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Abstract: In this work, a comparison of Greek Orthodox religious chants is performed using
fuzzy entropy. Using a dataset of chant performances, each recitation is segmented into
overlapping time windows, and the fuzzy entropy of each window in the frequency domain
is computed. We introduce a novel audio fingerprinting framework by comparing the
variations in the resulting fuzzy entropy vector for the dataset. For this purpose, we use the
correlation coefficient as a measure and dynamic time warping. Thus, it is possible to match
the performances of the same chant with high probability. The proposed methodology
provides a foundation for building an audio fingerprinting method based on fuzzy entropy.

Keywords: audio fingerprinting; fuzzy entropy; Greek Orthodox Church chants; music
identification; music information retrieval

1. Introduction
1.1. Music Identification

In the field of Music Information Retrieval (MIR), song identification is one of the
most prominent applications [1,2]. It refers to the task of identifying the origin track of a
short audio recording, usually a few seconds long. Another problem closely related to song
identification is that of cover song identification, which refers to matching performances
of the same song by different artists, which can often differ significantly in musical style.
Especially in genres like traditional and religious music, there may be numerous different
renditions of a song or chant, performed by many artists and across many decades, so song
matching can be challenging. These tasks have numerous commercial applications, such
as song identification for music listeners, broadcast monitoring for advertising purposes,
and even support of legal violation claims such as copyright infringement and plagiarism
detection [3].

1.2. Related Works

The task of audio identification relies on the extraction of an audio’s fingerprint. This
process of fingerprinting refers to the generation of a signature from the signal. This
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signature is small in size, and can be used to identify the signal. Different signals will
have distinct signatures, but the signatures of similar signals will also have similarities.
Thus, instead of comparing audio signals directly, their corresponding signatures can be
compared, in order to find similarities faster.

The fingerprint is usually computed in the frequency domain by considering the Fast
Fourier Transform (FFT) of the signal. For example, in [4], the FFT was applied and a
fingerprint was computed from the spectrogram using four frequencies. The effect of noise
was also studied. In [5], the use of the two-dimensional Fourier transform was applied
to the binarized spectrogram of a signal to derive a fingerprint. The effect of noise was
also considered. Both [4,5] consider recognition of Orthodox hymn recitations. In [6],
fingerprints are computed by peaks in the spectrogram and are considered for music
recommendation, taking artist and genre into account. In [7], fingerprints are extracted
by finding peaks in the Mel spectrogram and used for matching song recordings. In [8],
fingerprints are extracted from the Mel-Frequency Cepstral Coefficients and considered
for the problem of music identification in broadcast monitoring to address copyright
issues. Other approaches consider machine learning or generative AI for this and similar
tasks [9–11].

Among the various approaches developed in the last 20 years for identifying songs,
the use of entropy seems highly efficient. Entropy is a measure used to characterize the
complexity and unpredictability of a system [12]. Over the years, entropy has been used to
characterize several types of physical system, as well as signals of any type, such as text,
audio, and video.

For audio processing, entropy-based fingerprinting has previously been considered
for song identification in [13–18] and broadcast monitoring in [19]. The process involves
segmenting an audio signal, transforming it into the frequency domain, and measuring the
entropy along different frequency bins. The derivative across time segments is then used to
derive a binary fingerprint, which can be used for identification. The present work will
consider a similar approach but using fuzzy entropy.

Fuzzy entropy [20] is a variation of entropy, where the principle of fuzzy distance is
applied to derive a soft, non-binary (equal/not equal) comparison between time series.
The theory of fuzzy sets was introduced by Lotfi Zadeh in the 1960s [21], and has long been
established as a highly applicable theory to all aspects of engineering science. Examples
include control theory, decision-making, optimization, signal processing, and more [22].

Fuzzy entropy has gained more attention in the last decade or so and has been used in a
plethora of applications. Examples include the characterization of biomedical signals, such
as electroencephalogram (EEG) [23–25], electrocardiogram (ECG) [23], and electromyo-
graphy (EMG) signals [20,26,27]. It can also be used effectively to compare chaotic time
series [26–28]. Moreover, it has been considered a feature for voice activity detection [29]
and microphone identification [30].

1.3. Motivation

In this work, motivated by the use of entropy in audio identification and the increasing
applicability of fuzzy entropy in signal characterization, the problem of identification of
different performances using fuzzy entropy is studied for Greek Orthodox Church chants.
The most important research challenge in this musical field stems from the fact that in
contrast to other genres of music, there is not a single version of a given chant. For example,
in genres like pop, classic, rock, etc, there is a single official version of a song, usually
published in an album, and performed by a single artist. So, the challenge of identification
is to match a short recording to its source track, which is an identical song. This is different
in religious chants, as there is not a single official recording of a song, but rather multiple



Computers 2025, 14, 39 3 of 16

renditions performed by different chanters. Thus, the chant identification task here is not
to match a short recording to its identical track, but rather to identify similarities between
numerous different renditions of the same chant.

We consider a newly created dataset of 50 different popular religious chants, each
chant having several different performances. To find the fuzzy entropy vector, each track
is divided into windows that overlap. The Fast Fourier Transform (FFT) is then used to
change the time domain to the frequency domain, and the fuzzy entropy of the size of
each window is found. The similarity between the fuzzy entropy vectors for all tracks is
then computed using the correlation coefficient. To improve performance, an additional
Dynamic Time Warping (DTW) process [31] is performed before computing the similarity
measures. With this addition, the accuracy can exceed 90%.

This work is based on previous work on entropy-based identification [13–18]. The main
contributions of this work are the following:

• The measure of entropy has been swapped with that of fuzzy entropy, which has been
reported in the literature to be more robust in comparing signals.

• Following [17,32], a pre-emphasis filter is applied in the preprocessing stage, which
has not been considered in all earlier works.

• The frequency domain signal is not segmented in frequency bins, but rather its entropy
as a whole is computed. This results in a less detailed but much shorter vector entropy
measure, as opposed to a matrix entropy feature (entropygram).

• The comparison is performed on the entropy vector rather than on a binary fingerprint.
• Following [31], the correlation coefficient is calculated after applying DTW to the

entropy vectors, which significantly improves performance.

To the best of our knowledge, this is the first time a fuzzy entropy method has been applied
to a chant recognition problem. We must note that the same methodology can easily be
extended to other similar recognition problems, e.g., to other vocal music problems. The
remainder of the work is structured as follows: Section 2 presents the method used to
calculate the fuzzy entropy measure and the method employed to compare the entropy
vectors. Section 3 presents the comparison results in the dataset considered. Finally,
Section 4 concludes the work with a discussion of future research goals.

2. Characterization of Byzantine Chants Using Fuzzy Entropy
2.1. The Dataset

The dataset consists of fifty different most popular hymns, and for each one, there
is a varying number of performances available from different chanters. Therefore, there
are more than 5000 different tracks available. Example track titles are `Ταις πρεσβείαις της
Θεοτόκου΄, `Σώσον Ημάς΄, `΄Αγιος ο Θεός΄, `Εις άγιος εις κύριος΄, `Είδομεν το φώς΄, `Χριστός
ανέστη΄, `Χριστός γεννάται΄, and `Δόξα σοι το δείξαντι το φως΄.

The sampling frequency of all tracks was 44100 Hz. Initial preprocessing included
cropping the tracks to remove the silent parts at the beginning and end. The tracks range
from a couple of seconds to 2 min. The duration of the complete dataset is around 3 h.

2.2. Signal Preprocessing

For all the signals in the dataset, preprocessing was performed. The procedure is
described in Figure 1 and consists of the following steps:

1. For dual-channel signals, an averaged single-channel audio signal is computed.



Computers 2025, 14, 39 4 of 16

2. Following [17,32], a pre-emphasis filter is applied to the signal, which can emphasize
human voice patterns. For a signal s(k), where k denotes its samples, the filter’s
function is given by

y(k) = s(k)− a · s(k − 1) (1)

where y(k) is the filtered signal and a ∈ [0, 1] is an equalization parameter. Here, we
choose a = 0.95. Figure 2 shows the difference between the original signal and the
filtered signal.

Figure 1. Outline of the signal preprocessing procedure.

Figure 2. The averaged signal (blue) and the filtered one (red) using a pre-emphasis filter.

2.3. Computation of Fuzzy Entropy

Consider the following time series u(i), i = 1, ..., N of length N. The fuzzy entropy of
the time series is computed as follows [20,24,26,29]:

1. Construct the vectors

Xm
i = [u(i), u(i + 1), ..., u(i + m − 1)]− u0(i),

i = 1, 2, ..., N − m + 1 (2)

where m ≤ N − 2, and u0(i) is the average of the vector

u0(i) =
1
m

m−1

∑
j=0

u(i + j), (3)

and the subtraction is element-wise.
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2. The distance dm
ij between two vectors Xm

i and Xm
j is computed, which is the maximum

absolute difference of the following two vectors:

dm
ij = d(Xm

i , Xm
j ) =

max
k∈(0,m−1)

[|(u(i + k)− u0(i))− (u(j + k)− u0(j))|],

i, j = 1, ..., N − m + 1, i ̸= j (4)

3. A fuzzy membership function is applied to measure the similarity degree between
two vectors Xm

i and Xm
j . Here, the exponential function is considered, given by

Dm
ij = µ(dm

ij , n, r) = e

(
−(dm

ij )
n

r

)
(5)

where n and r are the gradient and width of the function.
4. The following function is computed.

ϕm(n, r) =
1

N − m

N−m

∑
i=1

(
1

N − m − 1

N−m

∑
j=1,j ̸=i

Dm
ij

)
(6)

5. The previous steps are repeated for vectors Xm+1
i , in order to compute

ϕm+1(n, r) =
1

N − m

N−m

∑
i=1

(
1

N − m − 1

N−m

∑
j=1,j ̸=i

Dm+1
ij

)
(7)

6. The fuzzy entropy is finally defined as

FuzzEn(m, n, r, N)= lim
N→∞

(ln ϕm(n, r)− ln ϕm+1(n, r)) (8)

and since N is finite for a given time series, the entropy is simply expressed as

FuzzEn(m, n, r) = ln ϕm(n, r)− ln ϕm+1(n, r) (9)

2.4. Extraction of Fuzzy Entropy Measure

Consider a given recording as a time series y(k), sampled at a frequency freqs, after its
preprocessing described above is performed. Computing its fuzzy entropy (FuzzEn)
would provide only a single measurement, which would not be enough to characterize the
recording. Thus, the following procedure is followed, which is also described in Figure 3.

1. The time series y(k) is broken down into overlapping segments wi of duration
d = 0.1 s. The overlap between consecutive segments is taken as 50%.

2. For each segmented part wi, a Hanning window is applied, and the signal is then
transformed into the frequency domain, using an FFT transform. The resulting signal
is denoted as fwi , and it is a complex vector.

3. The fuzzy entropy FuzzEn(m, n, r) of magnitude | fwi | is calculated for each segment.
Since | fwi | is symmetric, only its first half is considered for this. The resulting entropy
values are added to a vector. This results in the fuzzy entropy vector of the recording,
which represents the changes between the FuzzEn values across all segments of
the track.

4. Finally, the entropy vector is normalized so that its values lie in the interval [0, 1].
Normalization of a vector x is performed as
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xnorm
i =

xi − min(x)
max(x)− min(x)

(10)

where xi denotes the vector elements.

Fuzzy entropy is computed using the code developed in [23]. The fuzzy function
considered is exponential, with parameters r = 0.15 · std(| fwi |), m = 2, n = 2, loc = 1, and
τ = 1, where std(| fwi |) denotes the standard deviation of the window under consideration.
Figure 4 shows two fuzzy entropy vectors for two performances of the first chant in the
dataset. Although the vectors have unequal lengths, similarities between them can be
observed, for example, peaks, falls, and plateaus. In the next section, the comparison
process is described.

Figure 3. Outline of the procedure for extracting the FuzzEn information vector for a track.

Figure 4. Fuzzy entropy vectors for two performances of the first chant in the dataset. The red line
shows the entropy vector of the first performance, the blue line shows the entropy vector of the
second performance.

2.5. Track Comparison

To compare the fuzzy entropy vectors of all tracks in the dataset, the statistical measure
of the correlation coefficient is used. The correlation coefficient ρ(X, Y) between two time
series X and Y of length N is given by

ρ(X, Y) =
cov(X, Y)

σXσY
(11)

where cov(X, Y) denotes the covariance between the signals, and σX and σY their standard
deviations. This must be applied to vectors of equal length. Thus, two different approaches
are considered for comparison.
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2.5.1. Comparison of Whole Tracks

In the first approach, the complete fuzzy entropy vectors of all tracks are compared to
each other. The reasoning behind this comparison is to see if a complete recording is similar
as a whole to a part of another track. Since vectors have unequal lengths, a sliding window
is considered to compute the statistical measure. The complete process is described below
and is also visually depicted in Figure 5.

1. Let y1 and y2 be two different recordings in the dataset, and F1 and F2 their corre-
sponding fuzzy entropy vectors. Let l1 = length(F1), l2 = length(F2), and assume,
without loss of generality, that l1 < l2, so the second recording is longer.

2. For the longer vector F2, segments of length l1, that is, Fi
2 = F2(i : i + l1 − 1), i = 1,

z + 1, 2z + 1, ... are considered. Here, i denotes the iteration step and z denotes the
sliding window jump. Its default value is z = 1, but higher values can be considered
to improve the execution speed. Here, we choose z = 20. This corresponds to a
1.05 s jump. The notation i : i + l1 − 1 denotes the elements from the position i to the
position i + l1 − 1.

3. A DTW is applied on all pairs of F1 and Fi
2 to stretch the two vectors into the new

vectors Fdtw
1 and Fi,dtw

2 , whose Euclidean distance is the smallest. Note that, in general,
the stretched signals have a length longer than l1, so some entries may be repeated.

4. The vector Fdtw
1 is compared with each segment Fi,dtw

2 . For this, the correlation coeffi-

cients ρ(Fdtw
1 , Fi,dtw

2 ) are computed. The maximum value among these is taken as the
highest similarity index between the two tracks y1 and y2.

Note that another approach for comparison would be to apply zero padding on all
the fuzzy entropy vectors to make them of equal length. However, because of the high
variation in the lengths of the recordings, this would make the comparison unreliable and
inaccurate, so it is avoided.

Figures 6 and 7 show examples of comparisons between F1 and Fi
2 or Fi,dtw

2 . Note that
when DTW is applied, the subvector Fi,dtw

2 that will show the highest correlation with F1

may be different from the subvector found without the use of DTW.

Figure 5. Visual outline of the comparison approach for whole recordings.



Computers 2025, 14, 39 8 of 16

Figure 6. Example of entropy vectors F1 and Fi
2 that showcase the highest correlation coefficient (0.47)

among all the segments of F2. The red line shows the entropy vector of the first performance, the blue
line shows the entropy vector of the second performance.

Figure 7. Example of entropy vectors Fdtw
1 and Fi,dtw

2 that showcase the highest correlation coefficient
(0.94) among all the segments of F2. The red line shows the entropy vector of the first performance,
the blue line shows the entropy vector of the second performance.

2.5.2. Comparison of Segments

As a second approach, segments from both entropy vectors of two tracks are compared
with each other. The reason behind this comparison is to see if a part of one track is similar
to a part of another track. Here, we consider the comparison of 5 s segments between tracks.
For the given window size and overlap percentage, this corresponds to the entropy sub-
vectors of 99 elements, which is rounded to 100 elements for simplicity. For this comparison,
a sliding window is applied to both entropy vectors, and all segments with a length of
100 elements are compared. The process is described in the following and is also visually
depicted in Figure 8.

1. Let y1 and y2 be two different recordings in the dataset, and F1 and F2 their corre-
sponding fuzzy entropy vectors. Let l1 = length(F1) and l2 = length(F2).

2. For both vectors F1 and F2, segments of 100 values are considered, that is, Fi
1 = F1(i :

i + 100 − 1), Fj
2 = F2(j : j + 100 − 1), i, j = 1, z + 1, 2z + 1, .... Here, i and j denote the

iteration step and z denotes the jump of the sliding window. Here, we choose z = 40.
3. A DTW is applied to all pairs of Fi

1 and Fj
2 to stretch the two vectors into the new

vectors Fi,dtw
1 , and Fj,dtw

2 , whose Euclidean distance is the smallest. Note that, in
general, the stretched signals have lengths longer than 100, so some entries may be
repeated.
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4. Each entropy vector Fi,dtw
1 is compared to each Fj,dtw

2 . For this, the correlation coeffi-

cients ρ(Fi,dtw
1 , Fj,dtw

2 ) are calculated. The maximum value among these is taken as the
highest similarity index between the two tracks y1 and y2.

Note that since this comparison takes longer, a sliding window jump of z = 40 values
is taken, which corresponds to a jump of 2.05 s.

Figures 9 and 10 show examples of comparisons between Fi
1 and Fj

2 and Fi,dtw
1 and

Fj,dtw
2 . As in the previous case, the positions i and j with the highest similarity may differ

between the use of DTW and those without it.

Figure 8. Visual outline of the comparison approach for 5 s segments.

Figure 9. Example of entropy vectors Fi
1 and Fj

2 that showcase the highest correlation coefficient (0.90)
among all i and j segments. The red line shows the entropy vector of the first performance, the blue
line shows the entropy vector of the second performance.
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Figure 10. Example of entropy vectors Fi,dtw
1 and Fj,dtw

2 that showcase the highest correlation coeffi-
cient (0.98) among all i and j segments. The red line shows the entropy vector of the first performance,
the blue line shows the entropy vector of the second performance.

3. Comparison Results
When comparing the similarity between tracks in the dataset, the objective is to see

if performances of the same chant showcase the highest similarity between all tracks in
the dataset. For this, once the similarity measures between all tracks in the database are
computed, the following simple procedure is followed to identify the performances of the
same chant.

1. For a track yi, the similarity measures (maximum correlation coefficient) that were
computed between all songs are sorted in descending order.

2. If the top three most similar entries include a performance of the same chant, the iden-
tification is considered successful. Self-matches are, of course, excluded.

Table 1 lists the results of the comparison of the whole tracks with each other. In
addition to the use of fuzzy entropy described above, the performance of the algorithms
was also evaluated under the use of entropy, which is computed as in [13,17,19]:

H = ln(2πe) +
1
2

ln(σxxσyy − σ2
xy) (12)

where σxx and σyy are the variances of the real and imaginary part of the spectrum, and σxy

their covariance. Results without the use of the DTW step are also shown. When taking
the DTW to compare pairs of entropy vectors, the default metric is the Euclidean distance.
Yet, there are other alternative metrics that can be used, like the sum of absolute differences
(absolute), the square of the Euclidean metric (squared), and the symmetric Kullback–
Leibler metric (symmkl). These metrics are available in MATLAB’s dtw built-in function, so
the performance under these alternatives was also considered. Moreover, when computing
the DTW measure, an optional restriction has been considered, where the warping path is
limited to within Z samples of a straight line fit between the two vectors. These cases are
denoted as DTW-limZ in the table. The accuracy is also displayed for the case where the
song that is the most similar to the top is associated with the same chant.

Without the use of the DTW step, the accuracy with fuzzy entropy can reach 56% for
the top three results, and 51% for the top one result. This means that for more than half
of the recordings in the dataset, performances of the same chant indeed yield the highest
similarity among all the recordings. When considering entropy, this percentage is slightly
higher: 63% for the top three results, and 54% for the top one result. However, with the
application of the DTW and the default Euclidean distance as a metric, the accuracy
is significantly increased—up to 95% for the top three, and 90% for the top one. When
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considering the absolute distance, the results are the same as the Euclidean case for all the
tests. When considering the squared metric, the results are slightly improved to 96% for
the top three and 93% for the top one. The symmkl metric also yields good results, but as
discussed later, it is significantly slower than the other metrics. When entropy is used,
the results are around 90–92% for the top three, and around 86–87% for the top one, so the
performance is below that of fuzzy entropy. The use of DTW gives a very promising result,
although it comes at a trade-off with execution speed, as will be seen in the next section.
By limiting the warping path to Z = 100, 80, 60 values, there is an insignificant change in
performance. For Z = 40, 20, the drop becomes larger. Although the use of this constraint
can damage performance, it can help improve execution speed, as will be discussed next.

Table 1. Identification accuracy. Comparing whole tracks.

FuzzEn En

Method Metric Top 3 Top 1 Top 3 Top 1

no-DTW - 56.82% 51.25% 63.23% 54.03%

DTW Euclidean 95.54% 90.52% 91.92% 87.18%
DTW Absolute 95.54% 90.52% 91.92% 87.18%
DTW Squared 96.10% 93.03% 92.20% 86.90%
DTW Symmkl 93.59% 88.30% 90.52% 86.07%

DTW-lim100 Euclidean 95.82% 90.25% 91.64% 87.18%
DTW-lim100 Absolute 95.82% 90.25% 91.64% 87.18%
DTW-lim100 Squared 96.37% 92.75% 91.92% 87.18%
DTW-lim100 Symmkl 94.98% 89.97% 91.64% 87.46%

DTW-lim80 Euclidean 95.82% 90.25% 91.36% 86.62%
DTW-lim80 Absolute 95.82% 90.25% 91.36% 86.62%
DTW-lim80 Squared 96.37% 92.47% 91.36% 86.90%
DTW-lim80 Symmkl 94.98% 89.69% 91.36% 87.18%

DTW-lim60 Euclidean 94.98% 89.13% 91.36% 84.95%
DTW-lim60 Absolute 94.98% 89.13% 91.36% 84.95%
DTW-lim60 Squared 95.54% 91.08% 90.52% 84.95%
DTW-lim60 Symmkl 95.26% 89.97% 92.20% 85.23%

DTW-lim40 Euclidean 93.03% 86.62% 91.08% 84.67%
DTW-lim40 Absolute 93.03% 86.62% 91.08% 84.67%
DTW-lim40 Squared 93.87% 88.02% 90.25% 83.00%
DTW-lim40 Symmkl 94.70% 87.46% 89.97% 82.17%

DTW-lim20 Euclidean 86.62% 80.77% 85.79% 75.48%
DTW-lim20 Absolute 86.62% 80.77% 85.79% 75.48%
DTW-lim20 Squared 86.90% 81.05% 84.12% 73.81%
DTW-lim20 Symmkl 88.85% 81.89% 84.67% 74.09%

Table 2 lists the result of the comparison of 5 s segments between all tracks. Here,
the results for fuzzy entropy without the use of DTW are significantly improved compared
to the entire track comparison, with an accuracy of 85% for the top three and 73% for the
top one. When using entropy, the result is lower: 80% for the top three and 69% for the top
one. The use of DTW again increased the accuracy to 92% for the top three, and 85% for the
top one result in fuzzy entropy under the Euclidean distance. For entropy, the accuracy
is also increased, but it is lower than fuzzy entropy: 88% and 77%. The use of absolute
distance gives the same results as the Euclidean case. The squared and symmkl metrics give
very small variations in the performance. Here, the use of constraints on the warping path
is seen to be able to produce a slight performance improvement. One explanation behind
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this can be that this constraint limits the high repetition of some entries in the warping
path, which could falsely result in a high correlation coefficient value.

Overall, with the exception of comparing whole tracks without the use of DTW, the use
of fuzzy entropy yields better results compared to entropy. The use of different metrics in
the DTW gives small variations in the results. For simplicity, though, the default Euclidean
distance can be used.

Table 2. Identification accuracy. Comparison of 5 s intervals.

FuzzEn En

Method Metric Top 3 Top 1 Top 3 Top 1

no-DTW - 85.51% 73.53% 80.50% 69.08 %

DTW Euclidean 92.47% 85.23% 88.57% 77.99%
DTW Absolute 92.47% 85.23% 88.57% 77.99%
DTW Squared 93.59% 86.07% 87.46% 79.10%
DTW Symmkl 93.59% 86.35% 87.74% 79.66%

DTW-lim40 Euclidean 92.47% 85.23% 88.57% 78.83%
DTW-lim40 Absolute 92.47% 85.23% 88.57% 78.83%
DTW-lim40 Squared 93.59% 86.35% 87.74% 79.94%
DTW-lim40 Symmkl 93.59% 86.07 % 88.30% 81.05%

DTW-lim20 Euclidean 93.31% 86.07% 90.25% 80.77%
DTW-lim20 Absolute 93.31% 86.07% 90.25% 80.77%
DTW-lim20 Squared 93.59% 86.35% 89.41% 81.33%
DTW-lim20 Symmkl 94.42% 86.07% 88.57% 83.00%

DTW-lim10 Euclidean 96.37% 89.97% 92.75% 85.79%
DTW-lim10 Absolute 96.37% 89.97% 92.75% 85.79%
DTW-lim10 Squared 96.10% 89.69 % 93.31% 86.35%
DTW-lim10 Symmkl 95.26% 89.69 % 93.03% 87.46%

DTW-lim05 Euclidean 94.70% 90.25% 92.20% 86.62%
DTW-lim05 Absolute 94.70% 90.25 % 92.20% 86.62%
DTW-lim05 Squared 94.98% 89.69% 91.92% 87.74%
DTW-lim05 Symmkl 94.70% 88.57 % 93.03% 87.46%

DTW-lim02 Euclidean 92.75% 86.35% 92.20% 81.33%
DTW-lim02 Absolute 92.75% 86.35% 92.20% 81.33%
DTW-lim02 Squared 91.92% 86.35% 90.80% 81.05%
DTW-lim02 Symmkl 91.92% 86.35% 90.80% 81.89%

Execution Time

The execution time to compare all tracks in the dataset and derive identification results
for all different techniques when using fuzzy entropy is listed in Table 3. The tests were
carried out using MATLAB Online, using an ASUS laptop computer with the Windows 11
operating system, a 13th Gen Intel Core i5-1335U 1.30 GHz processor, and 16GB of RAM.
However, it should be noted that when running MATLAB Online, the simulations are not
performed on the computer, but on MATLAB’s cloud servers.

When comparing whole tracks, the correlation coefficient only requires 15 s for
the dataset, and around 11 min when the DTW is applied. The Euclidean, absolute,
and squared metrics in the DTW have relatively close execution times, with some seconds
in difference. The symmkl metric, on the other hand, has a significantly higher execution
time, and should thus be avoided. The execution time can be reduced when the warping
path is restricted, for Z = 100 to around 6.5 min, and even less for stricter limits, at the cost
of performance.
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When comparing 5 s segments, the time is increased to around 2 min without the DTW
step, and around 11 min with it. Different levels of path constraints from Z = 40, 20, 10, 5, 2
can further limit the execution time. The symmkl metric is again the slowest, and should
be avoided.

Of course, these execution times can be improved in the future by considering several
modifications and improvements. For example, the window sliding jump can be increased,
which improves execution time at the cost of accuracy. Another modification would be to
consider comparing only the middle part of the track for recordings that are longer than 30
s. This, though, may come at a cost of accuracy.

Table 3. Execution time (seconds).

Method Metric Whole
Track Method Metric 5 s Interval

no-DTW - 15 no-DTW - 120

DTW Euclidean 642 DTW Euclidean 651
DTW Absolute 669 DTW Absolute 650
DTW Squared 666 DTW Squared 647
DTW Symmkl 2095 DTW Symmkl 1372

DTW-lim100 Euclidean 380 DTW-lim40 Euclidean 590
DTW-lim100 Absolute 393 DTW-lim40 Absolute 603
DTW-lim100 Squared 395 DTW-lim40 Squared 608
DTW-lim100 Symmkl 1003 DTW-lim40 Symmkl 1150

DTW-lim80 Euclidean 354 DTW-lim20 Euclidean 552
DTW-lim80 Absolute 364 DTW-lim20 Absolute 557
DTW-lim80 Squared 380 DTW-lim20 Squared 557
DTW-lim80 Symmkl 917 DTW-lim20 Symmkl 883

DTW-lim60 Euclidean 326 DTW-lim10 Euclidean 546
DTW-lim60 Absolute 335 DTW-lim10 Absolute 513
DTW-lim60 Squared 351 DTW-lim10 Squared 522
DTW-lim60 Symmkl 780 DTW-lim10 Symmkl 706

DTW-lim40 Euclidean 299 DTW-lim05 Euclidean 507
DTW-lim40 Absolute 329 DTW-lim05 Absolute 497
DTW-lim40 Squared 318 DTW-lim05 Squared 511
DTW-lim40 Symmkl 585 DTW-lim05 Symmkl 611

DTW-lim20 Euclidean 262 DTW-lim02 Euclidean 496
DTW-lim20 Absolute 262 DTW-lim02 Absolute 478
DTW-lim20 Squared 279 DTW-lim02 Squared 472
DTW-lim20 Symmkl 430 DTW-lim02 Symmkl 542

4. Conclusions
In this work, a method was developed to match the performances of Greek Orthodox

chants using the fuzzy entropy of recordings in the frequency domain. With the use of
statistical measures and DTW stretching, the identification accuracy may exceed 90%.

The methodology provided in this work can be further built upon and modified to
improve its performance. Therefore, several goals are set for future studies, many of which
are currently being developed. One goal is to make a thorough comparison of the different
types of entropy that can be considered to see which is more suitable in characterizing the
hymns. Examples include cross entropy [33], phase entropy [34], and fuzzy distribution
entropy [35]. Moreover, in addition to using the correlation coefficient to evaluate similarity,
other measures could be studied, like cosine similarity. Also, the derivation of a binary
version of the entropy vector can be considered, using different binarization techniques.
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The use of a binary vector can help reduce the comparison speed, but due to carrying limited
information, it may negatively affect the accuracy. The combination of Mel frequency
cepstral coefficients and entropy is also interesting. So, in general, there are further studies
that can be performed to find a balance between the execution time for deriving the entropy
vectors, their size, the comparison method, and the accuracy. It is also of interest to test
the technique in other datasets of music genres where singing is the focus, like a capella,
or other forms of religious chanting.

Another modification that can be considered is to develop a more detailed entropy
measure. In the approach considered here, the entropy for the FFT magnitude over a whole
time window is taken, leading to an entropy feature vector that is short in size but may be
too crude to characterize more complex signals, like musical pieces. So, the limitation here
is that the vector carries limited information, especially for more complex tracks that feature
many instruments. To obtain more information, it would be better to divide the magnitude
of the FFT signal into bins for each segmented interval, like in [13,16,32]. This will result
in a matrix of entropy values, each corresponding to a time window and a frequency bin,
called the entropygram. This entropygram can then be used to design a binary fingerprint
for each track, which can be used for faster matching. Building on this, it may be possible to
consider the 2D FFT transform in the fingerprint [36] as an advanced approach to applying
image processing techniques to find similarities between performances.

So, in general, there are several improvements to be made in the future, which will
greatly increase the potential implementability of this technique to commercial applications
relevant to music identification, music teaching, and cultural tourism, especially when
considering the dataset under study. Finally, although machine learning methods were not
considered here, it would also be interesting to explore if the developed techniques could be
integrated in other AI- or machine learning-based architectures for audio characterization.

In the future, it is within the authors’ scope to implement the algorithm as a standalone
GUI, for ease of use by any interested party. There is also a long-term goal of developing a
mobile application for the algorithm, dedicated to the genre of orthodox chants, with ac-
companying historical and cultural information about each song, as well as information
about famous orthodox churches and monasteries in Greece. Seeing the rise of cultural
tourism in recent years, and the digitization of museums, historic locations, and cultural
knowledge in general, there is fruitful ground for developing applications dedicated to
the promotion of culture-related content. This will benefit a plethora of different groups,
including music listeners, musicians, sound engineers, educators, historians, and other
groups adjacent to the tourism industry. Our future studies aim at contributing further
towards that direction.

Author Contributions: Conceptualization, L.M. and S.K.G.; methodology, L.M.; software, L.M.;
validation, K.K., D.K., and S.K.G.; formal analysis, L.M., K.K., D.K. and S.K.G.; data curation, K.K.;
writing—original draft preparation, L.M., K.K. and D.K.; writing—review and editing, L.M., K.K.,
D.K. and S.K.G.; visualization, L.M.; supervision, A.D.B., S.S., S.N., C.V., P.S., M.A.M. and S.K.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was carried out as part of the project ’Recognition and direct characterization
of cultural items for the education and promotion of Byzantine Music using artificial intelligence’
(Project code: KMP6-0078938) under the framework of the Action ’Investment Plans of Innovation’
of the Operational Program ’Central Macedonia 2014 2020’, which is co-funded by the European
Regional Development Fund and Greece.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.



Computers 2025, 14, 39 15 of 16

Acknowledgments: The authors are thankful to the anonymous reviewers for their construc-
tive feedback.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wang, A. An industrial strength audio search algorithm. In Proceedings of the Ismir, Washington, DC, USA, 26–30 October 2003;

Volume 2003; pp. 7–13.
2. Son, W.; Cho, H.T.; Yoon, K.; Lee, S.P. Sub-fingerprint masking for a robust audio fingerprinting system in a real-noise environment

for portable consumer devices. IEEE Trans. Consum. Electron. 2010, 56, 156–160.
3. Borkar, N.; Patre, S.; Khalsa, R.S.; Kawale, R.; Chakurkar, P. Music plagiarism detection using audio fingerprinting and segment

matching. In Proceedings of the IEEE 2021 Smart Technologies, Communication and Robotics (STCR), Sathyamangalam, India ,
9–10 October 2021; pp. 1–4.

4. Karasavvidis, K.; Kampelopoulos, D.; Moysis, L.; Boursianis, A.D.; Nikolaidis, S.; Sarigiannidis, P.; Goudos, S.K. Recognition of
Greek Orthodox Hymns Using Audio Fingerprint Techniques. In Proceedings of the IEEE 2023 8th South-East Europe Design
Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Piraeus, Greece,
10–12 November 2023; pp. 1–6.

5. Kampelopoulos, D.; Moysis, L.; Karasavvidis, K.; Boursianis, A.D.; Goudos, S.K.; Nikolaidis, S. Byzantine Hymn Recognition
with Audio Fingerprints Resistant to Noise, Tempo and Scale Changes. In Proceedings of the IEEE 2024 13th International
Conference on Modern Circuits and Systems Technologies (MOCAST), Sofia, Bulgaria, 26–28 June 2024; pp. 1–4.

6. Su, X.; Nongpong, K. Audio Fingerprinting Based Music Recommendation Algorithm. In Proceedings of the 2023 6th International
Conference on Algorithms, Computing and Artificial Intelligence, Sanya, China, 22–24 December 2023; pp. 52–56.

7. Kishor, K.; Venkatesh, S.; Koolagudi, S.G. Audio fingerprinting system to detect and match audio recordings. In Proceedings of
the International Conference on Pattern Recognition and Machine Intelligence, Kolkata, India, 12–15 December 2023; Springer:
Berlin/Heidelberg, Germany, 2023; pp. 683–690.

8. Htun, M.T.; Oo, T.T. Broadcast Monitoring System using MFCC-based Audio Fingerprinting. In Proceedings of the 2023 IEEE
Conference on Computer Applications (ICCA), Cairo, Egypt, 28–30 November 2023; pp. 243–247.

9. Kritopoulou, P.; Stergiaki, A.; Kokkinidis, K. Optimizing human computer interaction for byzantine music learning: Comparing
HMMs with RDFs. In Proceedings of the IEEE 2020 9th International Conference on Modern Circuits and Systems Technologies
(MOCAST), Bremen, Germany, 7–9 September 2020; pp. 1–4.

10. Fang, J.T.; Day, C.T.; Chang, P.C. Deep feature learning for cover song identification. Multimed. Tools Appl. 2017, 76, 23225–23238.
11. Jin, Y.; Cai, W.; Chen, L.; Zhang, Y.; Doherty, G.; Jiang, T. Exploring the Design of Generative AI in Supporting Music-based

Reminiscence for Older Adults. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Honolulu, HI,
USA, 11–16 May 2024; pp. 1–17.

12. Tsallis, C. Entropy. Encyclopedia 2022, 2, 264–300.
13. Camarena-Ibarrola, A.; Chávez, E. Identifying music by performances using an entropy based audio-fingerprint. In Proceedings

of the Mexican International Conference on Artificial Intelligence (MICAI), Apizaco, Mexico, 13–17 November 2006.
14. Yin, C.; Li, W.; Luo, Y.; Tseng, L.C. Robust online music identification using spectral entropy in the compressed domain. In

Proceedings of the 2014 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Istanbul, Turkey,
6–9 April 2014; pp. 128–133.

15. Li, W.; Liu, Y.; Xue, X. Robust audio identification for MP3 popular music. In Proceedings of the 33rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, Geneva, Switzerland, 18–23 July 2010; pp. 627–634.

16. Camarena-Ibarrola, A.; Chávez, E. Robust Audio-Fingerprinting With Spectral Entropy Signatures; Universidad Michoacana de San
Nicolás de Hidalgo: Morelia, Mexico 2007.

17. Camarena-Ibarrola, A.; Figueroa, K.; Tejeda-Villela, H. Entropy per chroma for Cover song identification. In Proceedings of the
2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 9–11 November 2016;
pp. 1–6.

18. Ibarrola, A.C.; Chávez, E. A robust entropy-based audio-fingerprint. In Proceedings of the 2006 IEEE International Conference
on Multimedia and Expo, Toronto, ON, Canada, 9–12 July 2006; pp. 1729–1732.

19. Camarena-Ibarrola, A.; Chávez, E.; Tellez, E.S. Robust radio broadcast monitoring using a multi-band spectral entropy signature.
In Proceedings of the Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 14th Iberoamerican
Conference on Pattern Recognition, CIARP 2009, Guadalajara, Jalisco, Mexico, 15–18 November 2009; Proceedings 14; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 587–594.

20. Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst.
Rehabil. Eng. 2007, 15, 266–272.



Computers 2025, 14, 39 16 of 16

21. Zadeh, L. Fuzzy sets. Inf. Control 1965, 8, 338–353.
22. Zimmermann, H.J. Fuzzy Set Theory—And Its Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011.
23. Azami, H.; Li, P.; Arnold, S.E.; Escudero, J.; Humeau-Heurtier, A. Fuzzy entropy metrics for the analysis of biomedical signals:

Assessment and comparison. IEEE Access 2019, 7, 104833–104847.
24. Xiang, J.; Li, C.; Li, H.; Cao, R.; Wang, B.; Han, X.; Chen, J. The detection of epileptic seizure signals based on fuzzy entropy. J.

Neurosci. Methods 2015, 243, 18–25.
25. Li, P.; Karmakar, C.; Yearwood, J.; Venkatesh, S.; Palaniswami, M.; Liu, C. Detection of epileptic seizure based on entropy analysis

of short-term EEG. PLoS ONE 2018, 13, e0193691.
26. Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring complexity using FuzzyEn, ApEn, and SampEn. Med Eng. Phys. 2009,

31, 61–68.
27. Xie, H.B.; Chen, W.T.; He, W.X.; Liu, H. Complexity analysis of the biomedical signal using fuzzy entropy measurement. Appl.

Soft Comput. 2011, 11, 2871–2879.
28. Dong, C.; Rajagopal, K.; He, S.; Jafari, S.; Sun, K. Chaotification of Sine-series maps based on the internal perturbation model.

Results Phys. 2021, 31, 105010.
29. Johny Elton, R.; Vasuki, P.; Mohanalin, J. Voice activity detection using fuzzy entropy and support vector machine. Entropy 2016,

18, 298.
30. Baldini, G.; Amerini, I. An evaluation of entropy measures for microphone identification. Entropy 2020, 22, 1235.
31. Pandria, N.; Kugiumtzis, D. Testing the correlation of time series using dynamic time warping. In Proceedings of the 27th

Panhellenic Conference of Statistics, Thessaloniki, Greece, 13–15 June 2014.
32. Ramírez-Hernández, J.I.; Manzo-Martínez, A.; Gaxiola, F.; González-Gurrola, L.C.; Álvarez-Oliva, V.C.; López-Santillán, R. A

Comparison Between MFCC and MSE Features for Text-Independent Speaker Recognition Using Machine Learning Algorithms.
In Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design; Springer: Berlin/Heidelberg, Germany, 2023; pp. 123–140.

33. Laney, R.; Samuels, R.; Capulet, E. Cross entropy as a measure of musical contrast. In Proceedings of the Mathematics and
Computation in Music: 5th International Conference, MCM 2015, London, UK, 22–25 June 2015; Proceedings 5; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 193–198.

34. Rohila, A.; Sharma, A. Phase entropy: A new complexity measure for heart rate variability. Physiol. Meas. 2019, 40, 105006.
35. Zhang, T.; Chen, W.; Li, M. Fuzzy distribution entropy and its application in automated seizure detection technique. Biomed.

Signal Process. Control 2018, 39, 360–377.
36. Seetharaman, P.; Rafii, Z. Cover song identification with 2D Fourier transform sequences. In Proceedings of the 2017 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017;
pp. 616–620.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Music Identification
	Related Works
	Motivation

	Characterization of Byzantine Chants Using Fuzzy Entropy
	The Dataset
	Signal Preprocessing
	Computation of Fuzzy Entropy
	Extraction of Fuzzy Entropy Measure
	Track Comparison
	Comparison of Whole Tracks
	Comparison of Segments


	Comparison Results
	Conclusions
	References

