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Abstract: In this paper, we describe the associative and commutative algebra or the (2,2)-
model of quaternions with application in color image enhancement. The method of alpha-
rooting, which is based on the 2D quaternion discrete Fourier transform (QDFT) is con-
sidered. In the (2,2)-model, the aperiodic convolution of quaternion signals can be calcu-
lated by the product of their QDFTs. The concept of linear convolution is simple, that is, 
it is unique, and the reduction of this operation to the multiplication in the frequency do-
main makes this model very attractive for processing color images. Note that in the tradi-
tional quaternion algebra, which is not commutative, the convolution can be chosen in 
many different ways, and the number of possible QDFTs is infinite. And most im-
portantly, the main property of the traditional Fourier transform that states that the ape-
riodic convolution is the product of the transform in the frequency domain is not valid. 
We describe the main property of the (2,2)-model of quaternions, the quaternion exponen-
tial functions and convolution. Three methods of alpha-rooting based on the 2D QDFT are 
presented, and illustrative examples on color image enhancement are given. The image 
enhancement measures to estimate the quality of the color images are described. Exam-
ples of the alpha-rooting enhancement on different color images are given and analyzed 
with the known histogram equalization and Retinex algorithms. Our experimental results 
show that the alpha-rooting method in the quaternion space is one of the most effective 
methods of color image enhancement. Quaternions allow all colors in each pixel to be 
processed as a whole, rather than individually as is done in traditional processing meth-
ods.

Keywords: color image enhancement; quaternion convolution; quaternion Fourier
transform; alpha-rooting; quaternion pyramids

1. Introduction
In recent years, many articles have been published on color image processing, 

wherein image enhancement plays an important role. Many color images are low quality 
and require enhancement as the first stage of processing. [1–5]. Examples of such images 
can be found among underwater images, thermal images, and medical images. Decades 
ago, we divided methods of image enhancement into two classes, namely spatial and tra-
ditional, or complex, frequency domains; now, a new class has been added to them. Here, 
we mention methods of image enhancement in the quaternion algebras. Color and 
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grayscale images can be processed in the quaternion space with good results not only in 
image enhancement but in filtration, face recognition, neural networks, and other appli-
cations. The first class of methods includes contrast stretching techniques and logarithmic 
models [4] and the very effective and simple histogram equalization with its different 
modifications [6–10]. The Retinex algorithm can also be classified into this class [11,12]. In 
the second class, we should note the Fourier transform-based alpha-rooting [13], which is 
the most effective method for enhancing grayscale and color images. The advantage of 
enhancing color images in the quaternion space is in the fact that the primary colors plus 
the gray are processed as one unit, not separately. Therefore, quaternion image processing 
does not introduce false color artifacts [14]. 

In this paper, we focus on the commutative quaternion algebra, or the (2,2)-model. 
In this model, the concepts of the 1D and 2D QDFT are considered, and their properties 
are described. This model of quaternion uses the color image enhancement alpha-rooting 
by the 2D QDFT. A comparison with the traditional quaternion algebra is also given. 

The main contributions of this work are the following: 

• The separable alpha-rooting method of color image enhancement; 
• New two-parameter alpha-rooting methods of color image enhancement; 
• The effectiveness of using the 2D QDFT-based alpha-rooting in the (2,2)-model; 
• Illustrative examples showing the effectiveness of using the (2,2)-model in color im-

age enhancement. 

The rest of the paper is organized in the following way. Section 2 describes two mod-
els of quaternions, namely the (2,2)- and (1,3)-models. The first model is commutative, and 
the second one is not. Section 3 describes the exponential functions of the (2,2)-model. The 
concepts of the QDFTs are considered in Section 4 for both models. The methods of alpha-
rooting in these models are described in Section 5. The comparison of the 2D QDFT-based 
alpha-rooting methods in the (2,2)- and (1,3)-models are given. Results and illustrative 
examples of color images are presented in Section 6. 

2. Quaternion Numbers: Two Arithmetics 
In this section, we describe quaternion numbers in two algebras, non-commutative 

and commutative. The concept of the quaternion, or quadruple of numbers ሺ𝑎, 𝑏, 𝑐,𝑑ሻ, as 
a vector in the 4-dimensional (4D) space was introduced by Gauss in 1819 [15]. As complex 
numbers, quaternions have one real part and one imaginary part. Only the imaginary part 
presents a triplet of numbers or a 3D vector. Therefore, quaternions can be considered as 
an extension of complex numbers [16–18]. It is not possible for us to draw quaternions in 
4D space, but we will show how such numbers can be embedded in geometric figures in 
3D space. There are different types of arithmetic of quadruples of numbers, or quaterni-
ons, because they define the main operation—multiplication—differently. We consider 
two arithmetics, or models, in which the operation of multiplication is commutative and 
non-commutative. The second arithmetic attracted much attention from researchers in the 
field of signal and image processing. However, the fact that the multiplication of quater-
nions is a non-commutative operation leads to large uncertainties in such important op-
erations as the convolution, correlation, and Fourier transform, especially in processing 
color images. Therefore, we think it is necessary to pay more attention to the commutative 
operation of the multiplication of quaternions and the corresponding arithmetic, or the 
commutative algebra of quaternions. 
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2.1. The (1,3)-Model of Quaternions 

Consider three units 𝑖, 𝑗, and 𝑘 with the following multiplication laws: 𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖, 𝑘𝑖 = −𝑖𝑘 = 𝑗, 𝑖ଶ = 𝑗ଶ = 𝑘ଶ = 𝑖𝑗𝑘 = −1. (1)

A quaternion is defined as the number 𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘  with real numbers 𝑎, 𝑏, 𝑐, and 𝑑. The number 𝑞ᇱ = 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 is the imaginary part 𝑞ᇱ of the quaternion 
and can be considered as the vector (𝑎, 𝑏, 𝑐) in the 3D space. Therefore, we can write 𝑞 =𝑎 + 𝑞ᇱ = 𝑎 + (𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘). This model of representation of quaternions as 𝑞 = (𝑎, 𝑞ᇱ) is 
called the (1,3)-model [14]. A quaternion has one real part, 𝑎, and the three-component 
imaginary part, 𝑞ᇱ. If the imaginary part 𝑎 = 0, then the quaternion is called a pure qua-
ternion number. If 𝑐 = 𝑑 = 0, the quaternion 𝑞 = 𝑎 + 𝑏𝑖 is a complex number. Similar to 
the complex numbers, the conjugate of the quaternion 𝑞  is defined as 𝑞ത = (𝑎,−𝑞ᇱ) , or 𝑞ത = 𝑎 − 𝑞ᇱ = 𝑎 − 𝑏𝑖 − 𝑐𝑗 − 𝑑𝑘. 

The multiplication of two quaternions 𝑞ଵ = 𝑎ଵ + 𝑞ଵᇱ = 𝑎ଵ + (𝑖𝑏ଵ + 𝑗𝑐ଵ + 𝑘𝑑ଵ)  and 𝑞ଶ = 𝑎ଶ + 𝑞ଶᇱ = 𝑎ଶ + (𝑖𝑏ଶ + 𝑗𝑐ଶ + 𝑘𝑑ଶ)  is defined according to the laws in Equation (1). 
Thus, the quaternion 𝑞 = 𝑞ଵ𝑞ଶ = (𝑎 + 𝑞ᇱ) is calculated by 

𝑎 = 𝑎ଵ𝑎ଶ − ሾ𝑏ଵ𝑏ଶ + 𝑐ଵ𝑐ଶ + 𝑑ଵ𝑑ଶሿ, and 𝑞′ = [𝑎ଵ𝑞ଶᇱ + 𝑎ଶ𝑞ଵᇱ ] + อ 𝑖 𝑗 𝑘𝑏ଵ 𝑐ଵ 𝑑ଵ𝑏ଶ 𝑐ଶ 𝑑ଶอ (2)

It is important to note, that the number 𝑞𝑞ത is real and non-negative, 𝑞𝑞ത = 𝑎ଶ + (𝑏ଶ +𝑐ଶ + 𝑑ଶ); it is denoted by |𝑞ଵ|ଶ. The number |𝑞ଵ| is called the length of the quaternion. 
The sum of quaternions is calculated component-wise, 𝑞ଵ + 𝑞ଶ = (𝑎ଵ + 𝑎ଶ) + (𝑞ଵᇱ +𝑞ଶᇱ ). In the multiplication of imaginary units, 𝑖𝑗 ≠ 𝑗𝑖, 𝑗𝑘 ≠ 𝑘𝑗, and 𝑖𝑘 ≠ 𝑘𝑖. The multipli-

cation in the (1,3)-model is not commutative. That is, for different 𝑞ଵ and 𝑞ଶ, the product 𝑞ଵ𝑞ଶ ≠ 𝑞ଶ𝑞ଵ or 𝑞ଵ𝑞ଶ = 𝑞ଶ𝑞ଵ. 
Considering the quaternions 𝑞ଵ and 𝑞ଶ as the 4D vectors, 𝒒ଵ = (𝑎ଵ, 𝑏ଵ, 𝑐ଵ,𝑑ଵ)′ and 𝒒ଶ = (𝑎ଶ,𝑏ଶ, 𝑐ଶ,𝑑ଶ)′ , the above operation of multiplication can be written in the matrix 

form as follows: 

𝒒 = 𝑨ଵ ൦𝑎ଶ𝑏ଶ𝑐ଶ𝑑ଶ൪ = ൦𝑎ଵ  − 𝑏ଵ  − 𝑐ଵ − 𝑑ଵ𝑏ଵ 𝑎ଵ  − 𝑑ଵ 𝑐ଵ𝑐ଵ 𝑑ଵ 𝑎ଵ − 𝑏ଵ𝑑ଵ  − 𝑐ଵ 𝑏ଵ 𝑎ଵ ൪ ൦𝑎ଶ𝑏ଶ𝑐ଶ𝑑ଶ൪ (3)

The determinant of the matrix equals |𝑞ଵ|ସ = (𝑎ଵଶ + 𝑏ଵଶ + 𝑐ଵଶ + 𝑑ଵଶ)ଶ.  For the case 
when |𝑞ଵ| = 1, the matrix 𝑨ଵ is unitary and its determinant det𝑨ଵ = 1. The coefficients 
of this matrix are components of the quaternion 𝑞ଵ. The first column of the matrix is the 
quaternion 𝑞ଵ. A similar matrix of multiplication can be defined by the components of the 
quaternion 𝑞ଶ (for details, see [14]). 

Unlike traditional arithmetic, where the exponential function is defined uniquely, in 
the (1,3)-model, the number of such functions is infinite. Given a pure unit quaternion 𝜇 = 𝑖𝑚ଵ + 𝑗𝑚ଶ + 𝑘𝑚ଷ, |𝜇| = 1,𝜇ଶ = −1, the quaternion exponential function at the angle 𝑥 is defined as 𝑒ఓ௫ = cos 𝑥  + 𝜇 sin 𝑥. In the next sections, we will discuss the concept of 
the quaternion discrete Fourier transforms, which are different analogues of the tradi-
tional DFT. This transform is defined by the system of basis functions, which are calcu-
lated by the single complex exponential function 𝑒௜௫. In the (1,3)-model, we are faced with 
the problem of which exponential function to use as the base function for the QDFT. In 
other words, if in the traditional representation each signal or image has the unique rep-
resentation in the frequency domain, in the (1,3)-model, there are an infinite number of 
such representations. How to choose, namely which quaternion number 𝜇 is best for the 
QDFT, is unknown today. And it is this model that has been widely used in the last two 
decades in many applications in signal and image processing [14,19–21]. 
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2.2. The (2,2)-Model of Quaternions 

In this section, we consider the arithmetic of quaternions with the associative and 
commutative operation of multiplication introduced by Grigoryan in 2022 [22]. This is the 
so-called (2,2)-model of representation of quaternions. 

In the (2,2)-model, the complex arithmetic is used in the following way. Given two 
complex numbers 𝑎ଵ and 𝑎ଶ, the quaternion 𝑞 is considered to be a pair of them and is 
written as 𝑞 = [𝑎ଵ,𝑎ଶ],𝑎ଵ = (𝑎ଵ,ଵ,𝑎ଵ,ଶ),𝑎ଶ = (𝑎ଶ,ଵ,𝑎ଶ,ଶ). (4)

Here, the numbers 𝑎ଵ,ଵ,𝑎ଵ,ଶ,𝑎ଶ,ଵ, and 𝑎ଶ,ଶ are real. We use the round brackets for 2D 
vectors 𝑎ଵ  and 𝑎ଶ , which represent the complex numbers (𝑎ଵ,ଵ + 𝑖𝑎ଵ,ଶ)  and (𝑎ଶ,ଵ +𝑖𝑎ଶ,ଶ), respectively. In this model, the quaternion is a pair of two complex numbers, or the 
pair of two 2-D vectors. 

The quaternions include the complex and real numbers. Indeed, a quaternion 𝑞 =[𝑎ଵ, 0] is a complex number. If a complex number 𝑎ଵ = (𝑎ଵ,ଵ, 0), that is, 𝑎ଵ is real, then 𝑞 = [𝑎ଵ, 0] = ൣ(𝑎ଵ,ଵ, 0൯, (0,0)] is a real number. We call the quaternion numbers 𝑞 = [0,𝑎ଶ] 
the second complex numbers. Only complex numbers are used with the traditional unit 𝑖 . The conjugate of the quaternion 𝑞  is the quaternion 𝑞ത = [𝑎തଵ,𝑎തଶ] =[൫𝑎ଵ,ଵ,−𝑎ଵ,ଶ൯, ൫𝑎ଶ,ଵ,−𝑎ଶ,ଶ൯].  One can see that the conjugates of the unit quaternions are 𝑒̅ଶ = −𝑒ଶ, 𝑒̅ଷ = 𝑒ଷ, and 𝑒̅ସ = −𝑒ସ. The second conjugate 𝑞ധ = 𝑞. 

The operation of sum of two quaternions 𝑞ଵ = [𝑎ଵ,𝑎ଶ] and 𝑞ଶ = [𝑏ଵ, 𝑏ଶ] is defined 
component-wise. That is, the sum 𝑞 = 𝑞ଵ + 𝑞ଶ = [𝑎ଵ + 𝑏ଵ,𝑎ଶ + 𝑏ଶ]. The multiplication of 
quaternions 𝑞ଵ and 𝑞ଶ is defined by 𝑞 = 𝑞ଵ𝑞ଶ = [𝑎ଵ,𝑎ଶ][𝑏ଵ,𝑏ଶ] ≜ [𝑎ଵ𝑏ଵ − 𝑎ଶ𝑏ଶ,𝑎ଵ𝑏ଶ + 𝑎ଶ𝑏ଵ].  (5)

Here, the complex numbers are written as 𝑎ଵ = ൫𝑎ଵ,ଵ,𝑎ଵ,ଶ൯,𝑎ଶ = ൫𝑎ଶ,ଵ,𝑎ଶ,ଶ൯,𝑏ଵ =(𝑏ଵ,ଵ,𝑏ଵ,ଶ), and 𝑏ଶ = ൫𝑏ଶ,ଵ,𝑏ଶ,ଶ൯. It should be noted that the similar operation over 4D ele-
ments was described by Clyde Davenport [23]; the multiplication was defined by using 
the complex conjugates as 𝑞 = 𝑞ଵ𝑞ଶ ≜ [𝑎ଵ𝑏ଵ − 𝑎ଶ𝑏തଶ,𝑎ଵ𝑏ଶ + 𝑎ଶ𝑏തଵ]. 

It directly follows from Equation (5) that if the quaternions are complex numbers, 𝑞ଵ = [𝑎ଵ, 0] = 𝑎ଵ and 𝑞ଶ = [𝑏ଵ, 0] = 𝑏ଵ, then the multiplication 𝑞 = 𝑞ଵ𝑞ଶ is the multiplica-
tion of complex numbers, that is, 𝑞 = 𝑞ଵ𝑞ଶ = [𝑎ଵ, 0][𝑏ଵ, 0] = [𝑎ଵ𝑏ଵ, 0] = 𝑎ଵ𝑏ଵ.  

The operation of multiplication in Equation (5) can also be written in the matrix form. 
For this, we consider the quaternions as 4D vectors 𝒒ଵ = ൫𝑎ଵ,ଵ,𝑎ଵ,ଶ,𝑎ଶ,ଵ,𝑎ଶ,ଶ൯ᇱ and 𝒒ଶ =൫𝑏ଵ,ଵ,𝑏ଵ,ଶ,𝑏ଶ,ଵ,𝑏ଶ,ଶ൯ᇱ. In the matrix form, the product 𝑞 = 𝑞ଵ𝑞ଶ can be written as 

𝑞 = ൦𝑞ଵ,ଵ𝑞ଵ,ଶ𝑞ଶ,ଵ𝑞ଶ,ଶ൪ = 𝑴⬚ଵ ⎣⎢⎢
⎡𝑏ଵ,ଵ𝑏ଵ,ଶ𝑏ଶ,ଵ𝑏ଶ,ଶ⎦⎥⎥

⎤ = ൦𝑎ଵ,ଵ −𝑎ଵ,ଶ −𝑎ଶ,ଵ 𝑎ଶ,ଶ𝑎ଵ,ଶ 𝑎ଵ,ଵ −𝑎ଶ,ଶ −𝑎ଶ,ଵ𝑎ଶ,ଵ −𝑎ଶ,ଶ 𝑎ଵ,ଵ −𝑎ଵ,ଶ𝑎ଶ,ଶ 𝑎ଶ,ଵ 𝑎ଵ,ଶ 𝑎ଵ,ଵ൪ ⎣⎢⎢
⎡𝑏ଵ,ଵ𝑏ଵ,ଶ𝑏ଶ,ଵ𝑏ଶ,ଶ⎦⎥⎥

⎤.  (6)

As in the matrix 𝑨⬚ଵ in the (1,3)-model, the first column of the matrix 𝑴⬚ଵ is the 
quaternion 𝑞ଵ. This matrix has a block structure, that is, 𝑴ଵ = ቂ𝐴 −𝐵𝐵 𝐴 ቃ ,𝐴 = ቂ𝑎ଵ,ଵ −𝑎ଵ,ଶ𝑎ଵ,ଶ 𝑎ଵ,ଵቃ ,𝐵 = ቂ𝑎ଶ,ଵ −𝑎ଶ,ଶ𝑎ଶ,ଶ 𝑎ଶ,ଵቃ. (7)

Here, the matrices 𝐴 and 𝐵 are matrices of multiplication of complex numbers 𝑎ଵ 
and 𝑎ଶ, respectively. The matrix 𝑨⬚ଵ also has the same block structure, but it is orthog-
onal, and the matrix 𝑴⬚ଵ is not orthogonal. 
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To compare these two algebras visually, namely the operations of multiplication, we 
consider the following representation of quadruples of numbers in the 3D space. We call 
this representation the 4-in-3 representation. Any 4D vector can be represented in the form 
of four triplets, as follows: 𝑞 = (𝑎, 𝑏, 𝑐,𝑑) → (𝑎, 𝑏, 𝑐), (𝑏, 𝑐,𝑑), (𝑐,𝑑,𝑎), (𝑑,𝑎, 𝑏). 

The geometry of these four coordinates can be described by the quadrangular pyra-
mid. It is clear that not every pyramid can have such a quaternion representation. There-
fore, we will call such pyramids the quaternion pyramids (QP). As example, Figure 1 
shows the quaternion pyramid, 𝑄𝑃(𝑞), for the quaternion 𝑞 = (1,−2,8,5) in part (a) and 
the pyramid 𝑄𝑃(𝑞ത), for the conjugate quaternion 𝑞ത = (1,2,−8,−5), in part (b), and the 
conjugate quaternion 𝑞ത = (1,2,8,−5) in the (2,2)-model in part (c). The first point (the ver-
tex) of each pyramid is marked as an asterisk, ’*’. The vertex of the pyramid should be 
considered, that is, the 𝑄𝑃(𝑞) is the pyramid with the top point 𝑣 = (𝑎, 𝑏, 𝑐). Therefore, 
we consider that 𝑄𝑃(𝑞) = 𝑄𝑃(𝑞; 𝑣). Otherwise, we need to introduce concepts of equiva-
lent pyramids. For instance, the figures of pyramids for four quaternion units, 1 =(1,0,0,0), 𝑖 = (0,1,0,0), 𝑗 = (0,0,1,0),  and 𝑘 = (0,0,0,1),  are the same. Such a vertex can 
also be considered the point (𝑏, 𝑐,𝑑), which corresponds to the imaginary part of the qua-
ternion, 𝑞ᇱ = (𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘). Quaternion pyramids can be added, subtracted, multiplied, 
and divided, and the inverse pyramids exist. In other words, the set of all quaternion-
pyramids is the space with the complete arithmetic as the quaternions. 

 
(a) (b) (c) 

Figure 1. Quaternion-pyramids for (a) the quaternion 𝑞 and its conjugates 𝑞ത in (b) the (1,3)-model 
and (c) the (2,2)-model. 

Figure 2 shows the following four pyramids. Two quaternions are considered, 𝑞ଵ =(1,2,8,4)/√85  and 𝑞ଶ = (−2,1,1,2)/√10.  The figure shows two pyramids 𝑄𝑃(𝑞ଵ)  and 𝑄𝑃(𝑞ଶ) together with two pyramids for the quaternion multiplications 𝑞 = 𝑞ଵ𝑞ଶ. The first 
pyramid 𝑄𝑃(𝑞)  is calculated in the non-commutative (1,3)-model, 𝑔 = 𝑞ଶ(𝐴௤భ)′ =(4,−23,−23,4)/√850,  and another 𝑄𝑃(𝑝)  in the commutative (2,2)-model, 𝑝 =𝑞ଶ(𝑀௤భ)′ = (−20,9,−15,−12)/√850. 
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Figure 2. Four quaternion-pyramids.

The following properties hold for the multiplication.

1. The multiplication is commutative, 𝑞ଵ𝑞ଶ = 𝑞ଶ𝑞ଵ.
2. The multiplication unit is the quaternion 𝑒ଵ = [(1,0), (0,0)] = (1,0) = 1. For this real 

unit 𝑒ଵ𝑞 = 𝑞𝑒ଵ = 𝑞 for any quaternion 𝑞.
3. The multiplication rules of four quaternion units 𝑒ଵ , 𝑒ଶ = [(0,1), (0,0)], 𝑒ଷ =[(0,0), (1,0)], and 𝑒ସ = [(0,0), (0,1)] are given in Table 1. It should be noted that for 

two quaternion units 𝑒ଶ and 𝑒ଷ, the square is −𝑒ଵ = −1. For the other two units 𝑒ଵ 
and 𝑒ସ, the square is 𝑒ଵ = 1.

Table 1. Multiplication table, 𝑇(𝑒ଵ, 𝑒ଶ, 𝑒ଷ, 𝑒ସ).𝑒ଵ 𝑒ଶ 𝑒ଷ 𝑒ସ𝑒ଵ 𝑒ଵ 𝑒ଶ 𝑒ଷ 𝑒ସ𝑒ଶ 𝑒ଶ −𝑒ଵ 𝑒ସ −𝑒ଷ𝑒ଷ 𝑒ଷ 𝑒ସ −𝑒ଵ −𝑒ଶ𝑒ସ 𝑒ସ −𝑒ଷ −𝑒ଶ 𝑒ଵ
4. The multiplication is associative, that is, (𝑞ଵ𝑞ଶ)𝑞ଷ = 𝑞ଵ(𝑞ଶ𝑞ଷ),  for any quaternions 𝑞ଵ, 𝑞ଶ, and 𝑞ଷ.
5. The multiplication is distributive, that is, 𝑞ଵ(𝑞ଶ + 𝑞ଷ) = 𝑞ଵ𝑞ଶ + 𝑞ଵ𝑞ଷ.
6. The zero quaternion 𝑞 = 0  has “divisors.” For instance, the multiplication of two 

quaternions 𝑞ଵ = (1 + 𝑒ସ) and 𝑞ଶ = (1 − 𝑒ସ) is equal to 𝑞ଵ𝑞ଶ = 1 − 𝑒ସଶ = 0.
7. The inverse to the non-zero quaternion 𝑞ଵ = [𝑎ଵ,𝑎ଶ] is calculated by

𝑞ଵି ଵ = ቈ 𝑎ଵ𝑎ଵଶ + 𝑎ଶଶ , −𝑎ଶ𝑎ଵଶ + 𝑎ଶଶ቉ = 1𝑎ଵଶ + 𝑎ଶଶ [𝑎ଵ,−𝑎ଶ], if 𝑎ଵଶ + 𝑎ଶଶ ≠ 0. (8)

8. The inverse operation exists for all 𝑞 , except the quaternions of the form 𝑞 =𝑎ଵ(1 േ 𝑒ସ). For quaternion exponential numbers, the inverse exists. As mentioned in 
[24], the absence of some inverse numbers is not an obstacle when using quaternions 
to process signals and color images.

𝑄𝑃(𝑞ଵ)

𝑄𝑃(𝑞) 𝑄𝑃(𝑝)

𝑄𝑃(𝑞ଶ)



Computers 2025, 14, 37 7 of 26 
 

9. The division 𝑞 = 𝑞ଶ/𝑞ଵ  of quaternions 𝑞ଶ = [𝑏ଵ,𝑏ଶ]  and 𝑞ଵ = [𝑎ଵ,𝑎ଶ]  is calculated 
by 𝑞 ≜ 𝑞ଶ𝑞ଵି ଵ. 

10. The multiplication of a quaternion 𝑞  on its conjugate 𝑞ത  is equal to the following 
quaternion: 𝑞𝑞ത = [𝑎ଵ,𝑎ଶ][𝑎തଵ,𝑎തଶ] = [|𝑎ଵ|ଶ − |𝑎ଶ|ଶ, 2𝑎ଵ ∙ 𝑎ଶ] (9)

11. In the general case, 𝑞𝑞ത is not a real number and cannot be used to define the modu-
lus of the quaternion in the traditional sense. For example, 𝑒ସ𝑒ସഥ = 𝑒ସ(−𝑒ସ) = −𝑒ସ𝑒ସ =−1. 

12. The length, or modulus, of the quaternion is defined as |𝑞| = ඥ𝐸[𝑞], where the en-
ergy of the quaternion number 𝑞 is calculated by 𝐸[𝑞] = 𝐸[𝑎ଵ] + 𝐸[𝑎ଶ] = |𝑎ଵ|ଶ + |𝑎ଶ|ଶ = ൫|𝑎ଵ,ଵ|ଶ + |𝑎ଵ,ଶ|ଶ൯ + ൫|𝑎ଶ,ଵ|ଶ + |𝑎ଶ,ଵ|ଶ൯.  (10)

Table 2 shows the main properties of quaternion numbers in the (1,3)- and (2,2)-mod-
els. 

Table 2. Main operations and properties of quaternions in two quaternion models. 

 The (2,2)-Model The Traditional (1,3)-Model 
Representation 𝑞ଵ = [𝑎ଵ,𝑎ଶ] = [൫𝑎ଵ,ଵ,𝑎ଵ,ଶ൯, ൫𝑎ଶ,ଵ,𝑎ଶ,ଶ൯] 𝑞ଵ = 𝑎ଵ + 𝑞ଵᇱ = 𝑎ଵ + (𝑏ଵ𝑖 + 𝑐ଵ𝑗 + 𝑑ଵ𝑘) 

Multiplication 𝑞ଵ𝑞ଶ 𝑞ଵ𝑞ଶ = [𝑎ଵ𝑏ଵ − 𝑎ଶ𝑏ଶ,𝑎ଵ𝑏ଶ + 𝑎ଶ𝑏ଵ]  [𝑎ଵ𝑞ଶᇱ + 𝑎ଶ𝑞ଵᇱ ] + 𝑎ଵ𝑎ଶ − 𝑞ଵᇱ ∙ 𝑞ଶᇱ + 𝑞ଵᇱ × 𝑞ଶᇱ  
Multiplication rules 

𝑒ଵ = 1 𝑒ଶ 𝑒ଷ 𝑒ସ 𝑒ଶ −1 𝑒ସ −𝑒ଷ 𝑒ଷ 𝑒ସ −1 −𝑒ଶ 𝑒ସ −𝑒ଷ −𝑒ଶ 1 
 

1 𝑖 𝑗 𝑘 𝑖 −1 𝑘 −𝑗 𝑗 −𝑘 −1 𝑖 𝑘 𝑗 −𝑖 −1 
 

Multiplication matrix 

(𝑎ଵ = 𝑎ଵଵ,𝑏ଵ = 𝑎ଵଶ, 𝑐ଵ = 𝑎ଶଵ,𝑑ଵ = 𝑎ଶଶ) 

𝑴⬚ଵ = ൦𝑎ଵ −𝑏ଵ −𝑐ଵ 𝑑ଵ𝑏ଵ 𝑎ଵ −𝑑ଵ −𝑐ଵ𝑐ଵ −𝑑ଵ 𝑎ଵ −𝑏ଵ𝑑ଵ 𝑐ଵ 𝑏ଵ 𝑎ଵ൪  𝑨ଵ = ൦𝑎ଵ  − 𝑏ଵ  − 𝑐ଵ − 𝑑ଵ𝑏ଵ 𝑎ଵ  − 𝑑ଵ 𝑐ଵ𝑐ଵ 𝑑ଵ 𝑎ଵ − 𝑏ଵ𝑑ଵ  − 𝑐ଵ 𝑏ଵ 𝑎ଵ ൪  
Orthogonality Not Yes 

Commutativity Yes: 𝑞ଵ𝑞ଶ = 𝑞ଶ𝑞ଵ Not: 𝑞ଵ𝑞ଶ ≠ 𝑞ଶ𝑞ଵ or 𝑞ଵ𝑞ଶ = 𝑞ଶ𝑞ଵ 
Zero “divisors” Yes: (1 + 𝑒ସ)(1 − 𝑒ସ) = 0 None: 𝑞ଵ𝑞ଶ = 0 →  𝑞ଵ = 0, or 𝑞ଶ=0. 

Conjugate 𝑞തଵ = [൫𝑎ଵ,ଵ,−𝑎ଵ,ଶ൯, ൫𝑎ଶ,ଵ,−𝑎ଶ,ଶ൯] 𝑞തଵ = 𝑎ଵ − 𝑏ଵ𝑖 − 𝑐ଵ𝑗 − 𝑑ଵ𝑘, 
Quaternion inverse 𝑞ଵି ଵ = 1𝑎ଵଶ + 𝑎ଶଶ [𝑎ଵ,−𝑎ଶ],𝑎ଵଶ + 𝑎ଶଶ ≠ 0 𝑞ଵି ଵ = 𝑎ଵ − 𝑏ଵ𝑖 + 𝑐ଵ𝑗 − 𝑑ଵ𝑘|𝑞ଵ⬚|ଶ , 𝑞ଵ ≠ 0 

Division  𝑞 = 𝑞ଵ𝑞ଶ 𝑞 = 𝑞ଶ[𝑎ଵ,−𝑎ଶ] 1𝑎ଵଶ + 𝑎ଶଶ ,𝑎ଵଶ + 𝑎ଶଶ ≠ 0. 𝑞 = 𝑞തଶ𝑞ଵ|𝑞ଶ⬚|ଶ  (from left) 𝑞 = 𝑞ଵ𝑞തଶ|𝑞ଶ⬚|ଶ  (from right) 

3. The Quaternion Exponents in the (2,2)-Model 
In this section, we describe the exponential functions in the (2,2)-model. For two pairs 

of quaternions μ = ± eଷ and ± eଶ, the square μଶ = −1. There are only two pairs of qua-
ternions with the square equal to −1. For each of these quaternions, the exponential func-
tion is defined by the following series [22]: 𝑒ఓఝ = 1 + 𝜇𝜑 + (𝜇𝜑)ଶ2! + (𝜇𝜑)ଷ3! + (𝜇𝜑)ସ4! + (𝜇𝜑)ହ5! + ⋯+ (𝜇𝜑)௡𝑛! + ⋯ 

= ቈ1 − 𝜑ଶ2! + 𝜑ସ4! − 𝜑଺6! + ⋯቉ + 𝜇 ቈ𝜑 − 𝜑ଷ3! + 𝜑ହ5! − 𝜑଻7! + ⋯቉ = cos𝜑 + 𝜇 sin𝜑.  (11)
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Thus, there are four different exponential functions, or we can say two pair of qua-
ternion exponential functions. The fundamental multiplicative property holds for these 
exponents, that is, exp(𝜇[𝜑 + 𝜗]) = exp(𝜇𝜑) exp(𝜇𝜗)  (12)

Now, we consider these two pairs of quaternion exponents. 
1. The first pair of exponents is defined for the conjugate quaternions 𝜇 = ±𝑒ଶ =[(0, ±1), (0,0)]. The quaternion exponents are the following conjugate functions: 𝑒ఓఝ = cos𝜑 ± 𝑒ଶ sin𝜑 = [(cos𝜑, ±sin𝜑), 0] = (cos𝜑, ±sin𝜑). (13)

In the matrix form, the multiplication of a quaternion 𝑞 = [𝑎ଵ,𝑎ଶ] by the exponent 𝑞ଵ = 𝑒ఓఝ is described as follows: 

𝑞𝑞ଵ = 𝑞𝑒ఓఝ = (cos𝜑, ±sin𝜑)𝑞 = ൦𝑐 −𝑠 0 0𝑠 𝑐 0 00 0 𝑐 −𝑠0 0 𝑠 𝑐൪ 𝑞 = ൤𝑅ఝ 𝟎𝟎 𝑅ఝ൨ 𝑞.  (14)

Here, we denote 𝑐 = cos𝜑  and 𝑠 = ± sin𝜑.  With the operation of the Kronecker 
product of matrices, the above matrix of multiplication can be written as 𝐴௤భ = 𝐼ଶ ⊗ 𝑅ఝ. 
The matrix 𝑅ఝ is the matrix of elementary rotation by the angle ±𝜑. Thus, the operation 𝑞𝑒ఓఝ is reduced to separate rotations of two components of the quaternion, 𝑎ଵ and 𝑎ଶ, 
by the same angle. 

2. The second pair of exponents is defined by the quaternion 𝜇 = ±𝑒ଷ =[(0,0), (±1,0)]. The corresponding pair of quaternion exponential functions is 𝑒ఓఝ = exp(𝜇𝜑) = cos𝜑 ± 𝑒ଷ sin𝜑 = [(cos𝜑, 0), (±sin𝜑 , 0)].  (15)

These two exponential functions are not conjugate but inverse to each other. The in-
verse of the exponent is (𝑒ఓఝ)ିଵ = [(cos𝜑, 0), (−sin𝜑, 0)] = 𝑒ିఓఝ. In the matrix form, the 
multiplication of the exponent 𝑞ଵ = 𝑒ఓఝ by a quaternion 𝑞 can be written as follows: 

𝑞𝑞ଵ = 𝑞ଵ𝑞 = 𝑒ఓఝ𝑞 = ൦𝑐 0 −𝑠 00 𝑐 0 𝑠𝑠 0 𝑐 00 −𝑠 0 𝑐൪ 𝑞.  (16)

The matrix of the multiplication is the tensor product of the rotation matrix and the 
identity matrix, 𝐴௤భ = 𝑅ఝ ⊗ 𝐼ଶ. 

It should be noted that if we consider the symmetric matrix 𝑃(ଵ,ଶ) of the permutation 
(1,2), then the above two pairs of quaternion exponents can be derived from each as 

[(cos𝜑, 0), (±sin𝜑, 0)] = [(cos𝜑, ±sin𝜑), (0,0)] ൦1 0 0 00 0 1 00 1 0 00 0 0 1൪.  (17)

4. Quaternion Discrete Fourier Transforms 
In this section, we consider the concept of the quaternion discrete Fourier transform 

(QDFT) in the (1,3)- and (2,2)-models. In the first model, the 𝑁-point QDFT of the quater-
nion signal 𝑞 = {𝑞௡;𝑛 = 0: (𝑁 − 1)} is defined by 

𝑄௣ = ෍𝑞௡𝑊ఓ௡௣ேିଵ
௡ୀ଴ = ෍𝑞௡ ൤cos ൬2𝜋𝑁 𝑛𝑝൰ − 𝜇 sin ൬2𝜋𝑁 𝑛𝑝൰൨ேିଵ

௡ୀ଴ ,𝑝 = 0: (𝑁 − 1).  (18)

Here, 𝜇 is a pure quaternion unit number, such that 𝜇ଶ = −1, |𝜇| = 1. As mentioned 
above, the number of such quaternions is infinite. For instance, this number can be taken 
as 𝜇 = 𝑖, 𝑗, 𝑘,  and (𝑖 ±  𝑗 ±  𝑘)/3 . The multiplication is not commutative; therefore, this 
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QDFT is the left-sided transform. The right-sided QDFT is defined as the sum of 𝑊ఓ௡௣𝑞௡. 
The inverse 𝑁-point QDFT is calculated by 

𝑞௡ = 1𝑁෍𝑄௣𝑊ఓି ௡௣ேିଵ
௣ୀ଴ = 1𝑁෍𝑄௣ ൤cos ൬2𝜋𝑁 𝑛𝑝൰ + 𝜇 sin ൬2𝜋𝑁 𝑛𝑝൰൨ேିଵ

௣ୀ଴ ,𝑛 = 0: (𝑁 − 1). (19)

The fast algorithms to calculate the QDFT exist for both types of transform in the 1D 
and 2D cases. For 2D signals, the QDFT can be defined as the right-, left-, or both-sided 
transform [14,24]. These transforms do not have one of the basic properties of the tradi-
tional Fourier transform, namely, the cyclic convolution of signals is not reduced to the 
operation of multiplication in the frequency domain. In the 1D case, the cyclic convolution 
of two periodic quaternion signals 𝑞௡ = [𝑓௡,𝑔௡] and ℎ௡ = ൣℎଵ,௡,ℎଶ,௡൧ is defined as 

𝑦௡ = 𝑞௡ ⊛ ℎ௡ = ෍𝑞௡ି௞ℎ௞ேିଵ
௞ୀ଴ ,𝑛 = 0: (𝑁 − 1).  (20)

Here, we need to consider that 𝑞௡ ⊛ ℎ௡ ≠ ℎ௡ ⊛ 𝑞௡, because the products 𝑞௡ି௞ℎ௞ ≠ℎ௞𝑞௡ି௞. Thus, in the (1,3)-model, two different linear convolutions can be used. 
Now, we consider these concepts in the (2,2)-model with two pairs of quaternion ex-

ponential functions, namely 𝑒ఓఝ, when 𝜇 = ±𝑒ଶ and ± 𝑒ଷ. Each pair of these functions is 
used for the direct and inverse QDFTs. Thus, in the (2,2)-model there are only two pairs 
of the direct and inverse QDFTs. The (2,2)-model is commutative; therefore, the transform 
of the 𝑁-point quaternion signal [𝑓௡,𝑔௡] is defined as 

𝑄௣ = ෍𝑞௡𝑊ఓ௡௣ேିଵ
௡ୀ଴ = ෍𝑊ఓ௡௣𝑞௡ேିଵ

௡ୀ଴ ,𝑊ఓ = exp ൬−𝜇2𝜋𝑁 ൰𝑒ିఓଶగே  . (21)

Two different 𝑁-point QDFTs are described in the following way. 
1. When the quaternion 𝜇 is 𝑒ଶ = [(0,1), (0,0)] and the angle is 𝜑 = 2𝜋/𝑁, the basis ex-

ponential functions are 𝜓௣(𝑛) = 𝑊௘మ௡௣ = exp(−𝑒ଶ𝜑𝑛𝑝) [(cos𝑛𝑝𝜑 ,−sin𝑛𝑝𝜑), (0,0)] [𝑒ି௜௡௣ఝ, 0],  (22)𝑝,𝑛 = 𝑜 = 0: (𝑁 − 1). The 𝑁-point direct QDFT is defined as 

𝑄௣ = ෍𝑞௡𝜓௣(𝑛)ேିଵ
௡ୀ଴ = ෍[𝑓௡,𝑔௡]ேିଵ

௡ୀ଴ [𝑒ି௜ఝ௡௣, 0] =  ෍[𝑓௡𝑒ି௜ఝ௡௣,𝑔௡𝑒ି௜ఝ௡௣].ேିଵ
௡ୀ଴  

or 

𝑄௣ = ൥෍ 𝑓௡𝑒ି௜ఝ௡௣ேିଵ
௡ୀ଴ , ෍𝑔௡𝑒ି௜ఝ௡௣ேିଵ

௡ୀ଴ ൩ = ൣ𝐹௣,𝐺௣൧.  (23)

Here, 𝐹௣ and 𝐺௣ are the traditional 𝑁-point DFTs of the complex signal 𝑓௡ and 𝑔௡, 
respectively, 

𝐹௣ = ෍𝑓௡𝑒ି௜ఝ௡௣ேିଵ
௡ୀ଴ ,𝐺௣ = ෍𝑔௡𝑒ି௜ఝ௡௣ேିଵ

௡ୀ଴ ,𝑝 = 0: (𝑁 − 1). 
This 𝑁-point QDFT is called the N-point eଶ-QDFT and it requires two 𝑁-point DFTs 

[22]. The inverse 𝑁-point eଶ-QDFT is calculated by 

𝑞௡ = [𝑓௡,𝑔௡] = 1𝑁෍𝑄௣𝑊ఓି ௡௣ேିଵ
௣ୀ଴ = 1𝑁෍[𝐹௣,𝐺௣]ேିଵ

௣ୀ଴ [𝑒௜௡௣ఝ, 0],𝑛 = 0: (𝑁 − 1).  (24)

2. In the 𝜇 = 𝑒ଷ case, the basis exponential functions for the QDFT are 
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𝜓௣(𝑛) = 𝑊௘య௡௣ = exp(−𝑒ଷ𝜑𝑛𝑝) = [(cos(𝑛𝑝𝜑) , 0), (− sin(𝑛𝑝𝜑) , 0)],𝑝,𝑛 = 0: (𝑁 − 1).  (25)

The 𝑁-point QDFT which is called the 𝑁-point 𝑒ଷ-QDFT is defined as [22] 

𝑄௣ = ෍[𝑓௡,𝑔௡]ேିଵ
௡ୀ଴ 𝑊௘య௡௣ = ෍[𝑓௡ cos(𝜑𝑛𝑝) + 𝑔௡ sin(𝜑𝑛𝑝) ,− 𝑓௡ sin(𝜑𝑛𝑝) + 𝑔௡ cos(𝜑𝑛𝑝)]ேିଵ

௡ୀ଴ . 
In the matrix form, this transform can be written with the rotation matrices as 

𝑄௣ = ෍[𝑓௡,𝑔௡]𝑅ఝ௡௣ேିଵ
௡ୀ଴ = ෍[𝑓௡,𝑔௡] ൤cos(𝜑𝑛𝑝) −sin(𝜑𝑛𝑝)sin(𝜑𝑛𝑝) cos(𝜑𝑛𝑝)൨ ,𝑝 = 0: (𝑁 − 1).ேିଵ

௡ୀ଴  (26)

The inverse 𝑁-point 𝑒ଷ-QDFT 𝑄௣ = ൣ𝐴௣,𝐵௣൧ is calculated by 

𝑞௡ = [𝑓௡,𝑔௡] = 1𝑁෍𝑄௣𝑊ఓି ௡௣ேିଵ
௣ୀ଴ = 1𝑁෍ൣ𝐴௣,𝐵௣൧𝑅ିఝ௡௣,𝑛 = 0: (𝑁 − 1).ேିଵ

௣ୀ଴  (27)

Thus, in the (2,2)-model, we can work with only two 𝑁 -point QDFT, namely, 𝑒ଶ -
QDFT and 𝑒ଷ-QDFT. 

As an example, Figure 3 shows the color image �leonardo9.jpg’ of 744 × 526 pixels 
in part (a) and the quaternion signal composed from column number 101 in part (b). The 
signals 𝑏௡, 𝑐௡, and 𝑑௡ are the red, green, and blue channels of the image column, respec-
tively. The signal 𝑎௡ is the average of these signals. 

 

(a)                            (b) 

Figure 3. (a) The color image and (b) the quaternion signal of length 744 composed from one image 
column. 

The 𝑒ଶ-QDFT and 𝑒ଷ-QDFT of this quaternion signal are plotted in absolute scale, 
|𝑄௣|,𝑝 = 0: 733, in Figure 4 in parts (a) and (b), respectively. The difference between these 
two plots is shown in part (c). 



Computers 2025, 14, 37 11 of 26 
 

 
(a) (b) (c) 

Figure 4. The magnitude of (a) the 𝑒ଶ-QDFT, (b) the 𝑒ଷ-QDFT, and (c) the difference of these trans-
forms. 

As shown in [22], in the (2,2)-model, the aperiodic convolution of quaternion signals 
can be calculated by multiplying the QDFTs. This statement is valid for both types of 
QDFT. The convolution of a periodic quaternion signal 𝑞௡ = [𝑓௡,𝑔௡]  with another one ℎ௡ = ൣℎଵ,௡,ℎଶ,௡൧ is unique, 

𝑦௡ = 𝑞௡ ⊛ ℎ௡ = ෍𝑞௡ି௞ℎ௞ேିଵ
௞ୀ଴ = ෍𝑞௞ℎ௡ି௞ேିଵ

௞ୀ଴ ,𝑛 = 0: (𝑁 − 1). (28)

Here, the subscripts 𝑛 − 𝑘 are considered by modulo 𝑁. This convolution is calcu-
lated by four complex convolutions as follows: 𝑦௡ = [𝑦ଵ,௡,𝑦ଶ,௡],𝑦ଵ,௡ = 𝑓௡ ⊛ ℎଵ,௡ − 𝑔௡ ⊛ ℎଶ,௡ 𝑦ଶ,௡ = 𝑓௡ ⊛ ℎଶ,௡ + 𝑔௡ ⊛ ℎଵ,௡. (29)

For 𝑘 = 2 and 3, the 𝑁-point 𝑒௞-QDFT of the convolution 𝑦௡ is calculated by 𝑌௣ =𝑄௣𝐻௣ , 𝑝 = 0: (𝑁 − 1).  Here, 𝑄௣  and 𝐻௣  are components of the corresponding 𝑁 -point 𝑒௞-QDFT of signals 𝑞௡ and ℎ௡, respectively. What type of QDFT is used for computing 
the aperiodic convolution is irrelevant. We think that the calculation of the quaternion 
convolution by the 𝑒ଶ-QDFT is simple. According to the multiplication, the 𝑒ଶ-QDFT of 
the aperiodic convolution is calculated by 𝑌௣ = 𝑄௣𝐻௣ = ൣ𝐹௣,𝐺௣൧ൣ𝐻ଵ,௣,𝐻ଶ,௣൧ = ൣ𝐹௣𝐻ଵ,௣ − 𝐺௣𝐻ଶ,௣,𝐹௣𝐻ଶ,௣ + 𝐺௣𝐻ଵ,௣൧. (30)

Therefore, the task of calculating the quaternion aperiodic convolution in the fre-
quency domain is solved in the (2,2)-model. In the traditional (1,3)-model of quaternions, 
this problem does not have such a simple solution—it is unsolvable. Table 3 summarizes 
the above considerations. 

Table 3. Properties of aperiodic convolution and QDFT. 

 The (2,2)-Model The (1,3)-Model 
Aperiodic convolution 𝑞 = 𝑞ଵ ⊛ 𝑞ଶ = 𝑞ଶ ⊛ 𝑞ଵ 𝑞 = 𝑞ଵ ⊛ 𝑞ଶ ≠ 𝑞ଶ ⊛ 𝑞ଵ 
Exponential functions Only two pairs Infinite number 
The pair of the QDFT Only two Infinite number 
Convolution property 𝑄௣(𝑞ଵ ⊛ 𝑞ଶ) = 𝑄௣(𝑞ଵ) ⋅ 𝑄௣(𝑞ଵ) 𝑄௣(𝑞ଵ ⊛ 𝑞ଶ) ≠ 𝑄௣(𝑞ଵ) ⋅ 𝑄௣(𝑞ଵ) 

5. Processing Images in the (2,2)-Model 
In this section, we describe the concept of the 2D QDFT of images, which will be used 

in color image enhancement, namely, in the method which is called alpha-rooting. A color 
image in the RGB model will be presented by the quaternion image 𝑞௡,௠ = [𝑓௡,௠,𝑔௡,௠] 
and then transformed to the frequency domain. Let (𝑟௡,௠,𝑔௡,௠, 𝑏௡,௠) be components of 
the primary colors, red (R), green (G), and blue (B), in the image of 𝑁 × 𝑀 pixels. To com-
pose the quaternion image 𝑞௡,௠ , we add the real component 𝑎௡,௠ . Thus, 𝑞௡,௠ =
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(𝑎௡,௠, 𝑟௡,௠,𝑔௡,௠, 𝑏௡,௠). The real part of this image is usually considered zero, 𝑎௡,௠ = 0, or 
the gray-scale component 𝑎௡,௠ = (𝑟௡,௠ + 𝑔௡,௠ + 𝑏௡,௠)/3 at each pixel (𝑛,𝑚). The bright-
ness of the image can also be considered, 𝑎௡,௠  = 0.3𝑟௡,௠ + 0.59𝑔𝑟௡,௠  + 0.11𝑏௡,௠. In the 
(2,2)-model, the quaternion image 𝑞௡,௠ = [𝑓௡,௠,𝑔௡,௠]  is the pair of 2D data 𝑓௡,௠ =(𝑎௡,௠, 𝑟௡,௠)  and 𝑔௡,௠ = (𝑔௡,௠, 𝑏௡,௠).  In many applications, processing color images in 
quaternion space is efficient, since at each pixel the color triplet (plus the gray) is treated 
as one number, quaternion. Note that in the traditional approach, each color component 
of the image is processed separately. And this causes many unwanted effects on colors in 
the processed images [5,14]. 

The two-dimension 𝑁 × 𝑀 -point QDFT in the frequency-point (𝑝, 𝑠)  is calculated 
by 

𝑄௣,௦ = ෍ ෍ 𝑞௡,௠𝑊ఓ௡௣𝑊ఓ௠௦ெିଵ
௠ୀ଴

ேିଵ
௡ୀ଴ = ෍ ෍ 𝑞௡,௠𝑊ఓ௡௣ା௠௦ெିଵ

௠ୀ଴
ேିଵ
௡ୀ଴ ,  (31)

where 𝑝, 𝑠 = 0,1, … , (𝑁 − 1), (𝑀 − 1).  In the (1,3)-model, two sums in this equation are 
different transforms; the first one is called the separable right-sided 2D QDFT [21,24]. 

We consider the 2D QDFT, which is calculated by the 1D eଶ-QDFTs. This 2D trans-
form is called the 2D 𝑁 × 𝑀-point eଶ-QDFT—the case when 𝜇 = 𝑒ଶ [22,25]. As in the 1D 
case, the 2D eଶ-QDFT has a simple form, when compared with the 2D eଷ-QDFT. The 2D eଶ-QDFT of the quaternion image 𝑞௡,௠ = [𝑓௡,௠,𝑔௡,௠] is calculated by 

𝑄௣,௦ = ෍ ෍ [𝑓௡,௠,𝑔௡,௠]𝑊ே௡௣𝑊ெ௠௦ெିଵ
௠ୀ଴

ேିଵ
௡ୀ଴ = ൣ𝐹௣,௦,𝐺௣,௦൧. (32)

Here, 𝐹௣,௦ and 𝐺௣,௦ are the 𝑁 × 𝑀-point 2-D DFTs of the complex components 𝑓௡,௠ 
and 𝑔௡,௠, respectively, 

𝐹௣,௦ = ෍ ෍ 𝑓௡,௠𝑒ି௜ଶగே ௡௣ெିଵ
௠ୀ଴ 𝑒ି௜ଶగெ௠௦ேିଵ

௡ୀ଴ ,𝐺௣,௦ = ෍ ෍ 𝑔௡,௠𝑒ି௜ଶగே ௡௣ெିଵ
௠ୀ଴ 𝑒ି௜ଶగெ௠௦ேିଵ

௡ୀ଴ . 
Thus, the calculation of the 𝑁 × 𝑀-point 𝑒ଶ-QDFT is reduced to two 2D DFTs. The 

inverse 𝑁 × 𝑀-point 𝑒ଶ-QDFT is calculated by 

𝑞௡,௠ = ℱିଵ[𝑄]௡,௠ = 1𝑁𝑀෍ ෍ൣ𝐹௣,௦,𝐺௣,௦൧𝑊ேି ௡௣𝑊ெି௠௦ெିଵ
௦ୀ଴

ேିଵ
௣ୀ଴ ,𝑛,𝑚 = 0: (𝑁 − 1), (𝑀 − 1). 

5.1. Method of Alpha-Rooting by the 2D QDFT 
The absolute value, or the module, of the quaternion 𝑄௣,௦ = ൣ𝐹௣,௦,𝐺௣,௦൧ is defined as ห𝑄௣,௦ห = ටห𝐹௣,௦หଶ + ห𝐺௣,௦หଶ. In the alpha-rooting [26,27], the image is enhanced by changing 

its absolute value at each frequency point to ห𝑄௣,௦ห → ห𝑄௣,௦หఈ, where the parameter 𝛼 is 
from the interval (0,1). Given value 𝛼, the 2D 𝑒ଶ-QDFT of the quaternion image 𝑞௡,௠ is 
processed as follows: 𝑞௡,௠ → 𝑄௣,௦ → 𝑉௣,௦ = 𝑄௣,௦|𝑄௣,௦|ఈିଵᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ → (𝑞ఈ)௡,௠ = ℱିଵൣ𝑉௣,௦൧௡,୫ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ → 𝐴[𝑞ఈ]௡,௠. (33)

Here, 𝐴 > 1  is a necessary constant, since the alpha-rooting method reduces the 
transforms in absolute scale. 

The main steps of the algorithm: 

1. Compose the quaternion image 𝑞௡,௠  from the given RGB color image, 𝑞௡,௠ =(𝑎௡,௠, 𝑟௡,௠,𝑔௡,௠, 𝑏௡,௠). 
2. Calculate the 2D eଶ-QDFT of the quaternion image, 𝑄௣,௦ = ℱ[𝑞]௣,௦ = ൣ𝐹௣,௦,𝐺௣,௦൧. 



Computers 2025, 14, 37 13 of 26 
 

3. Calculate the module of the transform, ห𝑄௣,௦ห. 
4. Process the transform modules by the alpha-rooting, 𝑉௣,௦ = 𝑄௣,௦|𝑄௣,௦|ఈିଵ. 

Thus, the 2D eଶ-QDFT of the quaternion image changes by the non-negative coeffi-
cients 𝑐(𝑝, 𝑠) = |𝑄௣,௦|ఈିଵ, 𝑄௣,௦ = ൣ𝐹௣,௦,𝐺௣,௦൧ → 𝑉௣,௦ = 𝑐(𝑝, 𝑠)ൣ𝐹௣,௦,𝐺௣,௦൧ = ൣ𝑐(𝑝, 𝑠)𝐹௣,௦, 𝑐(𝑝, 𝑠)𝐺௣,௦൧.  (34)

5. Calculate the inverse 2D eଶ-QDFT, (𝑞ఈ)௡,௠ = ℱିଵ[𝑉]௡,௠. 
6. Multiply the image by the constant 𝐴 > 1 to raise the range of the image. 

The output of the alpha-rooting is the quaternion image (𝑣ఈ)௡,௠ = 𝐴(𝑞ఈ)௡,௠. Round-
ing to integers is required. 

7. Compose the new color image, (𝑣௖)௡,௠, as the three-component imaginary part of the 
quaternion image (𝑣ఈ)௡,௠. 

8. Extract the new grayscale image from the quaternion image (𝑣ఈ)௡,௠, as its real part. 
Note that this grayscale image is not the gray or brightness of the new color image (𝑣௖)௡,௠. 

The new image 𝑣௡,௠ is parameterized by 𝛼. Therefore, the question arises as to how 
to choose the value of this parameter to better enhance the color image. As our preliminary 
examples have shown, the choice of the best values of 𝛼 for enhancing color and quater-
nion images can be based on the known measure of color image enhancement (EMEC) 
[5,13]. This measure is used before and after image processing. The EMEC is the general-
ization of the enhancement measure that was used for grayscale images. 

A. Enhancement measures for grayscale images 

To estimate the quality of grayscale images, we effectively developed and used the 
concept of the quantitative estimated measure of enhancement (EME). This measure was 
selected after analyzing the Weber and Fechner laws of the human visual system [28,29]. 
The measure is defined as the average of the range of image intensity in the logarithm 
scale when it is divided by blocks of the same size 𝐿ଵ × 𝐿ଶ, for example, 7 × 7. Only the 
full blocks are considered. Therefore, the number of blocks inside a discrete image 𝑓 =൛𝑓௡,௠ൟ  of 𝑁 × 𝑀  pixels is calculated as 𝑘ଵ𝑘ଶ , where 𝑘ଵ = ⌊𝑁/𝐿ଵ⌋,𝑘ଶ = ⌊𝑀/𝐿ଶ⌋ , and ⌊. ⌋ 
denotes the rounding floor function. The EME of the image is 

𝐸𝑀𝐸(𝑓) = 1𝑘ଵ𝑘ଶ෍෍20 ln ൥max௞,௟ (𝑓)min௞,௟ (𝑓)൩௞మ
௟ୀଵ

௞భ
௞ୀଵ = 1𝑘ଵ𝑘ଶ෍෍20 ቂln max௞,௟ (𝑓) − ln min௞,௟ (𝑓)ቃ௞మ

௟ୀଵ
௞భ
௞ୀଵ .  (35)

Here, inside the (𝑘, 𝑙)th block, the maximum, max௞,௟(𝑓), and minimum, min௞,௟(𝑓), 
of the image 𝑓௡,௠ are calculated. Thus, the EME of the image is estimated block-wise by 
using the logarithm range of the image. If all values of the image in a block are 0, this block 
can be removed from the measure calculation. To avoid such cases, 𝐸𝑀𝐸(𝑓 + 1) can be 
calculated instead. The change 𝑓 → (𝑓 + 1) does not change the quality of the image un-
less it is binary. 

Together with EME, other contrast measures also can be used, including [14]: 

1. The estimated measure of enhancement entropy measure (EMEE) 

𝐸𝑀𝐸𝐸(𝑓) = 1𝑘ଵ𝑘ଶ෍෍max௞,௟ (𝑓)min௞,௟ (𝑓) ln ൥max௞,௟ (𝑓)min௞,௟ (𝑓)൩௞మ
௟ୀଵ

௞భ
௞ୀଵ .  (36)

2. The Michelson enhancement measure (MEM) 

𝑀𝐸𝑀(𝑓) = − 1𝑘ଵ𝑘ଶ෍෍ൣ𝑀𝑉𝑅௞,௟(𝑓)൧ lnൣ𝑀𝑉𝑅௞,௟(𝑓)൧௞మ
௟ୀଵ

௞భ
௞ୀଵ , (37)

where the Michelson visibility ratio is calculated by 



Computers 2025, 14, 37 14 of 26 
 

𝑀𝑉𝑅௞,௟(𝑓) = ቚmax௞,௟ (𝑓) − min௞,௟ (𝑓)ቚmin௞,௟ (𝑓) + min௞,௟ (𝑓) . 
3. The signal-noise ratio (or the ratio of the mean of the image and standard deviation) 𝑆𝑁𝑅(𝑓) = 𝐸[𝑓]ඥ𝐸[𝑓ଶ] − 𝐸ଶ[𝑓] = 1ඥ𝐸[𝑓ଶ]/𝐸ଶ[𝑓] − 1, (38)

where 𝐸[𝑓] = 1𝑁𝑀෍ ෍ 𝑓௡,௠ெିଵ
௠ୀ଴  ேିଵ

௡ୀ଴  and 𝐸[𝑓ଶ] = 1𝑁𝑀෍ ෍ 𝑓௡,௠ଶெିଵ
௠ୀ଴ .ேିଵ

௡ୀ଴  

Our experimental results show that the EME and EMEE measures can be effectively 
used in enhancing images. After processing the image, 𝑓௡,௠  → 𝑔௡,௠, the EME of the en-
hanced image is calculated and compared with the EME of the original image. The range 
of the alpha-rooting image is usually smaller than [0,255]. Therefore, the obtained image 
should be multiplied by a coefficient. The new image and its quality depend on the value 
of parameter 𝛼 , i.e., 𝑔 = 𝑔ఈ  and the measure is a function of 𝑎,  that is, 𝐸𝑀𝐸(𝑔௔) =𝐸𝑀𝐸(𝛼).  The parameters of interest for alpha-rooting are in the range 𝑅{𝛼 ∈(0,1);  𝐸𝑀𝐸(𝛼) > 𝐸𝑀𝐸(𝑔ఈ) > 𝐸𝑀𝐸(𝑓)}. The degree of enhancement is determined by the 
EME measure. The best or optimal values of the enhancement are considered to be the 
values 𝛼଴, for which 𝐸𝑀𝐸൫𝑔ఈబ൯ = max௔∈ோ 𝐸𝑀𝐸(𝑔ఈ) or min௔∈ோ 𝐸𝑀𝐸(𝑔ఈ). 

To illustrate the introduced above measures of image enhancement, we consider the 
image of 512 × 512 pixels shown in Figure 5 in part (a). The histogram of the image is 
given in part (b). The enhancement by the Fourier transform-based alpha-rooting was 
used when changing the parameter α in the interval [0,1] with a step of 0.01. The graph of 
the measure of this image, 𝐸𝑀𝐸 = 𝐸𝑀𝐸(𝛼) , as the function of 𝛼  is shown in part (c). 
Blocks of size 7 × 7 were used to calculate the EME. For the original image, the measure 
of enhancement equals 7.63. The maximum of the function 𝐸𝑀𝐸(𝛼) is at point 𝛼 = 0.83 
and equals 𝐸𝑀𝐸(0.83) = 20.69. The image enhanced by the 0.83-rooting is shown in part 
(d). It was multiplied by the coefficient 19 to scale the image. In parts (e) and (f), the graph 
of the measure 𝐸𝑀𝐸𝐸(𝛼) and the enhanced image by the 0.83-rooting (and multiplied 
by 17) are shown, respectively. This measure has the maximum 1071.26 at point 𝛼 = 0.84. 
The measure of the original image equals 𝐸𝑀𝐸𝐸(1) = 0.68.  The best parameters 𝛼 =0.83 and 0.84 for these two measures are very close to each other, as well as the results 
of the enhancement, which are shown in parts (d) and (f). The 𝐸𝑀𝐸(𝛼) function is much 
smoother than the 𝐸𝑀𝐸𝐸(𝛼) measure, and its graph has a distinct peak. For other images, 
the optimal values of the parameter 𝛼 may be very different, but the smoothness of the 
function 𝐸𝑀𝐸(𝛼) is preserved and easier to work with. 

 
                     (a)          (b) 
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(c) (d) (e) (f) 

Figure 5. (a) The image �7.1.10.tiff’ (from http://sipi.usc.edu/database), (b) the histogram of the im-
age, (c) the EME function, (d) the enhanced image by the 0.83-rooting. (e) The graph of the EMEE 
function and (f) the image enhanced by the 0.84-rooting method. 

In Figure 6a, the image of 440 ×  750 pixels is shown, as well as the result of the 
histogram equalization (HE) of the image in part (b). The graph of the enhancement meas-
ure E𝑀𝐸(𝛼), when processing by the alpha-rooting, is given in part (c). The measure func-
tion 𝐸𝑀𝐸(𝛼) was calculated by dividing the image by blocks of sizes 5 × 5 and 7 × 7. The 
parameter 𝛼 for the α-rooting method of enhancement varies in the interval [0.4,1] with 
a step of 0.005. Two graphs of the enhancement measure EME have pikes at the point 0.84 
and 0.855, for the 5 × 5 and 7 × 7 block sizes, respectively. These values are almost the 
same, and we consider 𝛼଴ = 0.855 for the best visual estimation of the enhancement. The 
EME of the original image equals 8.30 and 25.76 for the 0.855-rooting enhancement, which 
is shown in part (d). There, the enhancement can be estimated as 𝐸𝑀𝐸(𝑔଴.଼ହହ) −𝐸𝑀𝐸(𝑓) = 25.76 − 8.30 = 17.46. One can note the high quality of the 0.855-rooting image 
in comparison with the HE image in part (b). 

  
(a) the original image (b) HE 

  
(c)EME measures (d) 0.855-rooting 

Figure 6. (a) The original grayscale image and (b) enhanced image by (b) histogram equalization. 
(c) Two EME measures of alpha-rooting method, and (d) the 0.855-rooting of the image. 

To estimate the quality of color images, we consider the color image enhancement 
measure (EMEC). For a color image 𝑓௡,௠ = ൫𝑟௡,௠,𝑔௡,௠, 𝑏௡,௠൯  after division by blocks of 
size 𝐿ଵ × 𝐿ଶ each, for instance 7 × 7, the measure is calculated by 
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𝐸𝑀𝐸𝐶(𝑓) = 1𝑘ଵ𝑘ଶ෍෍20logଵ଴ ቈmax௞,௟൫𝑟௡,௠,𝑔௡,௠,𝑏௡,௠൯min௞,௟൫𝑟௡,௠,𝑔௡,௠, 𝑏௡,௠൯቉ .௞మ
௟ୀଵ  ௞భ

௞ୀଵ  (39)

Here, 𝑘ଵ𝑘ଶ  is the number of blocks, and max௞,௟(… )  and min௞,௟(… )  are the maxi-
mum and minimum values in the (𝑘, 𝑙)-th image block, respectively. 

B. Alpha-rooting components-wise 

Color images in the RGB color model can be separately processed by red, green, and 
blue colors. This is the traditional method of processing color images. In the alpha-rooting 
enhancement, each color component can be processed by alpha-rooting with different or 
the same values of parameters 𝛼ଵ,𝛼ଶ, and 𝛼ଷ. We call this method (𝛼ଵ,𝛼ଶ,𝛼ଷ)-rooting of the 
color image For images in the HSI color model, with hue (H), saturation (S), and intensity 
(I) components, only the last component, intensity, will be only processed by alpha-root-
ing. The first two components, hue and saturation will stay the same. 

To choose values of these parameters, we can use, for instance, the EME measure. As 
an example, Figure 7 shows the 1516 × 2012-pixel underwater RGB image in part (a) with 
EMEC of 38.77, which was calculated by blocks of size 5 × 7. In part (b), the graphs of 
functions 𝐸𝑀𝐸(𝛼) of the red, green, and blue channels are shown. The parameter of 𝛼 
runs the interval [0.2,1]. The maximum values of these functions are at points 𝛼 =0.94, 0.83, and 0.84. The color image composed of 0.94-rooting of red, 0.83-rooting of 
green, and 0.84-rooting of blue components is shown in part (c). The enhancement meas-
ure of this image equals EMEC = 44.08. 

    
(a) EMEC 38.77                    (b)                     (c) EMEC 44.08      

Figure 7. (a) The original image, (b) EMEs of red, green, and blue components, and (c) enhanced 
image. 

Since the color components are processed separately, it is not possible to state that 
the above (094,0.84,0.83)-rooting results in the highest enhanced image. It is possible to 
select other triplets of the vector parameter 𝜶 = (𝛼ଵ,𝛼ଶ,𝛼ଷ) and obtain images that we 
can consider the best. As examples, Figure 8 shows two enhanced images together with 
the graphs of the EMEs of three color channels, R, B, and B. The values of alpha parameters 
for these channels are marked on the graphs. The case with equal EME for all color chan-
nels is shown in part (a). The EMEC of the color image is of 59.62, which is the highest 
number for all considered cases. Also, a good, enhanced color image is shown in part (b) 
for the vector parameter (0.9,0.8,0.7). 
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         (a) (0.92,0.75,0.80)-rooting (EMEC = 59.62)   (b) (0.9,0.8,0.7)-rooting (EMEC = 55.71) 

Figure 8. (a) and (b) Two enhanced images. 

C. Comparison with HE and Retinex 
The methods of histogram equalization (HE) [30–32] and Retinex [33–37] are widely 

used in color image enhancement. We consider these methods together with the method 
of alpha-rooting. The underwater RGB color image of 192 × 262 pixels is shown in Figure 
9 in part (a). This image has a measured EMEC of 11.26, which was calculated by blocks 5 × 5. The graphs of EME of three colors are given in part (b), with maximum values at 
points 0.85, 0.82, and 0.82, for the red, green, and blue channels, respectively. The corre-
sponding (0.85,0.82,0.82)-rooting of this image with an EMEC of 35.46 is shown in part (c). 
In part (d), the (0.82,0.82,0.82)-rooting is shown with an EMEC of 36.37. 

    
(a) EMEC 14.28 (b) (c) EMEC 35.46 (d) EMEC 36.37 

Figure 9. (a) The original image, (b) EMEs of red, green, and blue components, and enhanced images 
by (c) (0.85,0.82,0.82)-rooting and (d) (0.82,0.82,0.82)-rooting. 

Figure 10 shows the result of the histogram equalization with a measured EMEC of 
44.29 in part (a). The result of image enhancement by the multi-retinex is shown in part 
(b). The image was normalized, and sizes of the Gaussian filters were taken 7, 15, and 21 
as suggested [33]. The retinex enhancement has an EMEC of 16.96. One can see that the 
enhancement of the color image was not achieved in these two methods. For comparison, 
we also add the result of the color image enhancement by the 0.82-rooting. The result is 
shown in part (c). One can see good enhancement of the image; the color measure of en-
hancement equals 33.50. Measures of EMEC and EME were calculated by blocks of 5 × 5 
pixels. 

histogram equalization multiscale retinex 0.82-rooting 

   
(a) EMEC 44.29 (b) EMEC 16.96 (c) EMEC 33.50 

Figure 10. Color image enhancement by (a) histogram equalization (MATLAB’s version), (b) multi-
retinex algorithm (the original version [33]), and (c) method of 0.82-rooting. 
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The quaternion image enhancement (EMEQ) measure for a quaternion image 𝑞௡,௠ =൫𝑎௡,௠, 𝑟௡,௠,𝑔௡,௠, 𝑏௡,௠൯ is calculated similarly [27], 

𝐸𝑀𝐸𝑄(𝑞) = 1𝑘ଵ𝑘ଶ෍෍20logଵ଴ ቈmax௞,௟൫𝑎௡,௠, 𝑟௡,௠,𝑔௡,௠, 𝑏௡,௠൯min௞,௟൫𝑎௡,௠, 𝑟௡,௠,𝑔௡,௠, 𝑏௡,௠൯቉ .௞మ
௟ୀଵ

௞భ
௞ୀଵ  (40)

This measure includes the real part of the quaternion image. The measure EMEQ is 
calculated for the input quaternion image 𝑞௡,௠ and the processed image 𝑣௡,௠. In most 
cases, the best parameter for color enhancement is considered the value of 𝛼 with a max-
imum of 𝐸𝑀𝐸𝐶(𝑞) and 𝐸𝑀𝐸𝑄(𝑣) (or minimum). Our experimental results show that the 
measures EMEC and EMEQ are effective in selecting the best parameters to receive color 
images with high quality [27]. Other measures for selecting the best values of 𝛼 and esti-
mating color image quality after image processing can also be used. We mention the color 
image contrast and quality measures [14]. 

As an example, Figure 11 shows the quaternion image of 877 × 1024 pixels in part 
(a). The grayscale image is the real part, and the color image is the imaginary part of the 
quaternion image. The graph of the EMEC measure as the function of 𝛼 is shown in part 
(b). The maximum of this function is at point 0.879. In part (c), the graphs of the measured 
EME of the color channels are given. The point 𝛼 = 0.82 was selected, at which these 
graphs roughly intersect. The quaternion images after 0.879 and 0.82-rooting enhance-
ments are shown in parts (d) and (e), respectively. 

 
(a)                                    (b)                     (c) 

  
       (d)                                                 (e) 

Figure 11. (a) The quaternion fundus image, (b) the graph of the EMEC function calculated for 𝛼-
rooting by the 2-D QDFT, (c) the graphs of EME functions calculated for red, green, and blue chan-
nels of the 𝛼-rooting. The enhanced quaternion after (d) 0.879-rooting and (e) 0.82-rooting. 

5.2. The Separable Alpha-Rooting 

The alpha-rooting method by the QDFT can be modified in the following two ways. 

1. The separable 1-parameter alpha-rooting of the quaternion image 𝑞௡,௠ =[𝑓௡,௠,𝑔௡,௠] is the method of processing the 2D eଶ-QDFT of the image as 𝑄௣,௦ = ൣ𝐹௣,௦,𝐺௣,௦൧ → ൣ𝐹௣,௦|𝐹௣,௦|ఈିଵ,𝐺௣,௦|𝐺௣,௦|ఈିଵ൧,𝛼 ∈ (0,1).  (41)
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2. The 2-parameter alpha-rooting of the quaternion image uses two parameters 𝛼ଵ and 𝛼ଶ from the interval [0,1] to process the 2D eଶ-QDFT of the quaternion image as 
follows: 𝑄௣,௦ = ൣ𝐹௣,௦,𝐺௣,௦൧ → ൣ𝐹௣,௦|𝐹௣,௦|ఈభିଵ,𝐺௣,௦|𝐺௣,௦|ఈమିଵ൧. (42)

In the 𝛼ଵ = 𝛼ଶ = 𝛼 case, the 2-parameter alpha-rooting coincides with the 1-param-
eter alpha-rooting. 

5.3. Alpha-Rooting of Color Images and the (1,3)-Model 

In the (1,3)-model, we consider one of the 2D QDFTs, namely, the separable right-
sided 2D QDFT [27]. This transform of the quaternion image 𝑞௡,௠ = ൫𝑎௡,௠, 𝑟௡,௠,𝑔௡,௠, 𝑏௡,௠൯ 
is calculated by 

 𝑄௣,௦ =  ෍൭෍ 𝑞௡,௠𝑊ఓభ௠௦ெିଵ
௠ୀ଴ ൱𝑊ఓమ௡௣,𝑝, 𝑠 = 0: (𝑁 − 1), (𝑀 − 1).ேିଵ

௡ୀ଴  (43)

Here, 𝜇ଵ  and 𝜇ଶ  are pure quaternion units. The transform uses 𝑁  1D QDFTs by 
rows and then 𝑀  1D QDFT by columns. Given quaternion signal 𝑞௡ = (𝑎௡, 𝑟௡,𝑔௡, 𝑏௡) 
and a pure quaternion 𝜇 = (0,𝑚ଵ,𝑚ଶ,𝑚ଷ), the 1D QDFT, 𝑄௣, with the basis exponential 
functions 𝑊ఓ௡௣ = cos(2𝜋𝑛𝑝/𝑁) − 𝜇 sin(2𝜋𝑛𝑝/𝑁) requires four traditional DFTs since it is 
calculated by [14] 

𝑄௣ = Re ⎣⎢⎢
⎡𝐴௣ 𝑅௣𝐺௣𝐵௣ ⎦⎥⎥

⎤ + 𝑀ఓ × Im ⎣⎢⎢
⎡𝐴௣ 𝑅௣𝐺௣𝐵௣ ⎦⎥⎥

⎤ = Re ⎣⎢⎢
⎡𝐴௣ 𝑅௣𝐺௣𝐵௣ ⎦⎥⎥

⎤ + ൦ 0 𝑚ଵ 𝑚ଶ 𝑚ଷ−𝑚ଵ 0 −𝑚ଷ 𝑚ଶ−𝑚ଶ 𝑚ଷ 0 −𝑚ଵ−𝑚ଷ −𝑚ଶ 𝑚ଵ 0 ൪ Im ⎣⎢⎢
⎡𝐴௣ 𝑅௣𝐺௣𝐵௣ ⎦⎥⎥

⎤. (44)

𝐴௣,𝑅௣,𝐺௣, and 𝐵௣ are the DFTs of the components 𝑎௡, 𝑟௡,𝑔௡, and 𝑏௡, respectively. Re(𝑧) and Im(𝑧) denote the operations of real and imaginary parts of the complex num-
ber 𝑧, respectively. The multiplication of the 4D vector by the matrix 𝑀ఓ requires a max-
imum of 12 real multiplications. In the case, when 𝜇ଵ = (0,0,1,0) = 𝑗 and 𝜇ଶ = (0,0,0,1) =𝑘 , the exponential basis functions are 𝑊௞௠௦ = cos(2𝜋𝑚𝑠/𝑀) −𝑘 sin(2𝜋𝑚𝑠/𝑀)  and 𝑊௝௡௣ = cos(2𝜋𝑛𝑝/𝑁) −𝑗 sin(2𝜋𝑛𝑝/𝑁). The matrices of multiplication have simple forms, 

𝑀௝ = ൦ 0 0 1 00 0 0 1−1 0 0 00 −1 0 0൪  and 𝑀௞ = ൦ 0 0 0 10 0 −1 00 1 0 0−1 0 0 0൪. 
and the corresponding 1D QDFTs are calculated by 

𝑄௣ = ⎣⎢⎢
⎢⎡𝑅𝑒൫𝐴௣൯ + 𝐼𝑚(𝐺௣) 𝑅𝑒൫𝑅௣൯ + 𝐼𝑚(𝐵௣)𝑅𝑒൫𝐺௣൯ − 𝐼𝑚(𝐴௣)𝑅𝑒൫𝐵௣൯ − 𝐼𝑚(𝑅௣) ⎦⎥⎥

⎥⎤  and 𝑄௣ = ⎣⎢⎢
⎢⎡𝑅𝑒൫𝐴௣൯ + 𝐼𝑚(𝐵௣) 𝑅𝑒൫𝑅௣൯ − 𝐼𝑚(𝐺௣)𝑅𝑒൫𝐺௣൯ + 𝐼𝑚(𝑅௣)𝑅𝑒൫𝐵௣൯ − 𝐼𝑚(𝐴௣) ⎦⎥⎥

⎥⎤
. 

These 𝑁 -point QDFTs require four 1D DFTs plus 4𝑁  additions. In this case, the 
right-sided 2D QDFT of the quaternion image 𝑞௡,௠ is calculated by 

 𝑄௣,௦ =  ෍൭෍ 𝑞௡,௠𝑊௞௠௦ெିଵ
௠ୀ଴ ൱𝑊௝௡௣,𝑝 = 0: (𝑁 − 1), 𝑠 = 0: (𝑀 − 1).ேିଵ

௡ୀ଴  (45)

A total of 4(𝑁 + 𝑀) 1D QDFTs plus 4(𝑁𝑀) + (4𝑀)𝑁 = 8𝑁𝑀 additions are used to 
calculate the 2D QDFT. The inverse 2D right-sided QDFT is calculated by 
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 𝑞௡,௠ = 1𝑁𝑀෍൭෍ 𝑄௣,௦𝑊௞ି ௠௦ெିଵ
௦ୀ଴ ൱𝑊௝ି௡௣ேିଵ

௣ୀ଴ , (46)

The complexity of the QDFTs in the (1,3) and (2,2)-models for images of 𝑁 × 𝑁 pixels 
is described in Table 4. 

Table 4. Complexity of the calculations for the two algebras. 

Model Transforms Number of 1D 
DFTs 

Number of Addi-
tional Multiplica-

tions 

Number of Addi-
tional Additions 

The (1,3)-model:     
General case of 𝜇 1D QDFT 4 (real) 12𝑁 12𝑁 

 2D QDFT 4(2𝑁) = 8𝑁 12𝑁(2𝑁) = 24𝑁ଶ 12𝑁(2𝑁) = 24𝑁ଶ 
Case 𝜇 = 𝑗, 𝑘 1D QDFT 4 (real) - 4𝑁 

 2D QDFT 4(2𝑁) = 8𝑁 - 4𝑁(2𝑁) = 8𝑁ଶ 
The (2,2)-model:     

1D 𝑒ଶ-QDFT 1D QDFT 2 (complex) - - 
2D 𝑒ଶ-QDFT 2D QDFT 2(2𝑁) = 4𝑁 - - 

The main steps of the algorithm for 𝛼-rooting in the (1,3)-model: 

1. Compose the quaternion image 𝑞௡,௠ = (𝑎௡,௠, 𝑟௡,௠,𝑔௡,௠, 𝑏௡,௠) from the color RGB im-
age (𝑟௡,௠,𝑔௡,௠, 𝑏௡,௠). 

2. Calculate the right-sided 2D QDFT, 𝑄௣,௦, of the quaternion image. 
3. Given 𝛼 ∈ (0,1), calculate the coefficients 𝑐(𝑝, 𝑠) = | 𝑄௣,௦|ఈିଵ. 
4. Modify the 2D QDFT as 𝑄௣,௦ → 𝑉௣,௦ = 𝑐(𝑝, 𝑠)𝑄௣,௦. 
5. Calculate the inverse 2D QDFT 𝑣௡,௠ = 𝑣௡,௠(𝛼). 
6. Select the best value 𝛼 for color image enhancement by using the measures EMEQ 

or EMEC. 

6. Experimental Results with Color Images 
In this section, a few illustrative examples of the 2D QDFT-based alpha-rooting are 

presented. Many color images of art in this paper are from Olga’s Gallery—Free Art Print 
Museum by address https://www.freeart.com/gallery/ with permission to use them in our 
research. Figure 12 shows the RGB color image �rembrandt195.jpg’ in part (a) and the en-
hanced image in part (b). The enhanced image was calculated by the alpha-rooting with 𝑒ଶ-QDFT, when the parameter 𝛼 = 0.9143. This value of the parameter is considered op-
timal, or best, according to the EMEC measure calculated by Equation (39) with block size 
7 × 7. This measure as the function EMEC(𝛼) has a maximum of 36.54 at this point. The 
measure of the original image is EMEC(1) =  34.74. 

Two EMEC functions are shown in Figure 12 in part (c); they are close to each other, 
and both achieve the maximum at the same point. The first graph (which is a little higher 
than the other one) was calculated by the 2D 𝑒ଶ-QDFT-based alpha-rooting described in 
Section 5.1, when the transform is modified as 𝑄௣,௦ = ൣ𝐹௣,௦,𝐺௣,௦൧  →  |𝑄௣,௦|ఈିଵൣ𝐹௣,௦,𝐺௣,௦൧, 𝛼 ∈[0.7,1]. The second graph is for the EMEC measure calculated from the 1-parameter al-
pha-rooting described in Section 5.2, when the 𝑒ଶ-QDFT of the images is processed as 
follows: 𝑄௣,௦ = ൣ𝐹௣,௦,𝐺௣,௦൧  →  ൣ𝐹௣,௦|𝐹௣,௦|ఈିଵ,𝐺௣,௦|𝐺௣,௦|ఈିଵ൧ , 𝛼 ∈ [0.7,1].  Figure 13 shows the 
enhanced image by 1-parameter 0.9143-rooting in part (a). For comparison, the 0.9143-
rooting of the image by the 2D QDFT in the (1,3)-model is shown in part (b). 
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(a) (b) (c) 

Figure 12. (a) The original image, (b) 2D e2-QDFT based 0.9143-rooting (with the scaling factor of 𝐴 = 4), and (c) the two curves of the EMEC. 

 
(a) (b) 

Figure 13. The enhanced images of the 0.9143-rooting: (a) in the (2,2)-model and (b) in the (1,3)-
model. 

Below are a few results of processing other color images by the alpha-rooting and 
separate algorithms of the alpha-rooting in the commutative (2,2)-model. The results of 
image enhancement by the alpha-rooting in the non-commutative (1,3)-model are also 
shown. Figure 14 shows the results of the 0.92-rootings, when processing the image of San 
Antonio. The values of the color image enhancement EMEC are shown. 

The (2,2)-model of quaternions The (1,3)-model of quaternions 

 
(a) EMEC = 15.2572 (b) EMEC = 18.9644 (c) EMEC = 18.6932 (d) EMEC = 18.6892 

Figure 14. (a) The original color image. The enhanced images in the (2,2)-model by (b) the main 0.92-
rooting and (c) separable 1-parameter 0.92-rooting. (d) The 0.92-rooting in the (1,3)-model. 
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Figure 15 shows the results of the same methods of the 0.92-rootings, when pro-
cessing another image of San Antonio. One can note that the images processed in the (2,2)-
model have higher values of EMEC. 

The (2,2)-model of quaternions The (1,3)-model of quaternions 

 
(a) EMEC = 8.4645 (b) EMEC = 16.5311 (c) EMEC = 16.5174 (d) EMEC = 16.5005 

Figure 15. (a) The original color image. The enhanced images in the (2,2)-model by (b) the main 0.92-
rooting and (c) separable 1-parameter 0.92-rooting. (d) The 0.92-rooting in the (1,3)-model. 

Figure 16 shows the results of processing image �image13-2.jpg.’ The method of al-
pha-rooting works well in both models for many images. It means that the (2,2)-model 
does not perform any worse but in fact better than another model, that is, the (1,3)-model. 

The (2,2)-model of quaternions The (1,3)-model of quaternions 

(a) EMEC = 15.9245 (b) EMEC = 21.4756 (c) EMEC = 21.4686 (d) EMEC = 21.3373 

Figure 16. (a) The original color image. The enhanced images in the (2,2)-model by (b) the main 0.92-
rooting and (c) separable 1-parameter 0.92-rooting. (d) The 0.92-rooting in the (1,3)-model. 

The results of processing the well-known “flowers” image are shown in Figure 17 in 
parts (a)–(d). 

The (2,2)-model of quaternions The (1,3)-model of quaternions 

 
(a) EMEC = 30.1495 (b) EMEC = 53.1765 (c) EMEC = 52.1416 (d) EMEC = 52.7501 

Figure 17. (a) The original color image. The enhanced images in the (2,2)-model by (b) the main 0.92-
rooting and (c) separable 1-parameter 0.92-rooting. (d) The 0.92-rooting in the (1,3)-model. 

Now we apply the method of alpha-rooting in the (2,2)-model, when two parameters 𝛼ଵ and 𝛼ଶ are used and the 2D QDFT of the color image is processed as 𝑄௣,௦ = ൣ𝐹௣,௦,𝐺௣,௦൧ → ൣ𝐹௣,௦|𝐹௣,௦|ఈభିଵ,𝐺௣,௦|𝐺௣,௦|ఈమିଵ൧,𝛼ଵ,𝛼ଶ ∈ (0,1]. (47)
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Figure 18 shows results of the color image enhancement processing by the 2-param-
eter alpha-rooting with different sets of parameters 𝛼ଵ and 𝛼ଶ. In part (b), the image of 
San Antonio was processed by the parameters 𝛼ଵ = 𝛼ଶ = 0.92. The enhancement by pa-
rameters 𝛼ଵ = 0.92 and 𝛼ଶ = 0.93 is shown in part (c). 

 
      (a) EMEC = 15.2572 (b) EMEC = 18.6932 (c) EMEC = 18.8947 

Figure 18. (a) The original color image, and (b) the [0.92,0.92]-rooting, and (c) the [0.92,0.93]-rooting 
in the (2,2)-model. 

It should be noted that when processing color images in the quaternion models, the 
color image is only the imaginary part of the quaternion image. The enhancement of qua-
ternion image includes two images, the color one and the gray one. They are processed 
together. The first component of the quaternion image, which is referred to as the gray-
scale image is not the grayscale image of the processed color image. The enhancement of 
quaternion image results in the enhancement of both images. As examples, we consider a 
few color images processed in the (2,2)-model by the 2-D eଶ-QDFT-based alpha-rooting. 

Figure 19 shows the color image �raphael155.jpg’ in part (a), which was embedded in 
the quaternion image as its imaginary part. The imaginary component (the new color im-
age) of the enhanced quaternion image by the 0.92-rooting is shown in part (b). The gray-
scale image of the original color image is shown in part (c). The real part of the processed 
quaternion image is shown in part (d). This image is not the average of colors in the image 
in part (b). Thus, both grayscale and color images were enhanced when processing the 
quaternion image. 

  
(a) (b) (c) (d) 

Figure 19. (a) The original color image and (c) its grayscale image. The processed (b) imaginary and 
(d) real components of the enhanced quaternion image by the 𝑒ଶ-QDFT 0.92-rooting. 

Figures 20 and 21 show the results of enhancement of the quaternion images when 
the color images �raphael155.jpg’ and �flowers’ were used, respectively. 
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     (a) (b)       (c) (d) 

Figure 20. (a) The original color image �leonardo9.jpg’ and (c) its grayscale image. The processed (b) 
imaginary and (d) real components of the enhanced quaternion image by the 𝑒ଶ-QDFT 0.92-rooting 
(×4). 

  
(a) (b)    (c) (d) 

Figure 21. (a) The original color flowers image and (c) its grayscale image. The processed (b) imag-
inary and (d) real components of the enhanced quaternion image by the 𝑒ଶ -QDFT 0.80-rooting 
(× 20). 

7. Conclusions 
New quaternion algebra, the (2,2)-model, was presented, and new methods of alpha-

rooting by the quaternion discrete Fourier transform (QDFT) were described and ana-
lyzed in this model. The main properties of this model were considered. This model of 
quaternions is commutative and associative and allows to calculate the aperiodic convo-
lution of quaternion images in the frequency domain. The results of the image enhance-
ment of color images in this model were compared with the alpha-rooting in the tradi-
tional (1,3)-model. The comparison with the known methods of histogram equalization 
and Retinex is also provided with examples. The preliminary experimental examples 
show the effectiveness of the proposed methods for color image enhancement by the 2D 
QDFT. We believe that the commutative (2,2)-model together with the non-commutative 
(1,3)-model can be effectively used in color image enhancement, as well as other areas of 
color imaging. The proposed methods of alpha-rooting are fast, because of fast 1D and 2D 
QDFTs, and do not require much memory, as well as machine learning algorithms, which 
require much time and memory and do not work well on many images presented in this 
work. 
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