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Abstract: Timely, region-based geo-maps like choropleths are essential for smart city ap-
plications like traffic monitoring and urban planning because they can reveal statistical
patterns in geotagged data. However, because data overloading is brought on by the quick
inflow of massive geospatial data, creating these visualizations in real time presents serious
difficulties. This paper introduces ApproxGeoMap, a novel system designed to efficiently
generate approximate geo-maps from fast-arriving georeferenced data streams. ApproxGe-
oMap employs a stratified spatial sampling method, leveraging geohash tessellation and
Earth Mover’s Distance (EMD) to maintain both accuracy and processing speed. We devel-
oped a prototype system and tested it on real-world smart city datasets, demonstrating that
ApproxGeoMap meets time-based and accuracy-based quality of service (QoS) constraints.
Results indicate that ApproxGeoMap significantly enhances efficiency in both running time
and map accuracy, offering a reliable solution for high-speed data environments where
traditional methods fall short.

Keywords: heatmaps and choropleth; earth mover’s distance; geospatial visualization;
spatial data sampling; geohash; approximate query processing

1. Introduction
Every hour, immense amounts of georeferenced data streams are collected from smart

cities around the world in various forms: pollution data, mobility data, and other geotagged
data [1,2]. These streams serve as essential inputs for various spatiotemporal data science
applications, such as Exploratory Spatial Data Analytics (ESDA). A key component of
ESDA is the regular creation of geo-maps (e.g., region-based maps such as choropleths),
which play a crucial role in urban planning for smart cities [3,4]. Figure 1A,B illustrate this
process, with Figure 1A presenting a heatmap of air quality data density over 3 months
in Boston, USA, and Figure 1B showing a choropleth map of the same data. Similarly,
Figure 2A,B depict heatmaps and choropleths of taxi pickup patterns in Rome, Italy. These
examples highlight how geospatial visualizations reveal critical patterns for improved
decision making.

The visualization of large-scale geospatial data serves as a critical tool for an ex-
ploratory analysis, revealing patterns that can drive improved decision making in various
areas of life. Nevertheless, the immense volume of georeferenced data introduces additional
challenges, primarily due to the high cost of communication requirements and system
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scalability limitations. In real-time applications, the influx of fast-arriving geospatial data
can overwhelm processing systems, creating significant bottlenecks [5]. For instance, spa-
tiotemporal visualization enables us to recognize specific spatial areas, temporal segments,
or a blend of both—often referred to as the spatiotemporal scope of interest. Pinpointing
those scopes helps practitioners to refine and target their modeling efforts with greater
precision [3].
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Figure 1. Region-based geo-maps: Boston, USA. (A) Heatmap of air quality data in Boston, USA. 
The intensity of the colors (from yellow to red) represents the density of records collected, with red 
areas indicating the highest density. (B) Choropleth map of air quality data in Boston, USA. 
Neighborhoods or polygons shaded in darker green represent areas with the highest density of 
records collected, while lighter colors indicate lower densities. 

 

Figure 2. Region-based geo-maps: Rome, Italy. (A) Heatmap depicting taxi pickup patterns over one 
day in Rome, Italy. The color intensity (from yellow to red) indicates the density of taxi pickups, 
with red areas representing the highest concentration. (B) Choropleth map illustrating the same taxi 
pickup data in Rome, Italy. The polygons are shaded to reflect the density of taxi pickups, with 
darker colors representing higher densities and lighter colors indicating lower densities. 

Furthermore, there are two types of methods for creating region-based geo-maps: 
those that use all of the data that arrive to create precise maps, and those that rely on 
approximation, sampling, sketching, or any other legitimate method of data size 
reduction or compression. Although more accurate, the former is more computationally 
costly and might be unaffordable or unfeasible in environments with limited IT 
infrastructure or during high-data-inflow situations where the rate of data arrival 
surpasses the processing and display capabilities of the underlying geospatial processing 
system. Conversely, the latter aims to obtain timely updates of data patterns and achieve 
considerable improvement in running times at the expense of a slight loss in accuracy. 

The design and implementation of our new system, which we call ApproxGeoMap 
(for approximation geo-map mapper) or AGM, are presented in this work. AGM 

Figure 1. Region-based geo-maps: Boston, USA. (A) Heatmap of air quality data in Boston, USA. The
intensity of the colors (from yellow to red) represents the density of records collected, with red areas
indicating the highest density. (B) Choropleth map of air quality data in Boston, USA. Neighborhoods
or polygons shaded in darker green represent areas with the highest density of records collected,
while lighter colors indicate lower densities.
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Figure 2. Region-based geo-maps: Rome, Italy. (A) Heatmap depicting taxi pickup patterns over
one day in Rome, Italy. The color intensity (from yellow to red) indicates the density of taxi pickups,
with red areas representing the highest concentration. (B) Choropleth map illustrating the same taxi
pickup data in Rome, Italy. The polygons are shaded to reflect the density of taxi pickups, with darker
colors representing higher densities and lighter colors indicating lower densities.

It is becoming increasingly difficult and expensive to create region-based maps on
a regular basis (e.g., every few seconds) due to fast-arriving, fluctuating-in-nature big
geo-referenced data streams. In fact, during severe spikes in the arrival rate, the system
may become overloaded and easily come to a halt. This not only affects system stability
but also disrupts smooth user interactions, particularly in environments where decision
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making depends on timely insights [1,6]. Spatial approximate query processing (SAQP)
is becoming crucial to preventing such situations that result in the system being out of
service [4,6]. In this work, we present the design and implementation of a novel system
for producing high-quality approximate region-based geo-maps. We focus on ensuring
smooth user interactions and minimizing computational costs, even under data overload
conditions. Our primary emphasis is on choropleth maps, which are frequently used in
urban planning and smart city scenarios.

The creation of region-based geo-maps involves two primary tasks. The first task
involves preparing geospatial data, which involves retrieving the data and running spatial
queries (such as group-by-neighborhood aggregation queries) to produce the geographi-
cal tuples that will be geo-visualized. The second task, geo-map visualization, applies a
geo-map visualization effect, such as choropleth color encoding, to the geospatial tuples
that were produced in the initial step [7,8]. However, as the data volume grows exponen-
tially, these tasks become computationally expensive, leading to latency and degraded
performance. Addressing these challenges requires optimization techniques for geo-map
generation [9]. In order to create the related image, the geo-visualization procedure is usu-
ally divided further into two steps: first, converting geographical coordinates into screen
pixels, and second, rendering the values of features associated with those pixels [10,11].
The simple vector data size and the pixel data rendering cost are well correlated, with larger
data sizes implying greater rendering costs, as the literature has well corroborated. During
strong spikes in multidimensional data arrival rates, the two primary stages may become
too expensive to operate in the event of information overload. An example is tweets with
geotagging during the US presidential election. Our work contributes to this domain by
proposing ApproxGeoMap (AGM), which incorporates a stratified sampling mechanism to
ensure efficiency and scalability.

Furthermore, there are two types of methods for creating region-based geo-maps:
those that use all of the data that arrive to create precise maps, and those that rely on
approximation, sampling, sketching, or any other legitimate method of data size reduction
or compression. Although more accurate, the former is more computationally costly and
might be unaffordable or unfeasible in environments with limited IT infrastructure or
during high-data-inflow situations where the rate of data arrival surpasses the processing
and display capabilities of the underlying geospatial processing system. Conversely, the
latter aims to obtain timely updates of data patterns and achieve considerable improvement
in running times at the expense of a slight loss in accuracy.

The design and implementation of our new system, which we call ApproxGeoMap
(for approximation geo-map mapper) or AGM, are presented in this work. AGM efficiently
minimizes the volume of geospatial data to be visualized by employing a stratified spatial
sampling technique based on geohash tessellation. This preprocessing step reduces data
size before sending it to the geo-visualizer, which produces high-quality region-based
geo-maps. A controller in our system detects arrival rates and adjusts the sampling fraction
dynamically based on time-based and accuracy-based quality of service (QoS) criteria,
ensuring smooth system operation. Earth Mover’s Distance (EMD) serves as the foundation
for this controller [12]. As will be covered in the next section, our geospatial sampling
method is specifically based on tessellation, which involves dividing the geographic area
(for which the region-based map is to be generated) into equal-sized rectangles using a
dimensionality reduction approach based on z-order curves. To achieve this, we specifically
use geohash encoding. This approach not only ensures spatial locality but also enables
scalable and efficient processing, even under constrained computational environments [13].

This paper’s remaining sections are structured as follows. In Section 2, we explore the
basic theoretical background necessary to understand the methodologies and approaches
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used in this study. Section 3 provides a comprehensive literature review, focusing on ad-
vancements in geospatial data processing, approximate query techniques, and innovations
in map rendering and interaction. Section 4 introduces the concept and prototype of our
proposed system, ApproxGeoMap, designed for the visualization of approximate region-
based geo-maps. Section 5 discusses the experimental evaluation and presents the findings
on the system’s performance across various datasets and configurations. Finally, Section 6
concludes the paper with key insights, practical implications, and recommendations for
future research directions.

2. Preliminaries and Theoretical Background
This section offers a brief overview of the preliminary concepts and theoretical back-

ground necessary to grasp the design and implementation details of our novel system,
which will be addressed later in the paper.

2.1. Geo-Visualization

Geo-visualization can be broadly defined as the process of creating geo-maps from
georeferenced data, which involves two main stages. The first stage is geospatial data
processing, where queries are applied to incoming georeferenced tuples based on the
geo-visualization query. For instance, when generating a choropleth map, data must
be aggregated into clusters (either ad hoc or pre-selected), requiring the use of stateful
geospatial aggregation queries, such as grouping and counting tuples or determining the
‘average’ scalar value, such as the ‘average’ taxi speed in mobility data. The output is a
geospatial vector dataset, which is then converted to a raster format for the next stage.
The second stage is geospatial data visualization, where the rasterized vector data are
rendered into geo-maps for user display. Rasterization involves determining the correct
pixel location within the map’s grid, corresponding to the geographical location of the
real-world tuple [8,14].

Approaches for visualizing georeferenced data are typically divided into three main
categories: point-based, line-based, and region-based techniques [15,16]. Point-based
methods plot individual points on maps, such as Point-of-Interest (POI) maps, allowing
users to observe spatial objects or events directly [17–19]. When multiple points overlap,
data aggregation methods, such as KDE-based heatmaps, can resolve the overlaps and
reveal meaningful patterns [20–22]. Line-based methods, on the other hand, are used for
visualizing time-series trajectory data, illustrating the movement of objects over time using
lines and curves [23–27].

Region-based approaches, which are the most resource-intensive due to their reliance
on dividing geographic areas into grid cells, aggregate data into predefined spatial re-
gions [28]. These techniques often require extensive geospatial data processing, including
grouping by regions and applying aggregation operations like counting or averaging scalar
values (e.g., calculating the average speed of vehicles). This step is crucial for generat-
ing visual outputs like choropleth maps, commonly used for urban planning and spatial
analyses [18,19,29]. In this study, point-based techniques are primarily leveraged to vi-
sualize alternatives in spatial contexts. One popular and typical example of visualizing
georeferenced data using region-based methodologies is the generation of choropleth maps.
The process entails creating a map using the already-established tessellation of a specific
geographic area, after which each region is given a color density according to color coding
and the density in each tessellation tile based on geo-statistics or geospatial aggregations
calculated during the geospatial data processing stage. It should be noted that regional
divisions of a study area (also known as administrative regions) are the level at which
geospatial aggregations for the purpose of creating choropleth maps are carried out. An
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example is some areas or communities inside a large city. For example, Figure 1B shows a
choropleth map of air quality data in the city of Boston, USA. Neighborhoods or polygons
that have darker green colors have the highest density of records collected. Another typical
example of a region-based geo-map that is seen in smart cities is a heatmap. All types of
region-based geo-maps, despite some differences, need stateful data aggregation, which
is known to be computationally costly in real data stream settings and has the potential
to quickly bring down systems in the event of severe spikes in data arrival rates. This
challenge is particularly critical in real-world urban environments with limited IT infras-
tructure, where resource constraints exacerbate the difficulties of handling fluctuating data
volumes. Our system, ApproxGeoMap, addresses this issue through stratified sampling
and load-shedding techniques that balance efficiency and accuracy while minimizing com-
putational resource usage. Georeferenced data are typically encoded as coordinate pairs
(longitude and latitude) to minimize network congestion during transmission. However,
this parameterization strips the data of its true geometrical form.

Bringing those parametrized points back to their original forms is necessary to per-
form geospatial aggregation and produce region-based maps. This is a computationally
expensive type of a geospatial join in data stream settings since it specifies which areas
in real geometries the points belong to [20]. This computational overhead is exacerbated
during spikes in data arrival rates, potentially affecting system responsiveness and user
interactions. Having stated that, it is evident that geospatial data preprocessing plays a
major role in the generation of geospatial region-based maps. In this regard, using geo-
graphic SAQP techniques like load shedding and geospatial sampling is a last resort if
preprocessing is taking longer than it should.

However, it is important to note that while stratified sampling can improve accuracy
by reducing within-stratum variance, its efficiency depends on the spatial correlation of
the data. When spatial correlation is weak, stratified sampling may not outperform simple
random sampling, and in some cases, it may result in a “stratification trap” if the designed
strata differ significantly from the true strata of geospatial objects [30]. Addressing this
challenge requires the careful consideration of spatial correlation characteristics when
designing sampling methods.

A lot of research has been conducted regarding geo-visualization and its uses in multi-
ple fields all over the world. For example, in the domain of social media, ref. [31] introduces
a visual analytics approach to analyze tweet topic popularity across locations and time,
offering insights into public interests and social trends. It focuses on a spatiotemporal
analysis to track how topics gain traction in various cities and detect significant events
like political movements through burst detection. Interactive tools allow users to explore
topic evolution and regional differences in sentiment. The approach aggregates tweets
by hashtags and time intervals for better topic modeling, using techniques like Latent
Dirichlet Allocation (LDA). Visualization tools help analyze trends, bursts, and spatial
distributions. Future research aims at real-time monitoring, dynamic time windows, and
scalability to handle larger datasets, enhancing the understanding of social media’s spatial
and temporal patterns.

Contrastingly, refs. [32–36] collectively highlight geo-visualization’s role in optimizing
transportation systems, urban mobility, and sustainability by providing insights into traffic
patterns and mobility behaviors. On one hand, refs. [32,33] discuss techniques like a tra-
jectory analysis, origin–destination mapping, a semantic zoom, and 3D visualizations for
analyzing mobility patterns, congestion, and travel efficiency, with future research focus-
ing on real-time analytics, multimodal integration, and predictive modeling. Then again,
refs. [34,35] address public transportation and smart city optimization using heatmaps,
space–time cubes, and multi-objective optimization for traffic management, planning, and
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incident response. Future work emphasizes real-time data integration, machine learning,
and user-friendly design. Additionally, ref. [36] extends to urban mobility and environ-
mental monitoring, stressing the importance of real-time data, multi-source fusion, and
predictive analytics for effective urban management.

On the other hand, the authors of [26,37,38] emphasize the role of geo-visualization
in a trajectory analysis for urban mobility, traffic management, and real-time monitoring.
Techniques such as graph-based modeling (e.g., TrajGraph), hot route discovery, and GPU-
based visualizations help identify congestion, optimize infrastructure, and respond quickly
to traffic changes. Ref. [38] further covers applications like emergency response and envi-
ronmental monitoring, using methods such as space–time cubes and heatmaps to reveal
movement patterns. Key research focuses on adding contextual data, enhancing real-time in-
teraction, and exploring multiscale analyses. Together, [26,37,38] show how trajectory-based
geo-visualization improves traffic flow, supports emergency management, and provides
real-time insights, with future work aimed at predictive modeling and scalable solutions.

Geo-visualization is essential in urban planning, offering insights into mobility pat-
terns and spatial interactions to guide decision making. The authors of [38] highlight tools
like Location2vec for a dynamic analysis of human activity, aiding infrastructure develop-
ment. On the other hand, ref. [39] discusses identifying functional areas using movement
data, such as taxi trips, to optimize traffic and accessibility. Both papers emphasize real-time
monitoring of urban changes, using techniques like clustering and visual encodings to
assess policies and infrastructure. Future research aims at integrating semantic data and
enhancing scalability for large datasets. Overall, geo-visualization supports data-driven
planning by revealing trends and optimizing city growth.

The authors of papers [40–43] emphasize geo-visualization’s key role in traffic man-
agement, providing insights for congestion management, accident analyses, and route
optimization. For instance, ref. [40] focuses on using techniques like heatmaps, flow maps,
and 3D visualizations to identify traffic hotspots and optimize routes, supporting real-
time monitoring and safer road design. On the other hand, ref. [41] discusses clustering
techniques, such as k-means, for mapping accident hotspots and improving congestion
control through predictive modeling. Moreover, ref. [42] highlights the benefits of tools
like Kepler.gl for visualizing railway and road traffic data to manage congestion, opti-
mize public transport, and improve incident response. Furthermore, ref. [43] addresses
congestion forecasting, employing multi-period hotspot clustering and map-matching
algorithms to predict traffic patterns and inform infrastructure planning. Together, these
papers underscore geo-visualization’s impact on improving urban mobility, enhancing
safety, and enabling proactive traffic management through real-time data integration and
predictive modeling.

2.2. Geohash as a Dimensionality Reduction Approach

Performing extensive geospatial analytics on vast amounts of georeferenced data
involves two primary phases: data representation and access data structure. The data
representation, which can be either space-driven or data-driven, forms the foundation
for the analysis. The embedding space, from which the data are extracted, can either be
represented as regularly shaped grids of uniform size or arbitrary shapes. Access data
structures are then imposed on these representations to facilitate efficient retrieval of data
for spatial queries. These structures enable faster, targeted scans, ensuring that the system
can process geospatial data effectively, especially in large-scale settings.

In grid decomposition, cells are often assigned an ordering, which is then subjected to
a tree-based access structure (such as a B+-tree) [5]. This process reduces the dimensionality
of the data by projecting multidimensional cells into a one-dimensional space. Among the



Computers 2025, 14, 35 7 of 29

different types of orderings, this study focuses on z-order curves, which offer a structured
and computationally efficient approach to representing geospatial data.

Geohash [2] is a unique use of z-order curves, where a z-shaped ordering is applied to
the grid space and geocodes are strings with a shared prefix that indicates geometrically
nearby spatial coordinates; the greater the shared prefix, the closer the items involved are
in real geometries. This characteristic makes geohash encoding highly effective for applica-
tions such as proximity searches and region-based data aggregation. The dimensionality
reduction provided by geohash encoding enables the efficient representation of geographic
areas while maintaining their spatial relationships. An example of a quick-and-dirty prox-
imity search that functions as a quick-and-dirty sieve is geohash encoding. For example,
a geohash string’s length determines the level of precision: longer geohashes represent
smaller, more granular areas, while shorter geohashes correspond to larger, coarser regions.
Figure 3 shows the geohash covering generated for A, Boston, USA, with a precision of
6; B shows the geohash covering the same city, but with a lower precision, 5. Precision
means the number of characters in the geohash value, in string representation. For instance,
‘sr2yk0’ represents one of the boxes covering Rome, Italy, in Figure 3C, while ‘sr2yk’ is
the value of one of the rectangles covering the city of Rome at precision 5 as shown in
Figure 3D. Precision 6 offers finer granularity to precision 5 as the lower precision value
represents a coarser resolution.
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Figure 3. (A,B) Geohash tessellation for Boston, USA. (C,D) Geohash tessellation for Rome, Italy.
Geohash tessellation for Boston, USA (A,B), and Rome, Italy (C,D). (A,C) show geohash coverings at
precision level 6, characterized by smaller, more granular grid cells, while (B,D) illustrate coverings
at precision level 5, with larger, coarser grid cells. Colors represent distinct geohash values within
each precision level, highlighting the spatial distribution of data points. Precision corresponds to the
number of characters in the geohash value (e.g., sr2yk0 at precision 6 in (C), and sr2yk at precision
5 in (D)), where higher precision offers finer spatial detail, and lower precision aggregates larger
spatial areas.
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Geohash-based tessellation serves as the foundation for our stratified sampling ap-
proach in ApproxGeoMap (AGM). Stratified sampling was chosen due to its potential to
improve accuracy by reducing variance within strata when spatial correlation is strong.
By treating each geohash grid cell as a stratum, this method ensures spatially localized
sampling, which is particularly advantageous for maintaining accuracy in the generation
of region-based geo-maps [2].

However, we acknowledge that stratified sampling is not universally superior to
random sampling. Its efficiency depends significantly on the spatial correlation of the data.
When spatial correlation is weak, stratified sampling may result in a “stratification trap”,
where predefined strata diverge from the true distribution of geospatial objects, leading
to inefficiencies. This risk must be mitigated by carefully analyzing the spatial correlation
characteristics of the dataset prior to designing strata [44].

For example, strong spatial correlation enables stratified sampling to enhance accuracy
by aligning sample distributions with real-world patterns, thereby reducing within-stratum
variance. In contrast, when spatial correlation is weak, stratified sampling may perform no
better than random sampling. To avoid this issue, AGM incorporates a feedback mechanism
that evaluates sampling efficiency and adjusts strata dynamically based on the observed
spatial correlation, as discussed in Section 4.

The decision to use geohash-based stratified sampling stems from its ability to partition
geospatial data into well-defined grid cells, ensuring computational efficiency and spatial
locality. Moreover, this approach minimizes the risk of data overloading during spikes in
arrival rates, providing AGM with the scalability needed for real-world urban applications.

2.3. Earth Mover’s Distance (EMD)

A distance-based metric called Earth Mover’s Distance (EMD) (http://infolab.stanford.
edu/pub/cstr/reports/cs/tr/99/1620/CS-TR-99-1620.ch4.pdf 13 September 2024) can
be used to compare the (dis)similarity of two frequency distributions, measurements, or
densities over a given area. It is often used in the context of comparing weighted point
sets or probability distributions. Known also as the Wasserstein metric, EMD is a reliable
technique that is typically applied to distribution comparisons. It was initially coined in
1781 by Gaspard Monge, in the context of transportation theory (https://en.wikipedia.org/
wiki/Earth_mover’s_distance 13 September 2024).

It represents the minimum amount of “work” required to transform one distribution
into another, where “work” is defined as the cost of moving “weight” or “mass” from one
point to another. The cost is proportional to the amount of weight moved and the distance
over which it is moved.

This heuristic overview is comparable to calculating EMD (Earth Mover’s Distance).
We envision a two-dimensional representation of the earth that is flattened down and
has two perspectives of the identical area of the earth: one with holes and the other with
heaps/piles of dust that are piling/building up. The least amount of cost needed to cover
the holes with dust from piles is then captured by EMD. It is the same as multiplying
the quantity of dust transferred from piles to holes by the ground distance that the dust
is transferred over to. Converting one distribution into another (and hence solving the
optimal transport problem) is comparable.

In EMD terms, the two distributions are represented by what are called signatures.
Assume that any distribution can be divided into groups or clusters. Each distribution’s
signature is the set of all pairs that include a single representative point from each cluster
(such as the center) and the proportion of the distribution that is present in that cluster
(also called the weight). EMD can then be computed with (1).

http://infolab.stanford.edu/pub/cstr/reports/cs/tr/99/1620/CS-TR-99-1620.ch4.pdf
http://infolab.stanford.edu/pub/cstr/reports/cs/tr/99/1620/CS-TR-99-1620.ch4.pdf
https://en.wikipedia.org/wiki/Earth_mover's_distance
https://en.wikipedia.org/wiki/Earth_mover's_distance
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EMD(P, Q) =
min

F
= ∑m

i=1 ∑n
j=1 f i, j · di, j (1)

It is subject to a few constraints defined by Equations (2) to (4):

∑n
j=1 f (i, j) ≤W pi, 1 ≤ i ≤ m (2)

∑m
i=1 f (i, j) ≤Wqj, 1 ≤ j ≤ n (3)

1 ≤ i ≤ m, 1 ≤ j ≤ n =⇒ f (i, j) ≥ 0 (4)

(2) ensures that the outflow from every point in distribution P to fill every point in Q
is at most equal to the cluster’s weight in p. Next, (3) ensures that the inflow to a particular
cluster j in Q from all P clusters is at most equal to the weight of that Q cluster.

We now give a hypothetical example to illustrate the EMD. We create a grid of equal-
sized tiles (16 tiles in total) out of the embedding space. Positions in those dimensions are
represented by monotonically increasing numbers on the x and y axes. Each grid cell’s
(tile’s) weights are expressed as a percentage, and in each distribution, the total of all grid
cells equals 1.

We utilize the Manhattan distance to calculate the ground distance for the EMD. For
instance, cells (2,2) from distribution P and (3,4) from distribution Q are separated by a
distance. The visulization of this example is shown in Figure 4. The Manhattan distance
between two corresponding tiles, (x1,y1) in P and (x2,y2) in Q, is defined by Formula (5).
The cost of the transfer from P to Q is the product of the flow and the Manhattan distance.
For example, if 0.1 units of mass are moved from tile (2,2) in P to tile (3,4) in Q with a
Manhattan distance of 3 (as defined in Formula (6)), the resulting cost would be 0.3 as
shown in Formula (7). Such an application of EMD is so common for comparing raster data
(pixelized data) [44].

dManhattan = |x2 − x1| + |y2 − y1| (5)

Substituting values: dManhattan = |3 − 2| + |4 − 2| = 1 + 2 = 3 (6)
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illustrating the “work” required to transform one distribution into another by moving mass (dust)
from piles to fill holes, with cost proportional to the amount moved and the distance covered.

The cost of the transfer from P to Q is the product of the flow and the Manhattan
distance:

Cost = 0.1 × 3 = 0.3 (7)

To minimize the EMD, the challenge is to identify a flow F that minimizes the overall
cost. This requires calculating the flow and cost for all tile pairs, then finding the combina-
tion of flows that results in the lowest total cost, representing the Earth Mover’s Distance
between P and Q. The total cost represents the dissimilarity between the distributions.
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2.4. Geospatial Data Modeling, Reduction, and Sampling

Two requirements must be met when working with massive multidimensional data
streams in order to ensure that data processing stays under QoS guarantee criteria. These
are representations of geospatial data that are successful by enforcing access structures on
them [13,45]. There are two primary categories of geospatial data representation models:
data-driven and space-driven. The embedding space is the typical term for the data
withdrawal space, which is where the data are extracted. Similarly to order-preserving
hash functions, space-driven algorithms divide the embedding space (the geographic
region from which data are extracted) using grid files and quadtrees, for instance.

However, data-driven approaches rely on splitting the data items themselves using
tools like R-trees and KD-trees. Space-driven grids can be further divided into equal-sized
grids and grids with arbitrary sizes. Spatial data structures, which help to expedite access
to target data in accordance with the spatial representation and distribution of data, usually
follow this data representation [5]. In other words, it is essential to first represent the data
using a suitable multidimensional model, such as a tree-based model, before applying a
spatial data structure to the model representation to enable speedy access to the data, such
as B+-trees, in order to work with large amounts of geospatial data efficiently.

Modern Geographic Information Systems (GISs) use a technique called “ordering”,
which reduces multidimensional data to single dimensions; z-order curves are one example,
to further improve the modeling and accessibility of geographical data. A tree-based
spatial access, like B+-trees overlaying the ordering, is applied after the embedding space
representation (such as a grid representation) has been ordered. This allows for faster and
more efficient access to the data. The geohash encoding is a crucial illustration from the
family of applications involving z-order curves. The cells that represent the adjacent grid
cell decomposition of an embedding space are essentially represented by a string. The
greater the shared prefix, the closer the spatial objects are in real geometries; geospatial
objects with equal geohash prefixes typically belong to the same grid cell. To expedite
the processing of massive volumes of geographic tuples, geohash encoding and other
dimensionality reduction z-order-based techniques, like Google’s S2 (http://s2geometry.io/
1 October 2024) and Uber’s H3 (https://www.uber.com/en-AE/blog/h3/ 1 October 2024),
are crucial tools. In this context, geohash is used as a fast and accurate filter for spatial
proximity queries. Figure 3 shows the geohash covering generated for A, Boston, USA, with
a precision of 6; B shows the geohash covering the same city, but with a lower precision,
5. Precision means the number of characters in the geohash value, in string representation.
Geohash strings are usually 1–12 characters long. The higher the number of characters,
the higher the granularity or resolution. For instance, ‘sr2yk0’ represents one of the boxes
covering Rome, Italy, in Figure 3C, while ‘sr2yk’ is the value of one of the rectangles
covering the city of Rome at precision 5 as shown in Figure 3D.

Sampling is one of the most crucial elements of SAQP techniques. The process of
choosing a representative subset of a population to estimate an unknown population
parameter value, like a “mean” or “count”, is known as sampling in statistics. The method
used to choose a sample of units or locations is known as the sampling design. Nonetheless,
there is consensus that the sample needs to be representative of the population it is chosen
from. To put it another way, a sample is a smaller portion of the population that accurately
captures and reflects the traits of the population it represents.

It is impossible to achieve the goal of a completely representative sample that is
perfect. But typically, we look for a sample that reflects reality in a way that helps convey
the characteristics of the study variables to a believable degree of accuracy and confidence.
One of the common issues that leads to some sampling methods being deemed poor is

http://s2geometry.io/
https://www.uber.com/en-AE/blog/h3/
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“selection bias”, which occurs when a sampling technique intentionally ignores a small
portion of the population [46].

Simple random sampling, or SRS for short, and stratified sampling, or SS for short, are
the two main sample designs found in the literature. Every unit in a population is given
an equal selection probability by SRS, which then labels each unit and chooses labels at
random until a predefined number of unique units—equal to the sample size—are collected.
From each separate category in the data, stratified-based sample designs choose equal
or non-equal parts, such as 50% male and 50% female students from a school’s student
body [46], or for instance 25% from each geohash value in the data. Because stratified-like
sample techniques are known to produce superior estimations than their random-based
counterparts, they are favored above their counterparts for the overall characteristics they
provide [46].

Stratified sampling is particularly effective in geospatial contexts when spatial correla-
tion within strata is strong. In such cases, it reduces within-stratum variance and improves
sampling efficiency. However, this approach is not inherently superior to random sampling
in all situations. When the strata in the sample differ significantly from the true strata of the
geospatial objects, it might lead to lower efficiency than random sampling. Therefore, it is
vital to consider the spatial correlation characteristics of the data when designing stratified
sampling strategies [30]. For instance, strong spatial correlation allows stratified sampling
based on prior knowledge to improve accuracy and reduce variance. In contrast, weak
spatial correlation makes stratified sampling no more effective than random sampling.

Seeking predictable solutions for complex spatial queries and geo-map display in real
time is getting less convenient due to the rapidly incoming floods of massive, overwhelming
geo-referenced data streams. The issue is made worse by the fact that geographic data are
multidimensional, have intricate data structures, and exhibit skewness and oscillation in
data arrival rates. SAQP solutions that capture approximations with error bounds are highly
valued in the literature in the fields of geo-statistics and geo-visualization [47]. Stratified
sampling was chosen for ApproxGeoMap (AGM) because it provides predictable solutions
for complex spatial queries and real-time geo-map rendering. SAQP’s ability to balance
accuracy and processing efficiency makes it a robust solution for creating region-based
approximate geo-maps from large-scale geotagged data. Moreover, stratified sampling
effectively addresses the practical constraints of observing entire populations, such as
tracking migratory birds across vast areas.

That said, the design of stratified sampling in ApproxGeoMap explicitly considers
spatial correlation characteristics to minimize stratification traps. This ensures that within-
stratum variance is reduced, and sampling efficiency is maximized, particularly for datasets
with strong spatial dependencies. Future work could explore adaptive sampling designs
that dynamically adjust to varying spatial correlation strengths, further enhancing the
robustness of the system.

2.5. Challenges Associated with Geo-Visualization of Big Data

Supporting query assessments for large-scale explorative visualization has significant
difficulties, particularly when working with huge spatiotemporal datasets. The amount
of data points that correspond to a user’s region of interest frequently surpasses the
perceptual scalability limit at the sizes taken into consideration, which is one of the most
urgent issues [48]. Because individual points grow too small to distinguish, consumers
find it challenging to interpret visual data in a meaningful way. Therefore, in order
to decrease the data to acceptable levels and improve the user’s interaction with the
display, an efficient and adaptable aggregation strategy is essential. The proliferation
of spatiotemporal datasets from social sensors, IoT devices, and urban environments is
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another major problem. These datasets are not only vast but also exhibit high complexity,
often requiring resource-intensive spatial and temporal query processing. Traditional
analyses tend to focus on precise, confirmatory questions due to the computational cost,
limiting the potential for interactive exploration [49]. However, exploratory analyses
demand real-time, interactive response times, particularly for operations like drill-downs,
zooming, and panning across multiple regions. High query latency disrupts the user
experience, slowing down observations and impeding the generation of insights. To ensure
that users may constantly develop insights without disrupting their train of thought during
interactions like drill-downs or panning over multiple regions, exploratory analyses, on the
other hand, require interactive reaction times. Users’ ability to make observations and draw
generalizations is slowed down by high query latency [49]. A number of technological
issues need to be resolved for visualization systems to function well in these kinds of
situations, one of which is preserving interactivity in spite of the massive amount of data
being processed. Ensuring interactivity under these conditions is critical for effective
geo-visualization systems.

Dynamic user interaction is another core challenge in geo-visualization. Users must
be able to engage with data in a dynamic manner, allowing them to pan, zoom, and
change parameters without experiencing any noticeable lag. However, as the dataset size
grows, these interactions become increasingly demanding. The rendering process is further
complicated by the fact that selectable overlays, which enable the visualization of numerous
datasets concurrently, are frequently required to highlight particular patterns [50].

Data management at scale is a key technical issue. Visualization systems need to
effectively handle memory usage, computation, network transfers, and disk accesses. Both
the client-side and server-side infrastructures may be strained as a result of these operations
rapidly surpassing resource limits as data volumes rise. Visualization systems must reduce
client–server interactions and shift more work to the client in order to scale efficiently,
particularly when there are numerous users interacting at once [50]. However, considering
the limitations of memory hierarchy, striking this balance while maintaining real-time
interactions is not simple. Although datasets are frequently stored on disks, some must
be made memory-resident for quick access, and delays may result from the sharp latency
and bandwidth disparities between disks and memory as does the management of limited
client-side resources [51].

Furthermore, maintaining quick response times during query evaluations is challeng-
ing due to the growing number of data points, whether from social media, urban sensors,
or other sources [51]. The intricacy of spatial queries, particularly those involving point-in-
polygon checks, which become computationally costly when working with complex-shaped
polygons in the real world, exacerbates this difficulty [49]. Finally, network I/O introduces
an additional level of complexity because it frequently necessitates the transmission of huge
datasets over the network, which lengthens response times. The challenges of transporting,
processing, and presenting the data required for real-time visualization increase with data
volumes [51]. In conclusion, a significant problem is presented by the combination of
increasing data volumes, intricate queries, and the requirement for interactive visualiza-
tion. Perceptual scalability, computational efficiency, memory hierarchy management, and
network limitations must all be addressed in solutions while maintaining the capacity for
users to perform insightful, real-time exploratory research. Potential solutions to these
problems include aggregation techniques, GPU acceleration, and sophisticated caching
schemes; nonetheless, striking a balance between accuracy and response time is still a
complex matter that needs constant attention [49]. By addressing these challenges, geo-
visualization systems can better support an insightful, real-time exploratory analysis in the
era of big data.
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2.6. Problem Formulation for ApproxGeoMap

To provide a clearer understanding of how the key components of our unique system,
ApproxGeoMap, operate, we present a series of formal definitions in this section as a
foundation.

Definition 1. Geospatial Data. A spatial dataset consists of several georeferenced tuples in the form
of (long, lat, [values]), where long and lat represent the coordinates (longitude and latitude), and the
dataset is represented as

D = [(long1, lat1, values1), (x2, y2, values2),. . ., (xn, yn, valuesn)] (8)

where |D| = n is the number of data tuples in the dataset. The geospatial data can be encoded using
geohashes, resulting in

D = [(long1, lat1, values1, geo1), (x2, y2, values2, geo2),. . ., (xn, yn, valuesn, geon)] (9)

Definition 2. Geospatial Sampling. A geospatial sample is a subset of the geospatial dataset,
such that

S⊂D = {(long1, lat1, values1, geo1), (long2, lat2, values2, geo2),. . ., (longm, latm, valuesm, geom)} (10)

where |S| = m is the size of the sample, with m ≤ n. The sample is selected based on stratified
sampling over the geohashes covering the area, ensuring representative data selection from each
geohash region.

Definition 3. Geohash Cover. A geohash cover is the list of all geohashes that cover the spatial
polygons of the study area, represented as

cover = [g1, g2,. . ., gn] (11)

If the geohash cover is reduced using some optimization method (e.g., reducing the
number of geohashes while retaining spatial coverage), the reduced geohash cover is

reduced Cover = [g1, g2,. . ., gm], where reduced Cover ⊆ cover, m ≤ n (12)

Definition 4. Proxy Aggregation. For each geohash gi in the geohash cover or reduced geohash
cover, the aggregated data A can be defined as a summarized representation of the sampled data:

A = {(g1, aggValues1), (g2, aggValues2),. . ., (gm, aggValuesm)} (13)

where aggValuesi represents the aggregation function applied to the values within each geohash
region (e.g., summing counts or averaging values).

Definition 5. Thematic Map. A thematic map (such as a choropleth) can be generated based
on the aggregated geohash data. Let M be the matrix that represents the spatial distribution of
the aggregated values. The thematic map function F takes the matrix as input and outputs a
rendered map:

thematicMap = F(M) (14)

where M is generated based on the geohashes and aggregated data:

M = generateMatrix(A) (15)
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Definition 6. Error Estimation. Let E be the error function that measures the difference between
the original geospatial dataset D and the aggregated dataset A. The error estimation function can be
defined as

errorEstimate = E(D,A) (16)

This function computes the error metric, which, in this paper, is the Earth Mover’s
Distance (EMD).

3. Literature Review
The rapid growth of geospatial big data has necessitated the development of efficient

processing techniques to manage and analyze these datasets effectively. Therefore, this
literature review focuses on key advancements in approximate query processing, spatial
join optimization, spatial sampling, geohash encoding, spatial partitioning, enhancing
map rendering and interaction experiences, and spatial query optimization. By examining
recent contributions in these areas, we can better understand the challenges and solu-
tions proposed to enhance the performance and scalability of geospatial big data analytics.
Spatial approximate query processing (SAQP) has seen significant advancements in the
context of geospatial big data analytics. Several studies have developed systems and
techniques aimed at reducing computational costs while maintaining acceptable accuracy.
For instance, in [52], the authors introduced GeoMapComp, which focuses on enabling
fast and approximate comparisons of satellite remote sensing products. This is achieved
through the conversion of raster geo-maps into vectorized representations and the use of
geohash encoding, ensuring efficient spatial data processing. Similarly, in [53], the focus is
on approximate query processing by employing polygon simplification to reduce data com-
plexity while ensuring fast geospatial aggregation queries. Moreover, in [9], approximate
query processing is used to optimize spatial joins, thus improving real-time processing effi-
ciency. Additionally, the study in [4] contributes by simplifying polygon shapes using the
Ramer–Douglas–Peucker algorithm, enabling faster approximate analytics for large-scale
geospatial data. Furthermore, the EMDI system described in [1] leverages approximate
methods to handle heterogeneous geospatial data integration efficiently. Likewise, in [6],
ApproxSSPS efficiently processes geospatial data streams using approximation techniques
to balance query precision with system performance. Finally, the authors of [45] introduce
the SAOS algorithm, which uses spatially aware sampling to facilitate efficient approximate
query processing in real-time geospatial data streams. Recent advancements in enhancing
map rendering and interaction complement these efforts by integrating simplification
techniques like stylized hierarchical symbol models, which prioritize the visualization of
critical information while reducing computational overhead [54,55].

A spatial join has been extensively explored in geospatial data analytics, with several
studies focusing on optimizing the process of combining geospatial datasets. For instance,
ref. [53] employs a filter-and-refine approach to spatial joins, using geohash encoding
to filter candidate points before applying exact point-in-polygon operations. Similarly,
in [9], the system performs stream-static spatial joins, enabling the combination of real-
time geospatial data streams with static geographic datasets. Moreover, the EMDI system
described in [1] focuses on integrating mobility and pollution datasets through spatial join
processing, ensuring efficient and accurate analytics. Lastly, in [56], spatial join optimization
is integrated within a distributed Spark framework, benefiting from load balancing and
geospatial indexing to enhance query performance.

Spatial sampling is another critical area in geospatial analytics. Several studies have
focused on reducing computational load while preserving the accuracy of spatial queries
through sampling techniques. For example, in [52], stratified sampling is utilized to gener-
ate comparable samples from geospatial data, ensuring efficient processing of large datasets.
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Similarly, in [4], spatial sampling is incorporated to maintain geographical distribution
while reducing data size. Furthermore, in [13], the ex-SAOS system is introduced to ensure
fair representation across regions during sampling, minimizing errors in geospatial queries.
On the other hand, in [6], spatial-aware sampling techniques like SAOS are employed to
balance query efficiency with accuracy in real-time data processing. Finally, ref. [45] uses
stratified sampling through the SAOS algorithm to ensure efficient real-time spatial pro-
cessing by selecting representative data points from various regions. Stylized hierarchical
symbol models (SHS) contribute to improving spatial data visualization under constrained
conditions by allowing selective rendering of features based on priority, thus enhancing
the interpretability of sampled data [54].

Geohash encoding is a widely used technique to efficiently organize and index geospa-
tial data, and its application is evident across multiple studies. For instance, in [4], geohash
encoding is used to simplify polygons and group spatial objects efficiently, thus improving
computational performance. Similarly, the EMDI system in [1] applies geohash encod-
ing to spatially organize mobility and pollution data, enabling quick proximity searches
and optimized spatial joins. Furthermore, in [2], geohash encoding helps reduce spatial
data dimensionality, thereby improving the efficiency of spatial joins. Likewise, in [13],
geohash encoding enables the efficient organization of geospatial data into grid-based
representations for real-time processing. Additionally, in [6], geohash encoding is used to
group spatial data points into grid cells, aiding efficient spatial indexing. Lastly, in [56],
geohash encoding is used to optimize spatial indexing in a distributed Spark environment,
improving the execution of spatial queries.

Spatial partitioning is essential for efficiently distributing geospatial data across multi-
ple computing nodes, particularly in distributed environments. For example, in [2], the
SCAP system is introduced to minimize data shuffling by preserving spatial locality, thus
improving the performance of spatial queries. Similarly, in [56], advanced spatial partition-
ing techniques are implemented to evenly distribute workloads across nodes, optimizing
query performance in large-scale geospatial data analytics.

Enhancing map rendering and interaction experiences is a growing area of interest
in geospatial visualization research. For example, the stylized hierarchical symbol (SHS)
model discussed in [54] introduces a weight-based prioritization mechanism to improve
rendering performance, ensuring that critical map features are highlighted while non-
essential details are omitted during constrained operations. Similarly, the Geographic
Feature Color-weighted Rendering (GFCR) technique [54] enhances user interaction by
dynamically adjusting feature importance based on user input, allowing for smoother
transitions between zoom levels. Additionally, adaptive caching methods like Catalan
Number-based Caching Access (CatNCa) [54] optimize resource usage, reducing latency
during frequent map interactions. Together, these methods address challenges like symbol
clutter, interaction latency, and resource constraints, ensuring a seamless user experience
even with large geospatial datasets.

Spatial query optimization focuses on improving the performance of complex spatial
queries such as proximity detection and spatial joins. In [2], the SCAP system is integrated
with a query optimizer to enhance the performance of spatial queries like k-nearest neighbor
(kNN) and density-based clustering, reducing computational overhead and improving
processing efficiency in distributed systems. Recent advancements in caching and indexing
mechanisms, such as grid-based dynamic caching, complement these efforts by accelerating
spatial query response times in interactive environments [54,55].
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4. ApproxGeoMap Geospatial Visualization at Scale with QoS
Guarantees
4.1. Architecture Design and System Operation

In this section, we present the design and implementation of our novel system, Approx-
GeoMap (AGM), which is designed for the efficient generation of region-based geo-maps
from large-scale geotagged locational data, with a focus on choropleth maps. The system
consists of five main components that work sequentially, forming a pipeline: geospatial
data modeling and representation, stratified-like geospatial sampling, region-based geo-
map proxy generation, geo-map rendering, and a quality of service (QoS) controller. These
components work together as a pipeline, as shown in Figure 5, to ensure the efficient
processing and visualization of geospatial data. ApproxGeoMap begins by processing two
types of input data: raw geotagged tuples, which may number in the millions or billions,
and a polygon file representing the study area’s spatial boundaries, typically provided
in GeoJSON or shapefile format. The geospatial modeling and representation module
partitions the study area into a uniform grid using geohash encoding at a predefined preci-
sion (e.g., levels 5, 6, or 7). Sometimes, the use of higher precisions is critical; for instance,
emergency response systems and environmental hazard monitoring systems require a more
specific, granular representation. However, in this study, geohash precisions of 5 and 6
were used to compare the performance of the system with the varying resolutions. This
geohash encoding ensures spatial locality, meaning that geographically proximate objects
share the same geohash values. This representation is critical to the stratified-like sampling
approach used in ApproxGeoMap, where each geohash value is treated as a stratum.
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Figure 5. ApproxGeoMap architecture. This figure illustrates the main components and workflow
of the ApproxGeoMap system. The process begins with geohash-based tessellation of input data,
followed by stratified-like sampling using geohash regions. The system then aggregates geospatial
statistics and visualizes the data through choropleth or heatmaps. The colors in the sample-based
choropleth map represent different data densities or attribute values, with darker colors indicating
higher values and lighter colors representing lower values. A feedback loop evaluates the error using
Earth Mover’s Distance (EMD) to adjust sampling rates and ensure accuracy.
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The data modeling process encodes both the study area polygons and the raw data
tuples using geohashes, with the same level of precision applied to both datasets. This
results in two intermediate geohash-encoded datasets: one representing the polygons and
the other representing the raw locational tuples. Since each polygon in the study area is
covered by multiple geohash values, the system can perform stratified sampling based on
these geohash codes. The ApproxGeoMap system then proceeds through its workflow, as
described by Algorithm 1, ApproxGeoMap Workflow1, below:

Algorithm 1: ApproxGeoMap Workflow

Input: refData, geoPrec, mapRenderType, sampFraction, seed
// Step 1: Geohash Tessellation
geoHashMap← ∅ // Initialize an empty map for geohashes
For each dataPoint in refData do

geoHash← geohashEncode(dataPoint.lat, dataPoint.long, geoPrec) // Encode
geohash

geoHashMap[geoHash].add(dataPoint) // Group data points by geohash
End
// Step 2: Stratified Sampling
sampledData← AGMSampler(geoHashMap, sampFraction, seed) // Sample data from

each geohash
// Step 3: Aggregation
aggregatedData← proxyAggregate(sampledData) // Aggregate the sampled data
// Step 4: Map Rendering
thematicMap← (mapRenderType == "choropleth") ? choroplethRender(generate

Matrix(aggregatedData)): heatmapRender(generateMatrix(aggregatedData)) // Render the
map

// Step 5: Error Estimation
errorEstimate← calculateError(refData, aggregatedData) // Estimate error between

original and aggregated data
// Output
output thematicMap, errorEstimate, adjustSamplingRate(errorEstimate) // Output

map, error, and sampling feedback
End

In Step 1 of Algorithm 1, ApproxGeoMap Workflow, geohash tessellation encodes
the geographic space and splits it into geohash tiles. Each geotagged tuple from the raw
dataset is grouped according to its geohash code, creating a mapping of geohash values to
data points. In Step 2, the system applies stratified sampling through the AGMSampler
function, as shown below in Algorithm 2, which selects a representative subset of data
points from each geohash region based on a predefined sampling fraction. The sampled
data are then aggregated in Step 3, where geospatial statistics (such as averages or counts)
are computed for each geohash region. Step 4 renders the final map, generating either a
choropleth map or a heatmap depending on the user’s specification. Finally, in Step 5, the
system estimates the error between the original dataset and the sampled approximation,
providing a feedback mechanism to adjust the sampling rate if needed.

The stratified-like sampling process is implemented using Algorithm 2, AGMSampler,
described below. This algorithm selects data points from each geohash region based on a
random sampling fraction.
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Algorithm 2: AGMSampler

Input: geoHashMap, sampFraction, seed
r = random(seed) // Initialize random number generator with seed
sampledData← ∅ // Initialize empty set for sampled data
For each geoHash in geoHashMap do

tuples← geoHashMap[geoHash] // Retrieve data for current geohash
fraction← sampFraction // Set sampling fraction (can be adjusted per geohash)
For each tuple in tuples do

If (r < fraction) then // Randomly sample each tuple based on fraction
sampledData.add(tuple)

End
End

End
return sampledData
End
Output: sampledData

The AGMSampler works by iterating through each geohash region and applying a
random sampling process. For each data tuple within a geohash, the algorithm compares
a random value (generated using the seed) with the predefined sampling fraction. If the
random value is less than the sampling fraction, the tuple is included in the sample. This
ensures that data from each geohash region are sampled independently and proportionally,
making the approach akin to stratified sampling. The sampler architecture is shown in
Figure 6.
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Figure 6. AGMSampler architecture. The AGMSampler implements stratified-like sampling by
iterating through geohash regions within distinct zones (Zone A and Zone B) and selecting data
points based on a predefined sampling fraction. Discretization divides these zones into grid cells,
where G1 and G2 belong to Zone A but have different geohash values, and G3 and G4 belong to
Zone B with distinct geohash values. This process ensures proportional sampling across regions,
facilitating accurate and efficient proxy-based aggregation for geospatial data.
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Once the sampling is complete, the system proceeds to the area-based geo-map proxy
generation step. In this stage, the sampled data are aggregated into a compact matrix format,
where each row corresponds to a geohash value, along with the aggregated geospatial
statistics and the geohash centroid. This matrix can be used to represent data at both
fine-grained (geohash-level) and coarse-grained (polygon-level) resolutions, depending on
the level of aggregation.

The Geo-Map Renderer then visualizes the aggregated data by generating a choropleth
map or heatmap. If the data are provided at a coarse-grained level (e.g., polygon-level), the
renderer directly produces the choropleth map. For finer-grained data (geohash-level), the
renderer first aggregates the data covering each polygon before generating the map.

Finally, the QoS Controller evaluates the quality of the rendered map by estimating the
error between the original geospatial data and the sampled data used for map generation.
The error estimation uses Earth Mover’s Distance (EMD) to measure the similarity between
the two distributions, providing error bounds that are displayed alongside the map to
inform the user of the map’s accuracy.

By employing geohash-based tessellation, stratified-like sampling, and proxy-based
aggregation, AGM provides an efficient pipeline for generating large-scale choropleth
maps while maintaining a balance between performance and accuracy. The integration of
error estimation using EMD allows users to receive meaningful feedback on the quality
of the generated visualizations. The EMD metric quantifies the dissimilarity between the
original dataset and the approximated sampled data, ensuring adherence to QoS constraints.
Specifically, we calculate EMD using the formula defined in Equation (1), where f lowi,j is
the flow between Pi and Qj that minimizes the total cost. disti,j is the distance between Pi

and Qj. For our implementation, Manhattan distance is used as the ground distance metric,
aligning with the spatial data structure of our geohash-based approach. This ensures that
the system achieves efficient and reliable results while minimizing computational overhead.

4.2. System Scope of Operation

In this research, we focus on middleware software systems that serve as a bridge
between the presentation layer and the data sources. Since our primary focus is on value-by-
area maps, our survey is not able to cover many other themed maps, including choropleth
maps, graded circle maps, and travel-distance maps [57].

A key component of a buffer-overlay analysis is buffer and overlay generation. Many
approaches have been created to address generating issues, and they can be broadly divided
into two categories according to the output they produce: raster-based and vector-based
techniques. While raster-based approaches use pixels to represent geographical data, which
can lead to sawtooth distortions, vector-based approaches use polygons to represent geo-
graphic characteristics, allowing for in-depth spatial analyses without sacrificing resolution
when zooming in. A raster-based analysis has the advantage of being computationally
simpler, but it also uses more storage space and frequently distorts results when zoomed
in [44].

Our study focuses on a vector data analysis, which performs spatial computations
using geometric objects such as polygons, lines, and points. Although vector-based tech-
niques, such as edge-constrained triangulation, provide great geometric representation ac-
curacy, they are more computationally costly. Despite requiring more storage, raster-based
techniques are typically avoided for large-scale spatial data because of their inefficiency.
The majority of this field’s research focuses on serial computing models, especially when it
comes to raster buffers [44].
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5. Experimental Evaluation
In this section, we summarize the experimental setup including the datasets and the

test settings, in addition to the baseline methods and evaluation metrics used in this study.
Furthermore, the experimental results on the datasets are also discussed.

5.1. Experimental Setup
5.1.1. Datasets

The Boston (dataset link: https://zenodo.org/records/7961851), USA, dataset focuses
on hyperlocal air quality, collected using mobile sensing platforms from February to
April 2022, in a neighborhood near Boston Logan International Airport. The data include
measurements of particulate matter (PM2.5, PM10), nitrogen dioxide (NO2), temperature,
and humidity. Collected with a mobile environmental lab, the data offer high spatial and
temporal resolution, crucial for understanding air pollution variability in urban areas.
Calibration was performed using machine learning models to ensure accuracy. This dataset
supports studies on urban air pollution and can help inform environmental policy decisions.

The Rome dataset (dataset link: https://ieee-dataport.org/open-access/crawdad-
romataxi) consists of mobility traces collected from approximately 320 taxi cabs over
30 days, between 1 February 2014 and 2 March 2014. The dataset captures GPS coordi-
nates from taxis operating in central Rome, with data points recorded every 7 s. The
purpose of the dataset is to analyze user mobility, network performance, human behavior,
and opportunistic connectivity. The data were sanitized by replacing driver names with
IDs and include the position and timestamp of each taxi, providing insights into urban
mobility patterns. The precision of the GPS data is filtered to maintain accuracy within
20 m. This dataset is valuable for studying mobility, communication networks, and urban
transportation systems.

In comparing the Boston air quality data with the Rome mobility data, the distinctions
in their distributions are apparent, illustrating the use of two different types of datasets
for our experiment. The Boston dataset focuses on environmental factors such as temper-
ature, humidity, and pollutant concentrations (NO2 and PM2.5), which are essential for
understanding variations in air quality, as shown in Figure 7. In contrast, the Rome dataset
revolves around human mobility patterns, including driver activity, distribution by the day
of the week, and the hour of the day, giving insights into urban traffic behaviors as shown
in Figure 8. These distinct focuses lead to different data distributions and structures.

The temporal distribution in the two datasets highlights significant differences. For
the air quality data in Boston, the records span multiple months, with the majority of data
points collected during March and February, and a smaller portion from April. This spread
across late winter and early spring allows for an analysis that incorporates seasonal changes.
On the other hand, the Rome mobility data are confined to a single month, providing a more
concentrated snapshot of mobility patterns without seasonal variations. This distinction
in time frames emphasizes how each dataset approaches the temporal analysis from a
different perspective.

When analyzing daily and hourly patterns, the mobility data from Rome display clear
trends. There are noticeable peaks in activity during morning and evening rush hours,
correlating with commuter behavior, and higher activity levels are seen on Fridays and
Saturdays. This reflects typical urban mobility patterns, driven by workweek rhythms.
In contrast, the air quality data do not exhibit such clear daily or hourly peaks, as they
capture continuous environmental variables that change more gradually over time, such as
temperature and pollution levels.

https://zenodo.org/records/7961851
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
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Figure 7. Exploratory Data Analysis: Boston, USA, air quality dataset. The histograms depict tem-
perature, humidity, and pollutant concentrations (NO2 and PM2.5), highlighting their distributions
and frequency across the dataset. The pie chart illustrates the record counts by month, showing the
temporal distribution of data collection.
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Figure 8. Exploratory Data Analysis: Rome, Italy, mobility dataset. The bar charts represent driver
activity (top 10 most active drivers), data distribution by the month, day of the week, and hour of the
day, providing insights into urban mobility trends and temporal activity patterns.
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The underlying distributions of variables further emphasize the distinction between
the two datasets. The Boston air quality data show Gaussian-like distributions for tem-
perature and humidity, with a clear peak around certain values, while NO2 and PM2.5
concentrations display multimodal distributions, reflecting variability in pollution levels
throughout the city. The Rome mobility data, however, focus on discrete variables. For
example, the most active drivers exhibit uniform participation, and there are clear patterns
in the distribution of activity across days and hours, with peaks corresponding to human
behaviors rather than environmental factors.

In summary, the Boston air quality and Rome mobility datasets represent two funda-
mentally different distributions that were used for the experiment. The Boston data follow
a continuous environmental distribution with seasonal elements, while the Rome dataset
is discrete, reflecting human mobility patterns. These differences in distribution and data
structure ensure that the experiment involves a variety of data types, enriching the analysis
with diverse perspectives on environmental conditions and urban mobility.

5.1.2. Deployment

We used the following resources to set up our tests on a Microsoft Azure virtual
computer: 4 E8 v3 computers with 64 GB of RAM and eight cores. We used geo-packages
like Geopandas to implement our system’s standard-compliant prototype in Python.

Evaluation metrics: We use Earth Mover’s Distance (EMD) to measure the distance
between distributions, and then apply RMSE (Root Mean Squared Error) to quantify
the error in our predictions, helping us assess the model’s accuracy after calculating the
distributional differences.

5.2. Experimental Results and Discussion

This section explores the performance of ApproxGeoMap (AGM) in generating region-
based maps (specifically choropleth maps) from big geo-referenced data. We evaluated its
efficiency by varying geohash precision levels (5 and 6) and sampling rates, comparing
stratified-like sampling (AGM) with simple random sampling as a baseline. Then, we use
the EMD measurement to test the performance of the system by applying both samplers. It
is worth noting that AGM refers to the ApproxGeoMap system and is introduced here as
an abbreviation for clarity.

In Figure 9, which uses geohash precision level 5 (labeled as A), we compare the Earth
Mover’s Distance (EMD) across different sample sizes for the Boston dataset. At a small
sample size of 0.2, random sampling has a significantly higher EMD (0.0012) compared
to AGM (0.00005), demonstrating a 96% reduction in error when using AGM. As the
sample size increases to 0.5, random sampling’s EMD decreases to 0.0003, but AGM still
outperforms it with an EMD of 0.00002, achieving a 93% reduction in error. At the largest
sample size of 0.9, random sampling reaches an EMD of 0.00005, while AGM’s EMD is
negligible, showing almost 100% improvement. This result suggests that AGM provides a
more accurate representation of the data distribution across all sample sizes, particularly at
smaller sizes.

In Figure 9B, which uses geohash precision level 6, similar trends are observed. At
the smallest sample size of 0.2, random sampling has an EMD of 0.00065, whereas AGM
achieves a much lower EMD of 0.00005, representing a 92% reduction in error. As the
sample size increases to 0.5, random sampling’s EMD drops to 0.0003, but AGM achieves a
near-zero EMD, demonstrating almost 100% improvement. At the largest sample size of 0.9,
both methods converge toward similar low EMD values, but AGM maintains consistently
better performance.
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Figure 9. Comparison of EMD for stratified and random sampling across different sample sizes
in Boston, USA. Comparison of Earth Mover’s Distance (lower better) across varying sample sizes
for Random Sampling vs. AGM (Stratified Sampling). (A) Results with Geohash Precision Level 5,
(B) Results with Geohash Precision Level 6.

In Figure 10A, using geohash precision level 5, the Root Mean Squared Error (RMSE)
for the Boston dataset is compared between random sampling and AGM. At the smallest
sample size of 0.2, random sampling’s RMSE is 0.0016, while AGM achieves a much
lower RMSE of 0.00005, indicating a 96% reduction in prediction error. At the medium
sample size of 0.5, random sampling’s RMSE drops to 0.0009, but AGM still outperforms
it with 0.00004, reflecting a 95% reduction in error. At the largest sample size of 0.9,
random sampling reaches 0.0004, while AGM approaches an RMSE of 0.00001, showing an
impressive 99% improvement.
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Figure 10. Comparison of RMSE for stratified and random sampling across different sample sizes
in Boston, USA. Comparison of RMSE across varying sample sizes for Random Sampling vs. AGM
(Stratified Sampling). (A) Results with Geohash Precision Level 5, (B) Results with Geohash Precision
Level 6.

In Figure 10B, with geohash precision level 6, the RMSE analysis shows similar patterns
for the Boston dataset. At the smallest sample size of 0.2, random sampling has an RMSE of
0.08, while AGM reduces it to 0.0002, showing a dramatic 99.75% reduction in error. At the
sample size of 0.5, random sampling’s RMSE remains relatively high at 0.06, while AGM
approaches zero, reflecting an almost 100% reduction in error. At the largest sample size of
0.9, random sampling still shows higher RMSE values than AGM, underscoring AGM’s
superior performance.

For the Rome dataset, in Figure 11A, using geohash precision level 5, the EMD analysis
reveals similar trends. At the smallest sample size of 0.2, random sampling has an EMD
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of 0.00065, while AGM reduces it to 0.00005, indicating a 92% reduction in error. As the
sample size increases to 0.5, random sampling’s EMD drops to 0.0003, but AGM achieves a
near-zero EMD, showing almost 100% improvement. At the largest sample size of 0.9, both
methods perform similarly, but AGM consistently maintains better accuracy.

Computers 2025, 14, x FOR PEER REVIEW 25 of 31 
 

In Figure 10B, with geohash precision level 6, the RMSE analysis shows similar 
patterns for the Boston dataset. At the smallest sample size of 0.2, random sampling has 
an RMSE of 0.08, while AGM reduces it to 0.0002, showing a dramatic 99.75% reduction 
in error. At the sample size of 0.5, random sampling’s RMSE remains relatively high at 
0.06, while AGM approaches zero, reflecting an almost 100% reduction in error. At the 
largest sample size of 0.9, random sampling still shows higher RMSE values than AGM, 
underscoring AGM’s superior performance. 

For the Rome dataset, in Figure 11A, using geohash precision level 5, the EMD 
analysis reveals similar trends. At the smallest sample size of 0.2, random sampling has 
an EMD of 0.00065, while AGM reduces it to 0.00005, indicating a 92% reduction in error. 
As the sample size increases to 0.5, random sampling’s EMD drops to 0.0003, but AGM 
achieves a near-zero EMD, showing almost 100% improvement. At the largest sample size 
of 0.9, both methods perform similarly, but AGM consistently maintains better accuracy. 

 

Figure 11. Comparison of EMD for stratified and random sampling across different sample sizes in 
Rome, Italy. Rome Data: Comparison of Earth Mover’s Distance (lower better) across sample sizes 
for Random Sampling vs. AGM (Stratified Sampling). (A) Results with Geohash Precision Level 5, 
(B) Results with Geohash Precision Level 6. 

In Figure 11B, using geohash precision level 6, similar results are observed. At a 
sample size of 0.2, random sampling’s EMD is 0.00065, while AGM shows 0.00005, 
indicating a 92% reduction. As the sample size grows to 0.5, AGM’s EMD remains near 
zero, with random sampling decreasing but still underperforming. AGM consistently 
achieves better performance across all sample sizes. 

Finally, in Figure 12A, using geohash precision level 5, we compare RMSE for the 
Rome dataset. At the smallest sample size of 0.2, random sampling has an RMSE of 0.08, 
while AGM drastically reduces it to 0.0002, achieving a 99.75% reduction in prediction 
error. At the sample size of 0.5, random sampling’s RMSE stays at 0.06, while AGM 
approaches zero, demonstrating almost 100% improvement. At the largest sample size of 
0.9, random sampling remains higher in RMSE compared to AGM. 

Figure 11. Comparison of EMD for stratified and random sampling across different sample sizes in
Rome, Italy. Rome Data: Comparison of Earth Mover’s Distance (lower better) across sample sizes
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(B) Results with Geohash Precision Level 6.

In Figure 11B, using geohash precision level 6, similar results are observed. At a sample
size of 0.2, random sampling’s EMD is 0.00065, while AGM shows 0.00005, indicating a
92% reduction. As the sample size grows to 0.5, AGM’s EMD remains near zero, with
random sampling decreasing but still underperforming. AGM consistently achieves better
performance across all sample sizes.

Finally, in Figure 12A, using geohash precision level 5, we compare RMSE for the
Rome dataset. At the smallest sample size of 0.2, random sampling has an RMSE of 0.08,
while AGM drastically reduces it to 0.0002, achieving a 99.75% reduction in prediction error.
At the sample size of 0.5, random sampling’s RMSE stays at 0.06, while AGM approaches
zero, demonstrating almost 100% improvement. At the largest sample size of 0.9, random
sampling remains higher in RMSE compared to AGM.
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In Figure 12B, with geohash precision level 6, similar RMSE trends are seen for the
Rome dataset. Random sampling starts with an RMSE of 0.08 at a sample size of 0.2, while
AGM reduces it significantly to 0.0002, demonstrating a 99.75% reduction in error. At larger
sample sizes, AGM continues to outperform random sampling.
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In conclusion, across both datasets of Boston and Rome, and geohash precision levels
5 and 6, AGM consistently provides 92% to 99.75% reductions in both EMD and RMSE
compared to random sampling, with the improvement being most significant at smaller
sample sizes. AGM proves to be a far more efficient and accurate sampling method in both
data distributions and prediction accuracy, making it highly reliable for generating maps
and region-based analyses.

On the other hand, Figure 13 demonstrates the visual differences between the original
dataset and the maps generated using random and AGM sampling techniques with a
geohash precision level of 6. The comparison reveals critical insights into the efficacy
of AGM sampling in preserving spatial distributions. The original maps serve as the
baseline, showcasing the full detail and accuracy of the dataset. These maps capture the
true variability and density patterns across regions, providing a high-resolution reference
for evaluating sampling methods.
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Figure 13. Comparison of original, random sampling, and AGM sampling maps for Boston using
geohash precision level 6. The figure showcases density variations in Boston using geohash precision
level 6. Black regions indicate the highest density of data points, followed by dark blue (moderately
high), light blue (moderate), green (low), and white (lowest or no data). The top left map represents
the original Boston dataset, duplicated in the bottom left for consistency. The top right map applies
random sampling, which introduces disruptions in spatial patterns, while the bottom right map
employs ApproxGeoMap (AGM) sampling, demonstrating superior preservation of density patterns
and spatial coherence.



Computers 2025, 14, 35 26 of 29

In contrast, the random sampling map introduces significant discrepancies. Certain
regions are underrepresented, and abrupt transitions appear in density values, disrupting
the spatial coherence of the map. These inaccuracies stem from the random selection
process, which fails to account for spatial correlations. The result is a visualization that may
mislead decision-making processes, particularly in applications requiring high precision,
such as urban planning or environmental monitoring.

Furthermore, the AGM sampling map (bottom-right) closely aligns with the origi-
nal dataset. By leveraging geohash-based tessellation and stratified-like sampling, AGM
preserves both the density gradients and region-specific patterns. This alignment is partic-
ularly evident in regions with high variability, where AGM successfully retains the spatial
coherence lost in random sampling. The smoother transitions and faithful representation
of density distributions make AGM a more reliable method for generating region-based
maps under constrained data conditions.

The importance of maintaining precision is further highlighted by the granularity
provided at geohash precision level 6. At this level, the maps capture finer details of smaller
regions, amplifying the visual discrepancies caused by random sampling. AGM’s ability to
preserve these details while reducing computational complexity underscores its value for
real-time applications, where both speed and accuracy are critical.

In summary, Figure 13 illustrates the limitations of random sampling and the strengths
of AGM in retaining the fidelity of spatial patterns. These results emphasize the necessity of
choosing sampling methods that account for spatial correlations, particularly in scenarios
where even minor errors could lead to significant consequences. The findings further
demonstrate the trade-off between accuracy and performance, solidifying AGM’s role as
an optimal solution for geospatial data visualization.

6. Conclusions
In this paper, we presented ApproxGeoMap, a novel system for efficiently generating

approximate aggregate-based geo-maps from fast-arriving georeferenced data streams,
addressing the urgent need for responsive visualizations in smart city applications. Ap-
proxGeoMap employs a stratified-like sampling method at the front stage, acting as an
intelligent filter that discards excess data loads when data arrival rates exceed processing
capabilities. The system’s quality of service (QoS) controller dynamically adjusts the sam-
pling rate through a feedback loop mechanism, ensuring that the geo-visualizer receives a
manageable volume of data aligned with system capacity. Experimental results confirm
that ApproxGeoMap significantly reduces error metrics, such as Earth Mover’s Distance
(EMD) and Root Mean Squared Error (RMSE), particularly when compared to random
sampling methods at smaller sample sizes, thus balancing accuracy with efficiency and
overcoming traditional processing limitations for large-scale geospatial data.

The practical implementation of ApproxGeoMap in real-world smart city contexts
requires addressing several technical and logistical considerations. For instance, deploying
ApproxGeoMap in existing urban infrastructures may necessitate integration with legacy
systems, hardware upgrades, and ensuring data privacy compliance. Future research could
explore how ApproxGeoMap can be fine-tuned for diverse use cases, such as real-time
traffic management, disaster response, and urban planning, where the trade-off between
accuracy and speed may vary significantly.

Additionally, future work will focus on developing a distributed computing version
atop frameworks like Apache Spark to enhance scalability for even larger datasets. While
the current similarity values for error estimation are expert-guided, we aim to develop
a mathematically principled algorithm to dynamically set these values based on data
stream characteristics, further refining ApproxGeoMap’s effectiveness. This will extend its
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application to broader urban planning, environmental monitoring, and other high-demand
geospatial contexts.
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