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Abstract: Paranasal sinus surgery, a common treatment for chronic rhinosinusitis, requires
exceptional precision due to the proximity of critical anatomical structures. To ensure
accurate instrument control and clear visualization of the surgical site, surgeons utilize
computer-aided surgical navigation (CSN). A key component of CSN is the registration
process, which is traditionally reliant on manual or marker-based techniques. However,
there is a growing shift toward marker-less registration methods. In previous work, we
investigated a mesh-based registration approach using a Mixed Reality Head-Mounted
Display (MR-HMD), specifically the Microsoft HoloLens 2. However, this method faced
limitations, including depth holes and invalid values. These issues stemmed from the de-
vice’s low-resolution camera specifications and the 3D projection steps required to upscale
RGB camera spaces. In this study, we propose a novel automated marker-less registration
method leveraging Neural Radiance Field (NeRF) technology with an MR-HMD. To ad-
dress insufficient depth information in the previous approach, we utilize rendered-depth
images generated by the trained NeRF model. We evaluated our method against two other
techniques, including prior mesh-based registration, using a facial phantom and three
participants. The results demonstrate our proposed method achieves at least a 0.873 mm
(12%) improvement in registration accuracy compared to others.

Keywords: marker-less registration; neural radiance fields; mixed reality

1. Introduction
Chronic rhinosinusitis ranks as one of the most prevalent chronic conditions world-

wide, with an estimated prevalence of 12.3% in the United States [1]. This clinical condition
adversely affects the quality of daily life, frequently leading to severe fatigue, major depres-
sive symptoms, and, in severe cases, cognitive decline [2]. This condition develops as a
result of ineffective management of acute sinusitis or recurring inflammation. When phar-
macological treatments fail to relieve symptoms, paranasal sinus surgery (PSS) is generally
considered an alternative therapeutic option. This procedure utilizes a minimally invasive
approach, relying on a nasal endoscope for sinus access and inflammation reduction [3]. In
PSS, it is crucial to ensure accurate navigation and handling of surgical instruments, as the
paranasal sinuses are situated close to vital anatomical features within the skull, including
the pituitary gland, carotid arteries, orbit, and optic nerve [4]. To achieve this precision,
computer-aided surgical navigation (CSN) provides surgeons with visual information, such
as the real-time location of surgical instruments, by utilizing preoperative medical imaging
such as computed tomography (CT) or magnetic resonance imaging (MRI) scan [5–8]. In the
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case of PSS, CSN utilizes a CT scan to accurately and promptly localize surgical instruments
within the nasal cavity [9].

The essential step of CSN is the registration of the patient to preoperative medical
images, ensuring accurate alignment between the surgical site and the preoperative medical
data. Traditionally, this process is performed either manually by the operator or through
automated methods using fiducial markers, such as implantable or adhesive. The manual
registration approach typically involves the user carefully defining anatomical landmarks
on the patient’s surface using a pointer tip, which is then aligned with the predefined corre-
sponding landmarks on the preoperative medical images using point-to-point alignment
algorithms. This approach has been extensively studied [10–12]; however, it is inherently
time-consuming and requires a high degree of human input while being prone to both
intra- and inter-observer errors [13]. Additionally, physical contact with the patient during
the registration process introduces a potential risk of infection. Fiducial markers that
physically predefine anatomical landmarks allow the registration process to be automated
while addressing some of the limitations of manual registration methods [14–17]. However,
inherent limitations remain in the registration process. The invasive nature of implantable
markers, involving insertion into the human body, may cause potential complications. In
contrast, adhesive markers are non-invasive but carry the issue of marker point displace-
ment [18]. Alternatives aim to eliminate the reliance on fiducial markers and thus address
their limitations. Such marker-less registration approaches utilize RGB-D camera feeds
and computer vision algorithms to automatically reconstruct 3D geometry to represent the
patient surface and align them with preoperative medical images [19–21].

The exploration of CSN in Mixed Reality (MR) environments has gained increasing
attention [22–24]. There are now affordable commercial MR head-mounted devices (MR-
HMD) capable of providing glass-based high-fidelity displays. With MR-HMDs, CSN
interfaces can be seamlessly integrated into the surgical field of view through real-time
visual feeds. Furthermore, MR-HMD offers built-in RGB-D cameras, originally designed
to implement spatial awareness, and it can be used to reconstruct the 3D geometry of
patient surfaces directly. As such, all stages of CSN can be developed within the MR-HMD
environment by utilizing all those capabilities. Our previous conference work [25] has
proposed an automated MR-HMD-based marker-less registration approach with acceptable
registration accuracy when compared to the manual counterpart. Our previous approach,
however, inherently suffered from the low quality of the built-in RGB-D camera of MR-
HMD, thus heavily compromising the registration accuracy. There were depth holes or
invalid values due to the low-spec camera and the required 3D projection step to greater
resolution of RGB camera spaces.

Neural radiance fields (NeRF) [26] have attracted considerable attention in computer
graphics due to their revolutionary capability to reconstruct 3D geometry. NeRF represents
objects as continuous radiance fields modeled by multi-layer perceptron (MLP). These
MLPs learn to approximate the object’s structure from a collection of captured images
and their associated camera poses. NeRF has proven effective in preserving high-quality
geometry and appearance details. Additionally, the learned radiance field allows for
3D geometry reconstruction at arbitrary resolutions, offering potential applications in
super-resolution imaging.

In this study, we propose a new MR-HMD-based automated approach for marker-less
registration in PSS-CSN by leveraging NeRF, with the aim to obtain the high quality of
depth images and enhanced registration accuracy. We note the capability of NeRF in the
resolution-arbitrary and noise-robust geometry (i.e., depth) reconstruction. We demonstrate
our approach using Microsoft HoloLens 2 MR-HMD [27], taking advantage of its capability
to efficiently capture RGB-D images and rapidly develop in-situ visualization prototypes,
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illustrating how virtual preoperative images are aligned with the target physical areas. The
accuracy of our registration approach is assessed using a face phantom, with comparisons
made against two counterparts [25]. The contributions of our work are as follows:

• Incorporate NeRF into marker-less registration approaches to refine 3D geometry
(depth) quality and consequently improve registration accuracy.

• Evaluate the effectiveness of our registration approach through a comparison of two
types of previous marker-less registration approaches.

• Develop an in-suit visualization prototype using the commercial MR-HMD.

2. Related Work
2.1. Marker-Less Registration in Mixed Reality

Marker-less registration in MR has been actively explored in recent years to improve
the precision and practicality of surgical navigation systems. Various approaches have
been proposed, leveraging point clouds and mesh-based techniques to achieve accurate
registration without the need for fiducial markers.

Gsaxner et al. [28] demonstrate marker-less registration for head and neck regions,
relying on point cloud data for alignment. The face of the patient is first detected and point
cloud data is generated only for the detected region to facilitate registration. Similarly,
groenenberg et al. [29] employ depth data to perform real-time registration, showcasing the
potential of depth-based marker-less techniques for surgical applications. Pepe et al. [30]
propose a marker-less registration method for PET-CT related to head and neck cancer
treatment. In this approach, feature landmarks are identified in RGB images, and a mesh is
constructed from depth data to locate 3D landmarks using ray-marching. Similarly, our
prior work [25] also employs a comparable method to extract 3D facial landmarks.

2.2. Background: Neural Radiance Fields

NeRF [26] aims to reconstruct the 3D geometry and appearance of an object by utilizing
a collection of captured images and associated camera poses. NeRF is designed to learn an
implicit mapping function F, between a sample along a viewing ray to color and density
as below:

F(x, θ, ∅) → (c, σ) (1)

where x is the 3D coordinate in an object, θ and ∅ represents a viewing ray in the azimuthal
and polar coordinates, c is RGB color, and σ is the density. The implicit mapping function
approximates the color and density of samples, which are then aggregated into a single
pixel of the output image following the principles of the volume ray-casting integral:

C(r) =
∫ t2

t1
T(t)·σ(r(t))·c(r(t), d) dt, (2)

where T(t) = exp
(
−
∫ t

t1
σ(r(s)) ds

)
where r(t) = o + td, o is the origin of the ray, d is its directional vector, t1 is its near bound,
and t2 is its outer bound. The implicit mapping function is approximated by training
a MLP, where the difference between the accumulated pixel colors Ĉ(r) and the ground
truth colors C(r) are minimized. The squared error between the color pairs is used as the
loss function:

L = ∑
∥∥Ĉ(r)− C(r)

∥∥2
2 (3)

NeRF iteratively optimizes the implicit mapping function using a set of training images
until the loss function converges to a certain threshold value.
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3. Method
3.1. Overview

Figure 1 illustrates the overview of our proposed marker-less registration approach
that leverages NeRF-rendered depth using a facial phantom. Our proposed approach
is composed of five components: (a) multi-view image data acquisition; (b) a 2D facial
landmark extraction at patient sites; (c) reprojected depth images and NeRF-rendered depth
images acquisition; (d) a 3D facial landmark localization using depth images and (e) CT
facial landmark extraction and 3D to 3D registration.
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3.2. Multi-View Image Data Acquisition

Our marker-less registration is required to capture 500 images around the patient’s
face to ensure sufficient coverage of both frontal and partial lateral regions. To ensure
consistency, the image data acquisition process was designed with a fixed trajectory forming
a quarter sphere around the patient’s face, capturing images at regular intervals of one
frame every 0.3 s as the user moved slowly and steadily. We expect that an image set covers
various views of the patient’s face, including frontal and lateral, to facilitate the NeRF



Computers 2025, 14, 5 5 of 12

reconstruction process. Every capture stores an image, a camera position, and intrinsic
camera parameters for each RGB and depth.

3.3. 2D Facial Landmark Extraction

We used RGB images to extract 2D facial landmarks for registration. We implemented
a two-stage process: (i) detecting the region of the face with MTCNN [31] and (ii) extracting
facial landmarks using HRN [32,33]. This fully automated approach to facial landmark
extraction required no user input.

MTCNN [31] is a reliable deep-learning model chosen for facial detection in RGB
images due to its adaptability to various resolutions, shapes, and viewpoints. It operates in
two cascaded networks: a proposal network that identifies a set of potential face regions
(facial bounding boxes) and a refinement network that optimizes these candidates by
removing duplicates and refining accuracy through regression. This stage efficiently
limits the region of interest for the next facial landmark extraction step, minimizing the
chances of inaccuracies. We then utilized the HRN model [32,33] to precisely extract the
2D face landmarks. It has been shown to perform well in capturing fine-grained features
due to its high-resolution convolutional neural network architecture. Unlike traditional
models [34,35], HRN maintains multiple parallel streams at different resolutions, using
multi-resolution fusion to combine localized and global features.

Due to time constraints, we did not apply the above two-stage process to extract 2D
facial landmarks on all 500 images. Instead, we opted to extract landmarks from every 10th
image, resulting in a subset of 50 images for this step. This sampling approach was selected
to balance computational efficiency with the need for accurate registration data. By using
50 evenly spaced images, we were able to capture sufficient facial landmark information
across multiple perspectives while significantly reducing processing time.

3.4. Reprojected Depth Images and NeRF-Rendered Depth Images

We use the depth image to locate the facial landmarks of the RGB image. Note that
the original depth image does not have a pixel-to-pixel alignment with the corresponding
RGB image, as the camera positions and resolutions for the RGB and depth images differ.
This requires a transformation process that projects the pixels of the depth image into the
3D perspective of the RGB camera (i.e., a reprojected depth image), as shown in Figure 2a.
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The original depth image is unprojected into a 3D point cloud using the depth camera
position and lookup table provided by the HoloLens 2. This point cloud is then transformed
into world space using the depth camera-to-world transformation, followed by a world-to-
RGB camera transformation to place the point cloud in RGB space. Finally, the point cloud
is projected onto the RGB image plane using the RGB camera parameters.

We note that the reprojected depth image contains numerous depth holes, as the
point cloud generated from the depth image cannot fully cover the RGB image due to
differences in resolution and field of view. We address these depth holes by leveraging
NeRF to complement the missing depth holes (See Figure 2b). Using 500 RGB image and
camera position pairs, we trained the NeRF model and then inferred a depth image along
with the same viewpoint of the reprojected depth image. We now have two depth images
and use the NeRF-rendered depth image when the 3D location of facial landmarks is not
available from the paired reprojected depth image.

The formula for obtaining the NeRF-rendered depth image is as follows.

D(r) =
∫ t2

t1
T(t)·σ(r(t))·ti dt, (4)

where T(t) = exp
(
−
∫ t

t1
σ(r(s)) ds

)
where r(t) = o + td, o is the origin of the ray, d is its directional vector, t1 is its near bound,
and t2 is its outer bound.

3.5. 3D Facial Landmark Extraction Using Depth Images

We obtained 3D facial landmarks by unprojecting the 2D corresponding landmarks
on an RGB image with the paired depth images and intrinsic camera parameters. The
algorithm for corresponding depth values (pixels) to 2D facial landmarks is illustrated in
Figure 3. It confirms whether the coordinates of the 2D facial landmarks fall within the
image resolution boundaries. Since the 2D facial landmarks include all 19 points predefined
by the model, if only the mouth is visible in the image and the chin is not, the model will
assign points to likely positions outside the image boundaries. It then fetches a depth
value at the corresponding pixel location in the reprojected depth image. If the depth value
is available, the 3D location of 2D facial landmarks is retrieved; otherwise, we used the
NeRF-rendered depth image. This process is repeated for every 2D facial landmark.

We then unprojected 2D facial landmarks using depth values, focal length, and princi-
pal points. The unprojection matrix used to perform this operation is as follows.

X
Y
Z
1

 =


1/ fx 0 −Cx/ fx 0

0 −1/ fy Cy/ fy 0
0 0 −1 0
0 0 0 1




i·d
j·d
d
1

 (5)

Here, fx and fy are the focal length of the RGB camera, while Cx and Cy are the
principal points of the RGB camera. With these parameters, the 2D facial landmark is
unprojected and can be obtained in 3D RGB space, which then applies the RGB-to-World
transformation to acquire the 3D facial landmarks in world space. We compute the N
images from which 2D facial landmarks were extracted according to different views, and
the resulting N pairs of 3D facial landmarks were averaged, reducing the impact of errors
associated with single-view depth images.
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3.6. CT Facial Landmark Extraction and Registration

The 3D facial landmarks in CT scans were obtained using the same method as prior
work [25]. First, a facial skin mesh was generated based on the marching-cube algorithm,
and 2D facial landmarks were extracted from an image captured from the front view.
Then, using ray-marching, the corresponding 3D points for each 2D facial landmark were
identified and used as the 3D facial landmarks.

The next step is to align the 3D facial landmarks from the patient’s face with the CT-
derived 3D facial landmarks through a registration process. We first applied the singular
value decomposition (SVD) algorithm [36] to compute an initial transformation matrix
between the pairs of 3D facial landmarks, followed by fine-tuning using the iterative
closest point (ICP) algorithm [37]. This two-stage approach enhanced the robustness of our
registration process against variations in the initial alignment of 3D facial landmarks and
enabled the derivation of an accurate final transformation matrix.

The SVD algorithm constructed a covariance matrix from the correspondences be-
tween the patient’s facial landmarks and CT landmark pairs, capturing their statistical
relationships. By applying SVD decomposition, singular vectors and values were obtained.
The singular vectors determined the optimal rotation matrix for aligning the landmarks,
while the singular values indicated the scaling factors for each axis.

The initial transformation matrix was then iteratively refined using the ICP algorithm
to enhance the registration accuracy. During each iteration, the ICP algorithm calculated
an intermediate transformation matrix by optimizing the alignment and minimizing the
distance between corresponding points (landmarks). This distance measured the dis-
crepancy between each landmark on the patient’s face and its nearest landmark in the
CT scan. The iterative process continued until convergence, yielding a highly precise
transformation matrix.
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4. Experiment
4.1. Experiment Settings and Implementation

For the experiment, we utilized a facial phantom secured to a support structure,
accompanied by its CT scan. For the experiment, we utilized a facial phantom secured to
a support structure, accompanied by its CT scan. To compensate for the phantom’s lack
of distinct features compared to a human face, masking tape was applied to the eyebrow,
eye, and mouth regions to enhance its similarity to a real face. The approach presented in
Section 3 was implemented using a HoloLens 2 application and a remote server. Using
HoloLens 2 (OS release version: 22621.1376), we captured RGB images and depth images
(RGB-D) with associated camera parameters, which were then transmitted to the server via
a TCP connection (See Section 3.2). On the server, 3D facial landmarks were extracted from
the RGB-D images (see Sections 3.3–3.5) and registered with the CT facial landmarks (see
Section 3.6). It produces a patient-to-preoperative medical image transformation matrix for
aligning the CT mesh to the patient site. We ensure a sufficient processing speed by using
the instant-ngp [38] as the NeRF model, which provides both speed and accuracy due to
its hash encoding and CUDA-based implementation. The instant-ngp model primarily
performed 35,000 iterations, and the training took approximately 3 min on an NVIDIA
TITAN RTX with 500 RGB images. The HoloLens 2 application was implemented using
Unity and the HoloLens2ForCV library [39].

We evaluate the proposed approach by comparing it with two other methods. One
is our prior work [25], where instead of the depth image, the derived 3D geometry mesh
was used to locate 3D facial landmarks. Another approach relied on the reprojected depth
image but addressed the inherent depth holes by filling them through interpolation, i.e.,
obtaining 3D facial landmarks without the use of NeRF. For interpolation, we used the
inpaint function from the OpenCV library [40].

Target Registration Error (TRE) was chosen as the evaluation metric, as it quantifies
the accuracy of alignment between corresponding points after registration. The formula is
shown below:

TRE =
1
N

n

∑
k=1

∥patientTCT pointk − pointGT
k ∥ (6)

where N represents the number of points, patientTCT is the transformation matrix that
converts coordinates from the patient space to the CT space. It maps points in the patient
space to the CT space, allowing their distance from the ground truth (GT) points to be
calculated and compared.

4.2. Experiment Procedure

The experiment consists of two main stages. First, participants perform data ac-
quisition for the marker-less approaches using the HoloLens 2 application. To capture
500 images, each participant maintains a distance of approximately 30–80 cm from the
facial phantom and slowly moves while observing the phantom for around three minutes.
Participants are then asked to select the five predefined GT points on the phantom using a
pointer tip. These GT points are identical to those designated in our previous work [25]
and are located at the edges of the forehead, between the eyebrows, and on each cheek.
The five points are transformed into the CT space via the calculated matrix and matched
with the corresponding GT points within the CT space to evaluate the TRE. We calcu-
lated the TRE for three cases: the proposed NeRF-based approach and two comparison
approaches. Three participants experienced with the registration process were invited, and
each experiment was conducted three times per participant to obtain reliable results on the
registration accuracy.
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5. Results and Discussions
In Table 1, we compare the registration accuracy of our marker-less approach with

prior works [25] and the interpolated depth approach in terms of the mean and standard
deviation of TRE from the three participants. The results show that in every case, except
for the marginally lower one (S2 of P3), our proposed approach outperforms the other
prior approaches. In terms of the mean TRE, our method demonstrates at least a 0.873 mm
(12 percent) improvement over the others, with its standard deviation being relatively low,
thus highlighting the accurate and consistent registration capability of our approach. When
comparing the mesh- and reprojected depth-based approaches, the mean error is slightly
lower for the mesh-based approach. The deterministic conclusion on the performance
gain, however, cannot be easily made, as the mesh-based approach results in only 4 cases
that are more accurate. This suggests that the reprojected depth-based approach tends
to provide more accurate 3D geometry than the mesh-based approach, but considerable
distortions can occur when interpolation errors (i.e., missing depths) arise. Our approach
uses NeRF-rendered depth to fill in missing depths. The use of NeRF allows our approach
to leverage geometrical features obtained from RGB images that are relatively invariant to
the physical environment.

Table 1. The comparison result of our marker-less registration approach with prior works [25] and the
interpolated depth approach for the registration accuracy using TRE metric from three participants
(P1 to P3) with three sessions (S1 to S3).

Participants Session
Our Approach

(Reprojected Depth +
Nerf-Rendered Depth)

Prior Work [25]
(Geometry Mesh)

Reprojected
Depth with

Interpolation

P1

S1 5.626 7.466 8.291

S2 5.876 6.984 6.831

S3 7.969 8.438 9.282

P2

S1 5.009 6.453 6.003

S2 6.822 6.984 7.595

S3 6.000 6.175 6.100

P3

S1 6.797 6.859 7.897

S2 6.254 8.008 6.011

S3 7.131 7.973 8.264

TRE mean ± SD (mm) 6.387 ± 0.888 7.260 ± 0.7614 7.364 ± 1.185

In Figure 4, we compare the quality of depth (geometry) among different depth
images. Here, the original depth image (See Figure 4b) is currently cropped to appear
similar to other images, but it does not actually match the geometry of the facial phantom
(see Figure 4a) perfectly, so its use is inappropriate for extracting 3D facial landmarks.
The approach that uses 3D mesh suffers from regions with crucial depth differences or
depth holes (see the nose being noticeably blurred in Figure 4c). In contrast, the use of the
reprojected and interpolated depth image (see Figure 4e) demonstrates relatively uniform
filling in the nose regions, i.e., alleviated depth loss. However, regions with sharp depth
changes or large depth holes, such as along contours, still appear distorted or scattered. In
comparison, NeRF-rendered depth images (i.e., our approach) ensure that all structures
retain clear and well-defined shapes.
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Figure 5 shows how the physical phantom is aligned with the CT rendering achieved
through the transformation matrix from our approach. The in-situ views of the MR-HMD
reveal that the sinus structure is accurately positioned within the intracranial region of
the nasal bone. This highlights the practical utility of our approach for PSS-CSN as the
provision of the in-suit visualization of accurately aligned sinus structures is critical for
guiding surgical instrument paths.
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Figure 5. The augmentation results of the CT rendering onto the physical phantom using the
transformation matrix from our approach: (a) front view, (b) lateral view, and (c) bottom view.

6. Conclusions and Future Work
This study proposes a new MR-HMD-based marker-less registration approach for

PSS-CSN, which automates the identification and alignment of facial anatomical landmarks
with CT scans. The results demonstrate that the accuracy of our approach registration
outperforms the two existing marker-less registration approaches (see Table 1 and Figure 4).
Our approach also eliminates the need for manual tasks like landmark selection or marker
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attachment, making it a user-friendly and accessible tool, especially for practitioners who
lack experience with the registration process or MR-HMDs. We are currently exploring
the incorporation of our marker-less registration approach into the prototype MR-HMD
model of the commercial PSS-CSN [24]. This integration could support a user study based
on real patient cases, thus allowing us to assess the clinical robustness of our marker-less
registration approach and its utility in real-world clinical settings.
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