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Abstract: Standing long jump (SLJ) power is recognized as informative of the ability of
lower limbs to exert power. The study aims to provide athletes/coaches with a simple and
low-cost estimate of selected SLJ power features. A group of 150 trained young participants
was recruited and performed a SLJ task while holding a smartphone, whose inertial sensors
were used to collect data. Considering the state-of-the-art in SLJ biomechanics, a set of
features was extracted and then selected by Lasso regression and used as inputs to several
different optimized machine learning architectures to estimate the SLJ power variables. A
Multi-Layer Perceptron Regressor was selected as the best-performing model to estimate
total and concentric antero-posterior mean power, with an RMSE of 0.37 W/kg, R2 > 0.70,
and test phase homoscedasticity (Kendall’s τ < 0.1) in both cases. Model performance was
dependent on the dataset size rather than the participants’ sex. A Multi-Layer Perceptron
Regressor was able to also estimate the antero-posterior peak power (RMSE = 2.34 W/kg;
R2 = 0.67), although affected by heteroscedasticity. This study proved the feasibility of com-
bining low-cost smartphone sensors and machine learning to automatically and objectively
estimate SLJ power variables in ecological settings.

Keywords: SLJ; IMU; accelerometer; prediction; in-field test; ML

1. Introduction
The standing long jump (SLJ) is a sports-related movement widely employed for

several aims: upper and lower body muscular fitness [1,2], anaerobic power [3,4], efficacy
of a training intervention [5,6]; as a screening tool for athletes at increased risk of injury [7],
to determine muscle imbalance [8]. Its role in the assessment of children’s motor compe-
tence [9], talent identification [10], and prediction of player performance in different player
positions [11] has also been investigated. As a recognized functional test, the SLJ allows
for the analysis of the coordinated development of lower-body forces in the horizontal
direction as a proxy for sprint performance in running [12,13] or in team sports such as
American football [11] or rugby [5,6,10].

The SLJ is also used in conjunction with other tasks, such as the countermovement
jump (CMJ) [14], to assess lower limb muscular strength in sports-related disciplines. In this
last domain, both SLJ and CMJ are often part of athletic training because they represent an
explosive type of motor task. For certain power-oriented athletic performances, such as ski
jumping distance, the SLJ, which entails horizontal jumping ability, maybe a more effective
motor task than the vertical one for both training and monitoring improvement [15].
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Despite SLJs wide potential, all of these studies were limited to the simple and ecologi-
cal assessment of the jumped distance (meter-based), with only a few studies characterizing
the power of the jump using laboratory instrumentation [16–20]. However, laboratory-
based measures are not applicable in the field, besides requiring expert operators and
technical instrumentation. Meter-based assessments, while adequate for the sporting con-
text, are limited in their ability to characterize power. A single study estimated SLJ total
power using a stepwise multiple regression model that included only anthropometric
features and jumped distance as independent variables [4]. Inertial measurement units
(IMUs) are currently and regularly used as a viable solution for biomechanical analysis in
an ecological setting, allowing for cost savings, increased portability, and outdoor data col-
lection, hence boosting ecological validity [21]. Building on the research group’s legacy [22]
and on the state of the art [23], some attempts have been made to instrument jumping
tasks such as CMJ [24,25] and SLJ [9] with smartphones. However, the cost of IMUs is not
always affordable, and simple assessments, such as those meter-based, are still preferred in
ecological settings, preventing users from the benefits of IMU-related knowledge [21].

In recent years, some attempts were made to create a cost-effective alternative to
IMUs, leveraging the intrinsic capabilities of smartphones (SPs), which natively embody
IMUs [21,24,26]. Although these sensors were not developed initially for biomechanical
analysis and do not always meet the required specifications, such as high sampling fre-
quency (>100 sample/s) or appropriate full-scale range (depending on the application),
applications based on IMUs embedded in smartphones (SPs) are being developed to pro-
vide coaches with low-cost information [24,26,27]. To overcome the limitations of SP
sensors, machine learning (ML) approaches have been proposed to enhance the quality
of results comparable to those obtained with more reliable instruments [28]. To facilitate
coaches’ interpretation of obtained results related to jump performance, this research group
has opted to embed biomechanical knowledge into ML models to estimate the outputs of
interest [24,26] by identifying features that are more predictive of the outcome and could
be given greater attention. As demonstrated by White et al. [25] on the CMJ task, the
combination of discrete and continuous features extracted from IMU signals can help in
estimating the output of interest; the two approaches together can improve the estimation
in machine learning algorithms with respect to their separate use.

The aim of this research is to use IMUs integrated into smartphones and machine
learning algorithms to estimate parameters that describe the power of SLJ, both overall
and along the antero-posterior (AP) and vertical (V) directions separately. Predictors were
selected that can be easily understood and employed by trainers, thereby facilitating the
interpretability of the proposed ML solutions. To this end, non-categorical biomechanical
features associated with the SLJ technique and intrinsic anthropometric characteristics
are used to train and test selected optimizable ML architectures. Biomechanical features
were selected based on two assumptions: (i) During the preparation phase, the SLJ vertical
acceleration is similar to that expressed during a CMJ, given the presence of an eccentric
and a concentric phase in both jumps, despite the differing muscle coordination patterns;
(ii) during the flight phase, the origin of the sensor coordinate system follows a parabolic
trajectory. Based on the identified features, several ML architectures dedicated to regression
analysis were selected, and relevant models were trained, optimized, and tested. The
dependency of the model performance on the participant’s sex was also assessed.

2. Materials and Methods
2.1. Experimental Setup

One hundred fifty healthy sports science students were recruited to participate in
the study (75 M, 75 F; mean ± SD: age = 22.3 ± 4.7 years; stature = 1.75 ± 0.12 m;
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mass = 67.7 ± 10.9 kg). Only physically active participants were included, excluding from
the study individuals who had undergone either lower limb surgery or injury in the six
months prior to the experimental session. Prior to participating in the study, all partici-
pants provided written informed consent prior to the experimental session. The study was
approved by the local Internal Review Board (No. CAR_94_2021_Rev2022).

Participants held an SP in their right hand, as depicted in Figure 1 (Samsung Galaxy
S9+, Samsung Group, Seoul, Republic of Korea; sampling frequency = 500 samples/s;
full-scale range: accelerometer = ± 8 g; gyroscope = ± 500 deg/s). The app Phyphox
v.1.1.16 was used to acquire all SP-IMU data [29], which was remotely controlled from the
laboratory PC. Prior to each experimental session, the SP-IMU was calibrated, as detailed
in the “Data processing of force plate and SP-IMU signals” section. Subsequently, each
participant received instructions on the correct execution of a standing long jump (SLJ),
and following a familiarization phase, they performed three trials in accordance with the
operator’s directives. Jumps were executed with the left hand on the hip and the right
one near the hip while holding the SP horizontally (Figure 1). The participant performed
the jumps starting from a force plate (Bertec, Bertec Corporation, Columbus, OH, USA;
sampling frequency = 1000 samples/s; size = 40 × 40 cm) to extract the ground reaction
force (GRF) signals necessary to calculate the jump power. Holding the arms still allows
the SP to remain in a steady position near the hip, which is crucial for segmenting the jump
into the three following phases: (i) a brief static phase in which the participant is ready
to jump with hands on the hips, feet in a parallel stance, and heels at the zero of a meter
tape; (ii) a vocal command that triggers the jumping trial; and (iii) a second static phase
after landing. The jump was considered correct if the participant was able to maintain
equilibrium after landing without realizing an additional step, with the feet in the parallel
stance position and the arms still. The meter tape was used to measure the heel-to-heel
jump distance, which was used as one of the features to estimate the jump power.
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Figure 1. Experimental setup. Before the jump, the participant assumes the akimbo style pose over
the force plate, with the SP in their right hand. The arms are maintained fixed with the hip (small
black ellipse). The tape meter (big black ellipse) has the zero (highlighted with a black sign and a
white arrow) near to the right heel, which corresponds to the initial position.

To reach the aim of this work, the workflow presented in Figure 2 was used:
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Figure 2. Workflow of the process to estimate power variables using a machine learning (ML)
approach combined with SP-IMUs signals. The flowchart represents the steps from extraction of
signals (SP-IMUs and force plate, Section 2.1) to machine learning models (ML models, Section 2.4),
with analysis of the optimized models (Sections 2.5 and 2.6).

2.2. Data Processing of Force Plate and SP-IMU Signals

Force plate and SP-IMUs signals were processed using MATLAB R2022a (The Math-
Works Inc., Natick, MA, USA).

For each jump acquired through the force plate, the GRF was acquired and filtered
using a 2nd order low-pass Butterworth filter with a cut-off frequency of 50 Hz.

Prior to each experimental session, the SP-IMUs were calibrated to compute and
eventually correct their offset and cross-axis sensitivity. Following the approach outlined
in [30], a 60-second static trial was acquired with the SP positioned on a flat surface to
determine and then remove the gyroscope static bias, calculated as the mean value of the
static trial, from each subsequent jump measure. Subsequently, three ad hoc 60-second
static acquisitions of the accelerometer were conducted, each acquisition involving the
alignment of one of the three accelerometer axes with the gravity vector direction [30]. To
ensure a consistent gravity removal, acceleration measures were expressed in the global
coordinate system using quaternions, obtained from gravity and the plane of action. This
was carried out under the hypothesis that the smartphone was kept parallel to the plane of
movement to avoid the need for an accurate estimate of its yaw [31].

For each jump that was successfully acquired, selected quantities were computed from
the preprocessed force plate and SP-IMUs signals as described in Table 1.

Table 1. Variables’ calculation using force plate signals or SP-IMU signals. Details on symbols and
legend are in the footer.

Step Variable How to Calculate

Force plate signals SP-IMU signals

1 M

Mean value of the force
vertical component in the

first two seconds of the static
phase (GRFV,static) divided
by gravity acceleration (g =

9.81 m/s2):

-

m =
mean(GRF V,static)

g

2 aCoM,V and aCoM,AP

aCoM,V =
GRFV−mean(GRF V,static)

m

Hp: the smartphone is kept parallel to the plane of movement during the task
execution, i.e., the yaw is not changing [24,26,31]

Vertical (aV) and anteroposterior (aAP) acceleration components of the acceleration
expressed into the global coordinate systemaCoM,AP = GRFAP

m
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Table 1. Cont.

Step Variable How to Calculate

3 t0 and tTO

t0: onset identified as the
time frame occurring 30 ms

prior the first sample
deviating by 8 times the

standard deviation of the
static phase of aCoM,V,

similarly to [32].
tTO: take-off identified as the

first frame such that
aCoM,V ≤ −g.

t0 and tTO defined on aV as with the force plate data, and similarly to [32]

4 vCoM,V and vCoM,AP

vCoM,V =
∫ tTO

t0
aCoM,V vV =

∫ tTO
t0

aV

vCoM,AP =
∫ tTO

t0
aCoM,AP vAP =

∫ tTO
t0

aAP

Integration interval from t0 to tTO to minimize the noise contribution linked to the drift effect

5 tUL and tUB -

tUL: time of minimum of vertical
acceleration after the jump onset

tUB: time of minimum vertical
velocity

6 tBP It is the instant in which the vertical velocity vCoM,V crosses 0.
Identified as instant of time

when the vertical velocity vV
crosses 0.

7 PV and PAP
PV= GRFV∗vCoM,V (1) -

PAP= GRFAP∗vCoM,AP (2)

8 PTOT
Hp: medio-lateral contribution is negligible for the type of the jump -

PTOT =
√

P2
V+P2

AP
(3)

What is extracted? Why? What is extracted? Why?

Mean and peak values of
PTOT, PV, PAP to be used as

outputs to be estimated
using machine learning

Biomechanical features
(Presented in Section 2.3) used as

inputs of machine learning
models to estimate the force

plate quantities

Legend: m—mass of the participant; aCoM,V and aCoM,AP—the acceleration of the center of mass (CoM) for the verti-
cal (V) and antero-posterior (AP) directions; t0 and tTO—onset and take-off instants; vCoM,V and vCoM,AP—vertical
and antero-posterior components of velocity of CoM; tUL and tUB—unloading instant of time and eccentric
yielding instant of time; tBP—jump braking onset instant; PV and PAP—vertical and antero-posterior power
profiles; PTOT—total power profile.

The variables and time instants listed in Table 1 are depicted in the following plots of
force plate and SP-IMU signals, to ease understanding.

The power and CoM acceleration exerted along the vertical and antero-posterior
components during the static and preparation phases of the jumps, as acquired using force
plates, are reported in Figure 3.
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The preparation phase of the SLJ in its vertical component (Figure 3a) is comparable to
that of the CMJ [33]. Therefore, it was segmented into two phases: eccentric and concentric.
The eccentric phase starts from the onset time (t0), while the concentric one ends with the
take-off (tTO). The time instant at which the eccentric and concentric phases are divided is
the breaking time instant, defined as the time in which vCoM, V crosses zero, tBP.

The power variables of interest were extracted from the force data in the following
time intervals: mean and peak concentric power of PTOT, PV, and PAP, between braking
time and takeoff; mean power of PAP, between onset time and takeoff (Table 2). Power
variables were normalized to the mass of the participant to be mass independent (W/kg).

Table 2. List of the power variables calculated from the force plate signals, reported with their
acronym (ID), corresponding description, and time interval for the determination. All features are
normalized with respect to the mass of the participant.

ID Variable (W/kg) Time Interval

PTOT, peak Positive PTOT peak in the take-off phase t ∈ [t0, tTO]
PTOT, conc Mean concentric PTOT power t ∈ [tBP, tTO]
PV, peak Positive PV peak in the take-off phase t ∈ [t0, tTO]
PV, conc Mean concentric PV power t ∈ [tBP, tTO]

PAP, peak Positive PAP peak in the take-off phase t ∈ [t0, tTO]
PAP, conc Mean concentric PAP power t ∈ [tBP, tTO]
PAP, tot Mean PAP power in the take-off phase t ∈ [t0, tTO]

Legend: PV and PAP: vertical and anteroposterior components of power; t0 = jump onset; tTO = jump takeoff,
tBP = jump braking. All features are measured in W/kg.

Regarding the analysis of SP-IMU signals, the SLJs preparation phase was subdivided
into eccentric and concentric phases, as previously conducted for force plate signals. Further
subphases were also considered in accordance with [16] (Figure 4): the unloading phase,
defined as the time between the jump onset (t0) and the instant at which the vertical
acceleration reaches the minimum (tUL); the eccentric yielding phase starting at tUL and
ending when vertical velocity reaches the minimum (tUB); the eccentric braking phase
defined as the time between tUB and when the vertical velocity crosses 0 (tBP); and the
concentric propulsive phase as the time between tBP and the take-off (tTO). These phases
are useful to define some of the features analyzed in the following section. The calculations
of these time instants are reported in Table 1.
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Figure 4. Vertical acceleration (aV) and velocity (vV) extracted from SP-IMUs with highlighted phases:
unloading (t0 – tUL), eccentric yielding (tUL – tUB), eccentric braking (tUL – tBP), and concentric
propulsive phase (tBP – tTO). Legend for time instants: t0 = jump onset; tUL = minimum acceleration;
tUB = minimum velocity; tBP = velocity crosses 0; tTO = take-off.
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2.3. Feature Selection

In Table 3, the sixty-one features extracted from SP-IMUs signals are reported.

Table 3. Proposed features with the indication of their acronym (ID), measurement unit, and brief
description. Details on symbols and legend are in the footer.

ID Feature Measurement Unit Description

Su
bj

ec
tr

el
at

ed hanthro Participant’s stature m -

wanthro Participant’s body mass kg -

yanthro Participant’s age y -

lmeter Length of the jump measured with tape meter m -

M
an

n Ppower, Mann Peak of the total power W Ppower, Mann = 32.49 ∗ lmeter+39.69 ∗ wanthro − 7.608

Apower, Mann Average of the total power W Apower, Mann= 28.31 ∗ lmeter+30.03 ∗ wanthro − 7.408

Bi
om

ec
ha

ni
ca

l

hjump Ballistic SLJ maximal height m hjump =
( vV(t TO))

2

2 ∗ g

AV Unweighting phase duration s [t0, tUB]

b * Minimum acceleration m/s2 aV(ta
V

_min)

C * Time interval from minimum to maximum
acceleration s [ta*_min, ta*_max]

∆a * Range between min-to-max acceleration in the
time between t0 and tTO

m/s2 ∆a∗= max(a∗(t0 ÷ tTO))
− min(a ∗(t 0 ÷ tTO))

∆v * Range between min-to-max acceleration in the
time between t0 and tTO

m/s ∆v∗= max(v ∗((t0 ÷ tTO))
− min(v ∗(t 0 ÷ tTO))

D * Main positive impulse time duration s Time duration of positive acceleration in a * signal in the time
interval [t0, tTO]

E * Maximum acceleration m/s2 a *(ta
*
_max)

F * Time interval from acceleration positive peak to
the take-off s [ta *_min, tTO]

GV Ground contact duration s [t0, tTO]

H * Time interval from minimum acceleration to the
end of the eccentric braking phase s [tUL, tBP]

iV Maximum positive slope of aV m/s2
iV= max

(
d(aV(t))

dt

)
t ∈ [t0, tBP]

J * Time duration from the negative peak velocity
to the end of the eccentric braking phase s [tv *_min, tBP]

K * Acceleration at the end of the eccentric breaking
phase m/s2 a *(tBP)

L * Negative peak power W/kg P(tP *_max)

LAP
Time duration between the min and max values

in the range [t0 ÷ tTO] s [tP
AP

_min, tP
AP

_max]

M * Eccentric positive power duration s -

n * Positive peak power W/kg P(tP *_min)

O * Time duration between positive peak power
and take-off s [tP *_max, tTO]

p * Mean slope between acceleration peaks a.u. p∗ = e∗−b∗
C∗

q * Shape factor a.u.
Ratio between the area under the curve from tUB to the last

positive sample prior tTO (lasting D*) and the one of a rectangle
of sides D* and e*

QV
Time duration between the eccentric braking

phase and the take-off s [tBP, tTO]

r * Impulse ratio a.u. r∗ = b∗
e∗

RAP
Entire positive power duration in the AP

component s -

u * Mean concentric power W/kg Average value of P * (t), t ∈ [tBP, tTO]

ν * Minimum negative velocity m/s v * (tv *_min)

W * Time duration between minimum and
maximum power instants s [tP *_min, tP_max]

z * Mean eccentric power W/kg Average value of P * (t), t ∈ [t0, tBP]
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Table 3. Cont.

ID Feature Measurement Unit Description

Ti
m

e-
fr

eq
ue

nc
y

f1 * High central frequency Hz
Highest VMD central frequency, associated with wobbling

and noise

f2 * Middle central frequency Hz Middle VMD central frequency, associated with wobbling tissues

f3 * Low central frequency Hz Lower VMD central frequency, associated with the jump proper

Subscripts and superscripts: “V” and “AP” subscripts, related to vertical and anteroposterior components
of velocity/acceleration; “*” superscript, used when the features are extracted from both AP and V compo-
nents; ”anthro” subscript, used for anthropometric features. Time intervals are indicated with capital letters,
while other features are reported with small letters. Features are grouped by type and alphabetically sorted.
Legend: a.u. = arbitrary units; time instants: t0 = jump onset; ta_min = minimum acceleration; ta_max = maximum
acceleration; tv_min = minimum velocity; tP_min = minimum power; tP_max = maximum power; tTO = jump takeoff;
tUL = jump unloading; tBP = jump braking.

More in detail, 6 were obtained from basic measurements:

• Three were related to the anthropometric characteristics of the subject (indicated using
”anthro” subscript): stature, mass, and age.

• Jump length (lmeter) was obtained by measuring the heel-to-heel distance taken from
the meter tape.

• Two variables were computed following the work of Mann [4]: namely, peak
power (PPower,Mann) and average power (APower, Mann), starting from mass and
jumped distance.

Further 55 features were obtained from either aV, aAP, or both, as they both contribute
to the SLJ power estimate.

• SLJ maximal height (hjump), hypothesizing that the trajectory of the origin of the sensor
coordinate system during a SLJ can be approximated to a ballistic motion. From the
acceleration signals, the vertical velocity at take-off is extracted and then used to this
aim (Table 3).

• Twenty-one jump-related features were calculated twice for both V and AP compo-
nents, reported with *, whereas eight features were calculated for a single component—
reported with ”V” or ”AP” subscripts. Features from A to R and v were inspired
by [34]; u, W, and z enriched the description of power-related variables as presented
in [24].

• Six time-frequency features were obtained by processing aV and aAP via Variational
Mode Decomposition (VMD) [35], by subdividing the signal into N intrinsic mode
functions, each having a frequency spectrum centered around a central frequency. In
this case, N was set to 3, with f1 and f2 (namely, the high- and mid-central frequencies)
assumed to be potential descriptors of wobbling or artifacts due to involuntary arm
movements; f3 (the low-central frequency) associated with the jump itself [24].

2.4. Model Generation and Evaluation in the Whole Dataset

After data filtering and feature extraction, each of the 450 jumps was analyzed to
obtain a record including the abovementioned 61 features, leading to the final dataset
(450 × 61). The same dataset composed of 61 features was used to estimate the seven
possible power outputs as identified in Table 2.

The dataset was separated as follows: 80% of the participants (120 subjects, 60 M,
and 60 F, for a total of 360 jumps) were used as the training set, and the remaining 20%
(30 subjects, 15 M, and 15 F, for a total of 90 jumps) were used as the test set. The creation
of the two sets was entrusted to a randomization algorithm that considered the sex of the
subject to have an equal distribution of both males and females in training and test sets.
Moreover, the training set and test set were designed to be independent of each other, not
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including in the test set any of the jumps belonging to a subject of the training set and
vice versa.

Prior to the training phase, the features of the training set were normalized through
z-score transformation. For each output to be estimated, the feature number was then
reduced through Lasso regularization. The regularization strength was fixed at α = 0.1 to
avoid possible multicollinearity among features [36]. The resulting subset of features was
then used to develop the ML models.

The final datasets, composed of selected features and related outputs, were exported
from MATLAB to be used in Jupyterlite Notebook (v. 0.5.0), a Python environment. In
Jupyter Notebook, ML models were optimized using the GridSearchCV function, which
can handle several inputs:

• The cross-validation criterion, which is used to validate the model. Among the options,
the GroupKFold (with K = 5) cross-validation method was selected to internally
consider training subjects and validation subjects as separate entities and to prevent
data leakage [37].

• The processing step, which is used to process data before optimization. The not-
normalized training set was combined with the PowerTranformer() function to cor-
rectly scale the training and validation sets in every fold to prevent data leakage.

• The list of hyperparameters to be optimized, with the relative ranges of values.
• The selection criterion of the model. Mean absolute error (MAE) was used to select the

best configuration of hyperparameters.

The following regression models were trained, taken from the scikit-learn module:

■ Tree and Random Forest (RF) were considered because they are simpler to implement
than other models in the perspective of developing the model inside the smartphone.

■ Optimized support vector regressor (SVR) was evaluated as a general and good
solution found in the literature [38].

■ Optimized ensembles (ADA Boost Regressor (ADABR), Gradient Boosting Regres-
sor (GBR), Histogram-based Gradient Boosting Regression Tree (HGBR), XGBoost
Regressor (XGBR)): these solutions are typically used for limited datasets of interest.

■ Optimized Gaussian Process Regression (GPR) and optimized Multi-Layer Perceptron
Regressor (MLPRs): these models proved to be effective solutions for similar problems:
SLJ length estimation, and CMJ height estimation respectively [24,26].

For each selected architecture, Table A1 reports the list of hyperparameters to be
optimized using the Grid Search optimization method.

For each trained model, the following metrics were computed for both training and
test sets: the root-mean-square error (RMSE), mean squared error (MSE), mean absolute
error (MAE), and R2.

After training, the best model for each architecture was selected based on the minimum
mean absolute error (MAE) and used in the subsequent test phase. To perform the test
phase of the optimized models, the normalizing factors of the training set were used to
normalize the test set.

After testing, a final model for each output variable was chosen based on the lowest
RMSE value.

The models that showed valuable results were evaluated in terms of heteroscedas-
ticity [39] to select those able to estimate the output with an error independent from the
measured quantity.

For models demonstrating adequate performance and homoscedasticity, an additional
analysis was performed to assess the extent to which each input variable influences the
estimate and contributes to the interpretation of the model. To this aim, a permutation
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feature importance (PFI) analysis [40–42] was carried out on the training set. PFI is an
iterative procedure that analyzes the change of the model MSE error when each input
variable is randomly permuted and the others are maintained as they are. For each
variable, an index can be calculated, defined as the ratio between the MSE obtained after
the permutation of the i-th input variable (MSEi) and the MSE of the model without any
permuted variables (MSE0). A higher ratio corresponds to a higher contribution of the i-th
variable to the estimate, and vice versa.

2.5. Model Dependance from Participants’ Sex

To assess if the ML model output was dependent on the participant’s sex, the procedure
described in Section 2.5 was replicated on two separate sub-datasets, each comprising
seventy-five participants of each sex (225 jumps). For these datasets, the division between
training and test sets was not performed to avoid further reduction of the dataset. However,
the cross-validation phase was maintained using GridKFold, as was carried out for the
entire dataset. The ML architectures presented in Table A1 were verified for all the estimated
output power variables of interest.

To attribute potential performance differences of the sex-specific models with respect
to those obtained from the overall dataset to sex or dataset size, the same procedure was
repeated using a mixed dataset composed of an overall number similar to the sex-separated
dataset (and divisible by 5), balanced for male/female subjects (80 participants, 40 M, 40 F).

2.6. Statistical Analysis

Regarding the models obtained using the whole dataset, the best model for each
architecture was analyzed on the test data using Bland and Altman plots [39]. To realize
Bland and Altman plots, the following elements were computed:

- upper limit UL = BIAS + 1.96 * SD;
- lower limit LL = BIAS − 1.96 * SD
- BIAS = test value − model predicted value
- SD = standard deviation of the previous difference
- confidence intervals (CI) at 95% of BIAS, UL, and LL following [43] and based on

t-value, number of samples in the test set (n), and standard error for the BIAS (SEBIAS).

Bland and Altman plots are generated, including confidence intervals, the regression
line of the averages vs. the differences of the estimated and real variables (characterized
by the coefficient and intercept value and the associated RAB

2). The presence of data
heteroscedasticity was verified by calculating Kendall’s τ coefficient [44] (in case of τ > 0.1).

Furthermore, the performance of each model was analyzed through the following
three metrics applied to the test set: (i) accuracy, obtained as the RMSE between the
reference value and the estimated one; (ii) precision, calculated as the standard deviation
of the distance between the reference and estimated values; (iii) bias, defined as the mean
distance between the reference values and the estimated ones.

Regarding models obtained using the subsets, the same metrics used for the entire
dataset were evaluated to investigate and quantify whether the model can perform differ-
ently depending on sex and/or the limited amount of data.

3. Results
The 450 jumps had the following values for each output variable (Table 4):
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Table 4. The values of the presented features calculated in the population of interest, considering all
the 450 jumps: range, minimum, and maximum values: power values are normalized with respect to
the mass of the participant of interest.

ID Ranges [W/kg] Minimum Value
[W/kg]

Maximum Value
[W/kg]

PTOT, peak 30.6 ± 5.9 10.7 53.8
PTOT, conc 4.3 ± 1.1 0.7 10.2
PV, peak 28.7 ± 5.8 9.3 51.9
PV, conc 3.9 ± 1.0 0.4 9.7

PAP, peak 10.3 ± 3.8 2.3 21.1
PAP, conc 1.5 ± 0.6 0.3 3.6
PAP, tot 1.8 ± 0.7 0.3 3.8

The Lasso regularization led to selecting the following number of features out of
61 features available to train the ML models: 50 for PTOT, peak; 48 for PTOT, conc; 25 for
PV, peak; 26 for PV, conc; 49 for PAP, peak; 32 for PAP, conc; 48 for PAP, tot.

3.1. Model Creation and Evaluation in the Whole Dataset

The best model, as obtained by Grid Search optimization, is reported for each output
variable in Table 5. For the same models, bias, accuracy, Kendall’s tau, and sigma values
calculated on the test set are reported in Table 6.

Table 5. For each output variable, the best model is reported that has the lowest RMSE value
(train—test). Relevant functions and optimized hyperparameters are also listed. In bold, models that
performed with an R2 > 0.6.

Output
Feature Model Hyperparameters RMSE

[W/kg]
MSE

[(W/kg)2] MAE [W/kg] R2

PTOT, peak GPR
Alpha: 0.1

5.20–5.38 27.5–29.0 3.93–4.10 0.20–0.18Kernel: RationalQuadratic(alpha = 1,
length_scale = 1) * 1 ** 2

Optimizer: Fmin_1_bfg_b

PTOT, conc None - - - - -

PV, peak ADABR
Learning rate: 10−9

5.34–5.54 29.0–30.7 3.97–4.12 0.12–0.07Loss: Square
N_estimators: 135

PV, conc HGBR
Loss: absolute_error

0.89–0.95 0.84–0.91 0.61–0.68 0.15–0.14Learning rate: 0.17
Max_iter: 28 s

PAP, peak MLPR

Activation: identity
Alpha: 10−4

LayerSize: 47
LearningRate: constant

Solver: sgd

2.11–2.34 4.48–5.49 1.67–1.86 0.68–0.67

PAP, conc MLPR

Activation: identity

0.28–0.37 0.08–0.13 0.22–0.29 0.73–0.71
Alpha: 10−3

LayerSize: 9
LearningRate: invscaling

Solver: adam

PAP, tot MLPR

Activation: identity

0.31–0.37 0.09–0.14 0.25–0.30 0.76–0.75
Alpha: 10−6

LayerSize: 24
LearningRate: adaptive

Solver: sgd

Names of hyperparameters as reported in Jupyterlite Notebook, where the symbol “*” stands for a multiplication
and “**” for the exponentiation.



Computers 2025, 14, 31 12 of 20

Table 6. List of the parameters calculated for the best models for each output variable on the test set
(models reported in Table 5). Kendall’s tau τ < 0.1, indicated in bold, means homoscedastic data.

Output Feature BIAS KENDALL ACCURACY SIGMA

PTOT, peak 0.09 −0.90 6.40 6.37
PTOT, conc - - - -
PV, peak 0.13 0.03 5.54 5.57
PV, conc −0.16 0.19 0.95 0.95

PAP, peak 0.13 0.20 2.34 2.35
PAP, conc 0.06 0.04 0.37 0.37
PAP, tot 0.003 0.09 0.37 0.37

Among the optimized models reported in Table 5, only those for PAP, peak, PAP, conc,
and PAP, tot variables showed R2 > 0.6. The models for PAP, conc, and PAP, tot were also
homoscedastic, while the one for PAP, peak was heteroscedastic (Table 6).

3.2. Model Dependance from Participants’ Sex

As illustrated in Table 7, the optimized models identified using reduced datasets (M,
F, and half mixed) are able to estimate homoscedastic variables (PAP, conc, and PAP, tot). The
optimized models identified for the remaining power variables using reduced datasets (M
and F) are documented in Appendix A—Tables A2 and A3, respectively.

Table 7. List of the best models for PAP, conc, and PAP, tot output variables using reduced datasets
(M = only males, F = only females, Half mixed = 80 participants, 40 M, and 40 F) as input datasets in
grid search optimization, with optimized hyperparameters and mean values of the metrics along the
5-folds.

Output Feature Dataset Type Model Hyperparameters RMSE
[W/kg]

MSE
[(W/kg)2]

MAE
[W/kg] R2

PAP, conc

M MLPR

Activation: identity

0.32 0.10 0.26 0.57
Alpha: 10−4

LayerSize: 30
LearningRate: invscaling

Solver: adam

F GPR
Alpha: 10−1

0.27 0.07 0.20 0.69Kernel: RBF (length_scale = 1) * 1 ** 2
Optimizer: fmin_l_bfgs_b

Half mixed MLPR

Activation: identity

0.29 0.09 0.24 0.68
Alpha: 10−6

LayerSize: 30
LearningRate: invscaling

Solver: adam

PAP, tot

M MLPR

Activation: identity

0.35 0.13 0.28 0.59
Alpha: 10−5

LayerSize: 35
LearningRate: adaptive

Solver: adam

F SVR

C: 0.3

0.26 0.07 0.19 0.71
Degree: 1

Epsilon: 10−3

Kernel: poly

Half mixed MLPR

Activation: identity

0.32 0.11 0.26 0.72
Alpha: 10−1

LayerSize: 19
LearningRate: adaptive

Solver: adam

Names of hyperparameters as reported in Jupyterlite Notebook, where the symbol “*” stands for a multiplication
and “**” for the exponentiation.
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3.3. Quality Model Analysis

The quality of the PAP, tot, and PAP, conc MLRP models is represented in terms of Bland
and Altman plots (Figure 5). Along with the values used to perform them (Table 8).
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Figure 5. Bland-Altman plots on the test set: (a) PAP, tot; (b) PAP, conc. Legend: upper limit (UL = BIAS
+ 1.96 × SD), lower limit (LL == BIAS − 1.96 × SD), confidence intervals (CI) at 95% of BIAS, UL, and
LL were calculated following [43], with BIAS = test value—model predicted value; SD = standard
deviation of the previous differences. In both plots, the equation and R2 show values lower than 0.3.

Table 8. Parameters used for each model: accuracy, precision, bias, UL, and LL of the difference are
expressed in meters.

Parameter MLPR PAP, tot MLPR PAP, conc

Accuracy [m] 0.37 0.37
Precision [m] 0.37 0.37

Bias [m] 0.06 0.0028
CIBIAS (95%) [m] [−0.017 0.13] [−0.075 0.08]

UL [m] 0.79 0.73
CIUL (95%) [m] [0.66 0.92] [0.59 0.862]

LL [m] −0.67 −0.7224
CILL (95%) [m] [−0.80 −0.54] [−0.59 −0.856]

Kendall’s τ 0.06 0.09
Samples (n) 90 90

t-value 1.987 1.987
SEBIAS (s/

√
n) 0.039 0.039

Data homoscedasticity can be inferred from Kendall’s tau coefficient (τ) (τ < 0.1). To allow calculations, samples
(n); CI = Confidence Interval; t-value; SEBIAS = standardized error of the estimates are also reported.

For PAP, conc and PAP, tot that showed ML good models and homoscedastic behavior,
the PFI was performed using the training set (Figures 6 and 7, respectively).
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Figure 6. PFI performed on MLPR model used to estimate PAP, tot. In the legend, the 32 features used
to estimate PAP, tot divided into four groups in terms of PFI output. The first two groups (dark grey)
showed an MSEi/MSE0 greater than 1, meaning that the features belonging to those groups affect the
estimate of the output more. The third group (light grey) showed a MSEi/MSE0 equal to 1, while the
fourth group (black) showed a MSEi/MSE0 lower than 1.
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used to estimate PAP, conc divided into seven groups in terms of PFI output. The first three groups
(dark grey) showed an MSEi/MSE0 greater than 1, meaning that the features belonging to those
groups affect the estimate of the output more. The fourth group (light grey) showed a MSEi/MSE0

equal to 1, while the black groups showed a MSEi/MSE0 lower than 1.

4. Discussion
This study demonstrated the efficacy of a combination of biomechanical features

extracted from smartphone IMUs and machine learning techniques in estimating the power
characteristics of a single-leg jump. Furthermore, it was shown that model performance
was dependent on the dataset size rather than the participants’ sex. Overall, this work
highlights the potential for in-field use of this technology to monitor athletes directly.

The results of the estimation process demonstrated that the models of PAP, tot, and
PAP, conc produced meaningful estimations, whilst the performance of the other models
was unsatisfactory. This discrepancy may be attributed to the varying ranges of the output
variables (see Table 4), despite the dataset size remaining the same (450 trials in total),
which can have an impact both on models’ performance and heteroscedasticity.

With respect to the performance of the PAP, tot, and PAP, conc models in the test phase,
both best models were based on MLPR architectures and showed R2 values higher than
0.70 (Table 5). These models also provided faster results compared to other architectures,
such as GPR models. Moreover, the estimation was homoscedastic, indicating that errors
in the estimates were not dependent on the measured quantities. It is important to note, on
one side, that SP-IMUs are not specifically selected for biomechanical purposes, and on the
other side, that current results relied on the highest possible SP-IMU sampling frequency
available on the SP market (fs = 500 sample/s) to maximize data quality.

The features that were selected for the estimation of PAP, tot and PAP, conc included, in
both cases, the jump length, lmeter, anthropometric data (subject height and age, hanthro and
yanthro), and frequencies extracted using Variational Mode Decomposition (VMD).

Among related studies, the work by Mann et al. [4] appears to be the most similar
to the present study, although direct comparison is complex. The models utilized in this
present study are distinct from those employed by Mann et al. The current models are
based on a more general population, a not-sport-specific population that is not limited to
athletes and includes both sexes as well as a larger number of participants. Additionally,
the predicted output differs between the studies. Nevertheless, the key features identified
in the work of Mann et al. remain relevant as predictors of power outputs, with both
anthropometric parameters and jump length selected as predictors after feature selection.
Furthermore, the relationships established by Mann et al. contribute to the estimation of
PAP, tot, and PAP, conc, suggesting that, despite differences in the populations, their findings
offer a partial basis for the present estimates.
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The PFI analysis indicated that, for both PAP, tot, and PAP, conc, the most influential
feature was lmeter, with MSEi/MSE0 higher than 1 (Figures 6 and 7). This suggests that
jump length is a good predictor of these power metrics. Other important features included:

• for PAP, tot: FAP, i.e., the time from AP acceleration positive peak to the take-off,
underscoring the significance of the concentric phase in determining total antero-
posterior power.

• for PAP, conc: CV, uV, and nAP, i.e., time from minimum to maximum vertical accel-
eration, mean concentric vertical power, and positive peak AP power, respectively,
demonstrating that both power estimates and time periods covering vertical and
horizontal directions influence AP power in the concentric phase.

Finally, the analysis of models employing subsets of data (only male/female partici-
pants and the dataset with 80 subjects) demonstrated that PAP, tot, and PAP, conc could be
reliably estimated in these cases as well. The comparable results in metrics across all three
datasets suggest that the estimation of these two power outputs is contingent on dataset
size rather than the sex of the subjects.

5. Conclusions
The machine learning solutions that emerged as applicable in this study were

all based on a Multi-Layer Perceptron Regressor with significant R2 [45] and allowed
for a homoscedastic estimate of total and concentric antero-posterior mean powers
(RMSE = 0.37 W/kg, R2 > 0.70) and a heteroscedastic estimate of the antero-posterior
peak power (RMSE = 2.34 W/kg; R2 = 0.67).

Although alternative methodologies, such as deep learning, could be used to enhance
parameter estimates, the proposed method offers the advantage of interpretability for
coaches and trainers. By linking the estimated parameters to features with biomechanical
relevance, the method allows the interpretation of the performance in SLJ. The imple-
mentation of this machine learning model into a software tool, like a smartphone app,
could enable the quantification of SLJ power outputs, thereby providing a cost-effective,
user-friendly, and field-applicable solution. Additionally, this smartphone app could offer
the values of the most influential features identified in the PFI analysis, which could assist
trainers in determining modifications to enhance jump performance (e.g., emphasizing
timing before take-off—FAP). In addition, instructional videos can be made available to
facilitate proper smartphone use and feature interpretation.

The proposed solution underscores the importance of jump length, a quantity to be
directly measured, as a key feature for power parameter estimation. This finding could
lead to the next level of implementation, where the system could operate directly with
estimated features and anthropometric data. In this development, methods of jump length
estimation (e.g., [26]) can be integrated, thereby enabling power estimates entirely based
on the use of inertial sensor signals.
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Appendix A
In the following, Table A1 reports the optimized hyperparameters for each architecture.
Tables A2 and A3 include all the models of the power outputs using the male/

female subsets.

Table A1. Type of selected models used for regression. The following columns are reported: model cat-
egory; hyperparameter options that can be optimized; ranges and options in which hyperparameters
can belong to. Names of hyperparameters options are reported as presented by Jupyterlite Notebook.

Model Hyperparameters Hyperparameters Options/Ranges

Tree
Criterion {squared_error, friedman_mse, absolute_error, poisson}

Max_depth [1, 100]

RF
N_estimators [100, 500]

Criterion {squared_error, absolute_error, friedman_mse, poisson}
Max_features {sqrt, log2, None}

SVR

C [0.1, 0.5]
Degree [1, 2, 3]
Epsilon [10−4, 10−1]
Kernel {linear, poly, rbf, sigmoid, precomputed}

ADABR
Learning rate [10−10, 1]

Loss {linear, squared, exponential}
N_estimators [100, 500]

XGBR
Eta [10−3, 0.5]

Max_depth [1, 2, 3]
N_estimators [102, 103]

GBR

Loss {squared_error, absolute_error, huber, quantile}
N_estimators (100,150,200,250,300)

Criterion {friedman_mse, squared_error}
Max_features {sqrt, log2, None}
Learning_rate [0.05, 0.3]

HGBR
Loss {squared_error, absolute_error, gamma, poisson, quantile}

Learning_rate [0.05, 0.3]
Max_iter [1, 40]

GPR
Alpha [10−2, 10−1]

Kernel

{RationalQuadratic(1.0, length_scale_bounds="fixed")+ConstantKernel(1.0, constant_value_bounds="fixed"),
RationalQuadratic(1.0, length_scale_bounds="fixed")*ConstantKernel(1.0, constant_value_bounds="fixed"),
RationalQuadratic(1.0, length_scale_bounds="fixed"), Matern(1.0, length_scale_bounds="fixed"), Matern(1.0,

length_scale_bounds="fixed")*ConstantKernel(1.0, constant_value_bounds="fixed"), Matern(1.0,
length_scale_bounds="fixed")+ConstantKernel(1.0, constant_value_bounds="fixed"), RBF(1.0,

length_scale_bounds="fixed"), RBF(1.0, length_scale_bounds="fixed")+ConstantKernel(1.0,
constant_value_bounds="fixed"), RBF()*ConstantKernel(), ConstantKernel(1.0, constant_value_bounds="fixed") *

RBF(1.0, length_scale_bounds="fixed")}
Optimizer {fmin_l_bfgs_b, None}

MLPR

Activation {identity, logistic, tanh, relu}
Alpha [10−8, 10−1]

LayerSize [1, number_of_selected_features]
LearningRate {constant, adaptive, invscaling}

Solver {adam, sgd}

https://github.com/BeatriceDL?tab=repositories
https://github.com/BeatriceDL?tab=repositories
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Table A2. List of the best models for each output variable using only the jumps of male subjects as
input dataset in grid search optimization, with optimized hyperparameters and mean values of the
metrics along the 5-folds.

Output Feature (M) Model Hyperparameters RMSE [W/kg] MSE [(W/kg)2] MAE [W/kg] R2

PTOT, peak MLPR

Activation: logistic

5.37 29.7 4.19 0.07
Alpha: 10−2

LayerSize: 24
LearningRate: invscaling

Solver: sgd

PTOT, conc SVR

C: 0.05

1.15 1.41 0.83 0.18
Degree: 1

Epsilon: 0.01
Kernel: sigmoid

PV, peak RF
N_estimators: 395

5.77 34.9 4.49 0.03Criterion: absolute_error
Max_features: None

PV, conc GBR

Loss: absolute_error

0.96 1.02 0.68 0.09
N_estimators: 250

Criterion: friedman_mse
Max_features: None
Learning rate: 0.12

PAP, peak SVR

C: 2.3
Degree: 1

Epsilon: 0.005
Kernel: sigmoid

2.27 5.25 1.82 0.47

PAP, conc MLPR

Activation: identity
Alpha: 10−4

LayerSize: 30
LearningRate: invscaling

Solver: adam

0.32 0.10 0.26 0.57

PAP, tot MLPR

Activation: identity

0.35 0.13 0.28 0.59
Alpha: 10−5

LayerSize: 35
LearningRate: adaptive

Solver: adam

Table A3. List of the best models for each output feature using only the jumps of female subjects as
input dataset in grid search optimization, with optimized hyperparameters and mean values of the
metrics along the 5-folds.

Output Feature (F) Model Hyperparameters RMSE [W/kg] MSE [(W/kg)2] MAE [W/kg] R2

PTOT, peak GBR

Loss: huber

4.18 18.1 3.09 0.10
N_estimators: 200

Criterion: friedman_mse
Max_features: sqrt
Learning rate: 0.13

PTOT, conc MLPR

Activation: logistic

0.64 0.42 0.47 0.18
Alpha: 10−1

LayerSize: 4
LearningRate: constant

Solver: sgd
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Table A3. Cont.

Output Feature (F) Model Hyperparameters RMSE [W/kg] MSE [(W/kg)2] MAE [W/kg] R2

PV, peak GBR

Loss: absolute_error

4.36 19.5 3.33 0.11
N_estimators: 150

Criterion: friedman_mse
Max_features: sqrt
Learning rate: 0.08

PV, conc MLPR

Activation: logistic

0.65 0.43 0.47 0.18
Alpha: 10−6

LayerSize: 13
LearningRate: adaptive

Solver: sgd

PAP, peak XGBR
Eta: 0.07

1.89 3.65 1.43 0.59Max_depth: 3
N_estimators: 102

PAP, conc GPR
Alpha: 10−1

0.27 0.07 0.20 0.69Kernel:
RBF(length_scale = 1) * 1 ** 2
Optimizer: fmin_l_bfgs_b

PAP, tot SVR

C: 0.3

0.26 0.07 0.19 0.71
Degree: 1

Epsilon: 10−3

Kernel: poly

Names of hyperparameters as reported in Jupyterlite Notebook, where the symbol “*” stands for a multiplication
and “**” for the exponentiation.
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18. Mackala, K.; Stodółka, J.; Siemienski, A.; Ćoh, M. Biomechanical Analysis of Standing Long Jump From Varying Starting Positions.
J. Strength Cond. Res. 2013, 27, 2674–2684. [CrossRef] [PubMed]

19. Szerdiová, L.; Simšik, D.; Dolná, Z. Assessment of Kinematics of Sportsmen Performing Standing Long Jump in 2 Different
Dynamical Conditions. Metrol. Meas. Syst. 2012, 19, 85–94. [CrossRef]

20. Wu, W.F.W.; Porter, J.M.; Brown, L.E. Effect of Attentional Focus Strategies on Peak Force and Performance in the Standing Long
Jump. J. Strength Cond. Res. 2012, 26, 1226–1231. [CrossRef] [PubMed]

21. Hughes, G.T.G.; Camomilla, V.; Vanwanseele, B.; Harrison, A.J.; Fong, D.T.P.; Bradshaw, E.J. Novel Technology in Sports
Biomechanics: Some Words of Caution. Sports Biomech. 2021, 23, 393–401. [CrossRef] [PubMed]

22. Picerno, P.; Camomilla, V.; Capranica, L. Countermovement Jump Performance Assessment Using a Wearable 3D Inertial
Measurement Unit. J. Sports Sci. 2011, 29, 139–146. [CrossRef]

23. Clemente, F.; Badicu, G.; Hasan, U.C.; Akyildiz, Z.; Pino-Ortega, J.; Silva, R.; Rico-González, M. Validity and Reliability of Inertial
Measurement Units for Jump Height Estimations: A Systematic Review. Hum. Mov. 2022, 23, 1–20. [CrossRef]

24. Mascia, G.; De Lazzari, B.; Camomilla, V. Machine Learning Aided Jump Height Estimate Democratization through Smartphone
Measures. Front. Sports Act. Living 2023, 5, 1112739. [CrossRef] [PubMed]

25. White, M.G.; De Lazzari, B.; Bezodis, N.E.; Camomilla, V. Wearable Sensors for Athletic Performance: A Comparison of Discrete
and Continuous Feature-Extraction Methods for Prediction Models. Mathematics 2024, 12, 1853. [CrossRef]

26. De Lazzari, B.; Mascia, G.; Vannozzi, G.; Camomilla, V. Estimating the Standing Long Jump Length from Smartphone Inertial
Sensors through Machine Learning Algorithms. Bioengineering 2023, 10, 546. [CrossRef] [PubMed]

27. Li, Y.; Peng, X.; Zhou, G.; Zhao, H. SmartJump: A Continuous Jump Detection Framework on Smartphones. IEEE Internet Comput.
2020, 24, 18–26. [CrossRef]

28. White, M.G.; Bezodis, N.E.; Neville, J.; Summers, H.; Rees, P. Determining Jumping Performance from a Single Body-Worn
Accelerometer Using Machine Learning. PLoS ONE 2022, 17, e0263846. [CrossRef]

29. Staacks, S.; Hütz, S.; Heinke, H.; Stampfer, C. Advanced Tools for Smartphone-Based Experiments: Phyphox. Phys. Educ. 2018,
53, 045009. [CrossRef]

30. Bergamini, E.; Ligorio, G.; Summa, A.; Vannozzi, G.; Cappozzo, A.; Sabatini, A. Estimating Orientation Using Magnetic and
Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks. Sensors 2014,
14, 18625–18649. [CrossRef]

31. Rantalainen, T.; Finni, T.; Walker, S. Jump Height from Inertial Recordings: A Tutorial for a Sports Scientist. Scand. J. Med. Sci.
Sports 2020, 30, 38–45. [CrossRef] [PubMed]

32. Owen, N.J.; Watkins, J.; Kilduff, L.P.; Bevan, H.R.; Bennett, M.A. Development of a Criterion Method to Determine Peak
Mechanical Power Output in a Countermovement Jump. J. Strength Cond. Res. 2014, 28, 1552–1558. [CrossRef] [PubMed]

33. McMahon, J.J.; Lake, J.P.; Suchomel, T.J. Vertical Jump Testing. In Performance Assessment in Strength and Conditioning; Comfort, P.,
Jones, P.A., McMahon, J.J., Eds.; Routledge: London, UK, 2018.

34. Dowling, J.J.; Vamos, L. Identification of Kinetic and Temporal Factors Related to Vertical Jump Performance. J. Appl. Biomech.
1993, 9, 95–110. [CrossRef]

35. Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [CrossRef]
36. Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [CrossRef]
37. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.

Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
38. Claudino, J.G.; de Oliveira Capanema, D.; de Souza, T.V.; Serrão, J.C.; Machado Pereira, A.C.; Nassis, G.P. Current Approaches to

the Use of Artificial Intelligence for Injury Risk Assessment and Performance Prediction in Team Sports: A Systematic Review.
Sports Med.-Open 2019, 5, 1–12. [CrossRef] [PubMed]

39. Bland, J.M.; Altman, D.G. Statistics Notes: Measurement Error Proportional to the Mean. BMJ 1996, 313, 106. [CrossRef]
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