sequential + STL
90

14.535 9.966 1.132 0.00036 26.59
27.74

Pipeline-Parallel + MTL 19.065 17.773 17.615 17.603 19.214

Sequential + STL
120

19.127 12.321 1.527 0.00041 33.924
24.86

Pipeline-Parallel + MTL 25.34 24.125 23.95 23.939 25.489

Sequential + STL
300

46.826 31.677 31.771 0.00093 83.184
26.19

Pipeline-Parallel + MTL 61.247 60.002 59.821 59.811 61.396

Sequential + STL
1200

189.193 131.577 15.686 0.00312 337.371
26.24

Pipeline-Parallel + MTL 248.688 247.428 247.249 247.234 248.837

Sequential + STL
5000

778.931 576.306 65.897 0.01379 1422.268
22.97

Pipeline-Parallel + MTL 1095.446 1094.142 1093.964 1093.95 1095.594

In summary, the deep facial analysis architecture developed in this manuscript is an
MTL-based CNN network designed to first detect heads and then analyze facial attributes
such as age, gender, smiling, hairstyle and color, and face recognition simultaneously.
It offers many advantages over dedicating a single classification module for each task,
including improved computing efficiency, memory usage, and computational costs by
deploying classification modules on resource-limited edge computers. Hence, the proposed
framework has the potential to be used in various applications. One potential application
is in forensic science, where it can assist in monitoring and identifying individuals who are
targeting criminal areas. Another potential application is in the security of smart buildings,
where it can detect and prevent unauthorized access when a suspicious person is identified.

7. Conclusions
This manuscript proposes a computation offloading architecture for deep face analysis

that orchestrates cooperative DNN inference over a cluster of heterogeneous edge devices.
An innovative framework architecture that utilizes pipeline and parallelism techniques
for deep facial analytics is developed. The proposed pipeline-parallel architecture is de-
signed to first detect heads and analyze various facial attributes such as hairstyle and
color, age, gender, smile, and face identity verification simultaneously. Furthermore, the
architecture employs an MTL-based CNN network to significantly shrink the structure
of neural networks while maintaining high-quality classification outcomes. Additionally,
multithreading is leveraged to distribute multiple tasks on multiple cores of the processor
for parallel processing, considerably reducing the inference time required to classify and
recognize facial features. Thus, the architecture is designed to provide detailed facial feature
analysis of multiple individuals concurrently, thereby achieving an extended classification
approach and high face recognition accuracy. The testing accuracy of the proposed classifi-
cation modules ranges from 88.55% to 100%. Extensive experiments demonstrate the ability
of the proposed pipeline-parallel architecture to learn and execute multiple dependent
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and independent tasks concurrently, leading to a reduction in training and inference time
by 50% and 44.88%, respectively. In terms of speedup, the proposed pipeline-parallel
architecture, which offloads the classification modules on a cluster of three edge devices,
achieves significant performance improvements (62.48% average speedup) compared to the
sequential implementation of the deep face analysis model while deploying the classifiers
on resource-constrained edge computing devices. Considering these favorable attributes,
the proposed face analysis architecture can potentially be embedded in low-cost edge de-
vices to capture images from surveillance cameras and provide real-time deep face analysis,
making it suitable for deployment in areas such as security and forensic intelligence.
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