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Abstract: Japan faces a significant labor shortage due to an aging population, particularly
in the agricultural sector. The rising average age of farmers and the declining participa-
tion of younger individuals threaten the sustainability of farming practices. These trends
reduce the availability of agricultural labor and pose a risk to lowering Japan’s food self-
sufficiency rate. The reliance on food imports raises concerns regarding price fluctuations
and sanitation standards. Moreover, the challenging working conditions in agriculture and
a lack of technological innovation have hindered productivity and increased the burden
on the existing workforce. To address these challenges, “smart agriculture” presents a
promising solution. By leveraging advanced technologies such as sensors, drones, the In-
ternet of Things (IoT), and automation, smart agriculture aims to optimize farm operations.
Real-time data collection and AI-driven analysis play a crucial role in monitoring crop
growth, assessing soil conditions, and improving overall efficiency. This study proposes
enhancements to the YOLO (You Only Look Once) object detection model to develop an
automated tomato harvesting system. This system uses a camera to detect tomatoes and
assess their ripeness for harvest. Our objective is to streamline the harvesting process
through AI technology. Our improved YOLO model integrates two novel loss functions to
enhance detection accuracy. The first, “VSR”, refines the model’s ability to classify tomatoes
and determine their harvest readiness. The second, “SBCE”, enhances the detection of
small tomatoes by training the model to recognize a range of object sizes within the dataset.
These improvements have significantly increased the system’s detection performance. Our
experimental results demonstrate that the mean Average Precision (mAP) of YOLOv7-tiny
improved from 61.81% to 70.21%. Additionally, the F1 score increased from 0.61 to 0.71 and
the mean Intersection over Union (mIoU) rose from 65.03% to 66.44% on the tomato dataset.
These findings underscore the potential of our proposed system to enhance efficiency in
agricultural practices.

Keywords: object detection; YOLO; loss

1. Introduction
Recently, the labor shortage caused by Japan’s aging population has become a critical

issue. This challenge is particularly severe in the agricultural sector, where farmers struggle
with a significant workforce decline. The sustainability of farming practices is under threat,
primarily due to the aging population. According to data from the Ministry of Agriculture,
Forestry and Fisheries [1], the number of farmers has decreased from 1.302 million in 2020
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to 1.114 million in 2024. In addition, the average age of farmers has increased from 67.8 to
68.7 over the same period.

Furthermore, slow technological innovation has hindered productivity while increas-
ing workloads, which has exacerbated the labor shortage in agriculture. These factors
collectively contribute to the steady decline in the agricultural workforce. To address these
challenges, “smart agriculture” presents a promising solution. Smart agriculture leverages
advanced information technology and data analysis to optimize farming processes. This
includes using sensor technology, drones, the Internet of Things (IoT), and automation. For
instance, real-time data collection via sensors and AI-based analysis enables precise crop
growth and monitoring of soil conditions. Additionally, using Unmanned Aerial Vehicles
(UAVs) and automated tractors enhances workflow efficiency.

To further enhance agricultural productivity, AI is being implemented to automate
various tasks, such as visual inspection and condition checking [2–4]. In this study, we aim
to apply AI for agricultural products [5]. This paper focuses on developing an AI-based
system for detecting tomato leaf diseases. This system enables farmers to automatically
monitor crop conditions, reducing their workload and allowing for more efficient resource
allocation.

We employ an AI model called “You Only Look Once” (YOLO) to automate the detec-
tion of tomato leaf diseases. YOLO is a widely recognized object detection model known
for its high detection speed, which makes it well suited for industrial applications. Its speed
enables the real-time inspection of large volumes of crops, while its lightweight design
reduces initial costs and power consumption compared to other AI models. Specifically, we
use YOLOv7, a model in the YOLO series that offers a balance of superior detection perfor-
mance and compact size. Our proposed improvements enhance YOLOv7’s effectiveness for
agricultural applications. This paper introduces two key enhancements to YOLOv7. First,
we propose an improvement to the object loss function (Lossobj) that trains the model to
better account for the distribution of object sizes in the dataset, placing more emphasis on
each object. Second, we introduce a novel classification loss function to train the model’s
classification head, thereby increasing the reliability of its predictions. By optimizing the
separation between class dimensions, this approach reduces classification errors.

These enhancements are integrated into YOLOv7 to improve the performance in
detecting tomato leaf diseases, as shown in Figure 1. We evaluate the effectiveness of our
proposed methods using the PASCAL VOC dataset, commonly used for benchmarking
object detection models. The results highlight the quantitative benefits of our approach,
underscoring its potential for improving agricultural efficiency.

Figure 1. Comparison between our proposal and base model (YOLOv7-tiny).
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In summary, the major contributions of this paper are as follows:

• Developing a new loss function to classify the condition of tomatoes more correctly.
• Developing a new loss function to detect small tomato leaf disease efficiently.

The remainder of this paper is structured as follows: Section 2 reviews related work
on the current state of tomato leaf disease detection. Section 3 introduces our proposed
loss function. Section 4 describes the dataset used in this study. Section 5 presents the
results, and Section 6 discusses their implications. Finally, Section 7 concludes this paper
and outlines directions for future research.

2. Related Work
This section explains the related works of this study.

2.1. Object Detection

Object detection is a key technology in image processing [6]. It identifies and classifies
objects within images, and unlike image recognition, it can detect multiple types of objects
in a single image. This versatility enables object detection models to be applied across
a wide range of scenarios [7]. For example, automated driving systems rely on onboard
cameras to detect pedestrians and vehicles, while manufacturing plants employ object
detection to automatically inspect products and parts for external damage.

Object detection models are generally categorized based on their detection workflows.
The first category is the two-stage detector, exemplified by models such as R-CNN [8]
and Faster R-CNN [9]. These models achieve high detection accuracy but often sacrifice
detection speed, making them less suitable for applications that require real-time perfor-
mance. The second category is the one-stage detector, represented by models like YOLO
and SSD [10]. These models prioritize high detection speed but typically offer slightly lower
detection accuracy than two-stage detectors. Choosing the appropriate model depends
on the specific use case and the dataset’s characteristics. Despite its advantages, object
detection has a significant drawback: the time-intensive process of creating training data.
Each image in the training dataset must be manually annotated with detection targets,
which requires substantial effort and time. This challenge makes generating large-scale
datasets suitable for training effective object detection models difficult.

2.2. You Only Look Once

YOLO (You Only Look Once) [11] is one of the most popular object detection models,
first introduced by Joseph Redmon in 2015. Compared to models such as R-CNN, Effi-
cientDet [12], and DETR [13], YOLO stands out for its lightweight architecture and faster
detection speed, making it well suited for real-time applications.

Over the past decade, researchers have continuously enhanced YOLO, resulting in
a series of improved versions [14–16]. Various techniques have been employed to refine
these models, including advanced feature extraction methods and modifications to training
targets. These improvements aim to optimize the training process and further enhance
YOLO’s detection accuracy, speed, and overall efficiency.

2.2.1. Training

YOLO extracts image features through convolution operations applied to the training
dataset. For example, Figure 2 shows the flow of YOLO’s object detection on one of
the person images of PASCAL VOC dataset. The backbone of YOLO is composed of
convolutional blocks that are responsible for extracting these features. These features,
known as feature maps, acquire a broader receptive field as the convolutional layers are
stacked. However, smaller features may be lost as the receptive field increases.
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Figure 2. YOLO uses image feature vector (x) and the parameter (W). x is made from the images
in the backbone and neck parts. W is the parameter of class representative vectors in the head part.
YOLO compares the similarity between these vectors.

To address this issue, the neck component of YOLO is designed to share information
among feature maps, combining them to generate feature maps that retain a variety of
information. Based on these enriched feature maps, YOLO calculates loss scores and
updates the model parameters iteratively. This constitutes the training procedure for YOLO.
YOLO employs three key loss functions as the foundation for parameter updates.

LIoU is a score that evaluates the model’s ability to predict the object’s shape. YOLO
predicts the shape of an object for each cell in an image divided into N × N grids. YOLO
assumes that each cell represents the center of an object and predicts the object’s height
(h) and width (w). To assess the accuracy of the predicted shape, YOLO uses a score called
the Intersection over Union (IoU), as shown in Figure 3. IoU is the ratio of the intersection
between the Ground Truth (GT) and the Prediction (Pr). IoU can be written as follows:

IoU =
n

∑
i=1

n

∑
j=1

Intersectionij

GT + Prij − Intersectionij
, (1)

LIoU can be written as follows:

LIoU = 1 − IoU, (2)

Considering various information such as the aspect ratio, many methods are proposed
for IoU to predict more correctly [17–19].

Lobj is a score that evaluates the model’s ability to predict the presence or absence of
an object in the image. YOLO predicts the presence or absence of an object for each image
cell divided into N × N grids. YOLO predicts whether an object is present in the image by
determining whether a cell contains part of an object. Lobj is defined using Binary Cross
Entropy (BCE) with the Ground Truth (GT) of each cell and the model’s Prediction (Pr).
Lobj can be written as follows:

Lobj =
n

∑
i=1

n

∑
j=1

−(GTij ∗ log(Prij) + (1 − GTij) ∗ log(1 − Prij)), (3)

With various methods such as scaling, BCE is improved as a new Lossobj [20,21].
Lcls is a score that evaluates the model’s ability to classify objects. YOLO predicts

the object class for each image cell divided into N × N grids. YOLO receives the feature
map from the neck, and the head creates a vector x containing d dimensions per cell. The
head also has a vector W with d dimensions for each class. By calculating each cell’s class
information from these two vectors, the head predicts which objects are associated with
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each cell. Lcls is defined using Cross Entropy (CE) with the Ground Truth (GT) of each cell
and the model’s Prediction (Pr). Lcls is written as follows:

Lcls =
n

∑
i=1

n

∑
j=1

c

∑
k=1

−(GTij ∗ log(Pijk) + (1 − GTij) ∗ log(1 − Pijk)), (4)

Figure 3. About IoU .

2.2.2. Test

YOLO uses the optimized parameters obtained during training to calculate the final
results during testing. For object detection, YOLO combines two outputs, as shown in
Figure 4. The first output relates to classification and objectness, which are calculated using
the vectors x, the parameter W and the objectness score. YOLO computes this output for
each image cell divided into N × N grids. The second output pertains to the shape of the
object. By applying non-maximum suppression to combine the predictions, assuming each
cell as the object’s center, YOLO accurately predicts the object’s shape. By calculating and
integrating these outputs simultaneously, YOLO, as a one-stage detector, achieves faster
detection speeds.

Figure 4. YOLO’s output.

3. Method
In this paper, we propose two improvements to the loss function (Loss) to train YOLO-

based models. By incorporating these new loss components into the training process and
optimizing the training targets, our model achieves superior detection performance as an
industrial AI compared to baseline models.

In the agricultural sector, where tasks are often large-scale and resource-intensive,
smaller model sizes are essential for reducing installation costs and power consumption.
However, small AI models face challenges such as limited expressive power and lower
detection accuracy due to having fewer parameters. While larger models can enhance
expressive power by training on extensive datasets, achieving high accuracy with smaller
models requires optimal parameter tuning and advanced loss functions to enhance learning
efficiency.
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In addition, industrial data sets, particularly in agriculture, are often imbalanced and
have limited images due to the challenges associated with data collection and preparation.
Training with such datasets presents unique challenges compared to training with large-
scale datasets. In this context, each back-propagation step becomes significantly more
impactful, highlighting the importance of designing loss functions and training strategies
to maximize the effectiveness of small, imbalanced datasets.

3.1. Vector Similarity Regularization

To solve this problem, the first one, referred to as “Vector Similarity Regulariza-
tion (VSR)”, incorporates head parameter into the loss function. As shown in Section 2,
the head classifies objects in images using the vectors x and the parameter W. Classifi-
cation is performed by comparing the similarity between these matrix. Therefore, the
parameter W is regarded as the representative class vector. In practice, YOLO compute
class probabilities for each N × N segmented cell of the image. The object’s shape and
classification are detected simultaneously by predicting which object each cell belongs to.
When the values of the parameter W are too similar across classes, the model’s classification
ability is weakened. Regularization is applied to impose certain constraints and guide the
learning process. Such studies have been proposed along with various constraints [22]. Our
proposal trains YOLO to improve classification (Precision) by eliminating the similarity
of the elements of the parameter W across classes. Cosine similarity, a widely adopted
measure for evaluating vector distances, is used to evaluate the similarity between the
vector x and the parameter W.

Cosine similarity can be written as follows:

cos(Wi, Wj) =
Wi · Wj

∥Wi∥∥Wj∥
, (5)

An example of the calculation is shown in Figure 5. When the dataset contains three
classes and the head has three dimensions per representative class vector, VSR trains the
sum of θa, θb, and θc to increase. The cosine similarity cos(Wi, Wj) represents the similarity
between each pair of dimensions. Since the diagonal elements of a matrix are always 1, the
average of the off-diagonal elements is calculated.

Figure 5. Vector Similarity Regularization (VSR): VSR regards the parameter W as representative
class vectors. LVSR trains W to separate representative features between each class.

Algorithm 1 illustrates the flow for calculating LVSR. This proposal uses representative
class vectors, with one vector being compared for similarity to the others. The similarity
is calculated only for the corresponding dimensions. After computing all similarities, the
average of these values is used as the final score.
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Algorithm 1 Vector Similarity Regularization

Input: Wij: Head vectors per classes
Output: LVSR

1: l = []
2: for i in c do
3: for j in c do
4: if i ̸= j then
5: l.append(cos(Wi,Wj))
6: end if
7: end for
8: end for
9: LVSR = average(l) + 1

By training to minimize the cosine similarity between each vector toward −1, our
proposal eliminates the similarity of elements between class vectors. Since the loss function
requires a non-negative value, we add +1 to ensure that the minimum value is 0 and define
LVSR accordingly. LVSR can be written as follows:

LVSR = average(cos(Wi, Wj)) + 1. (6)

This proposal trains YOLO to learn a representative vector for each class, preventing
multiple vectors from being similar to vector x. Only one class vector is similar to an object,
which can improve classification accuracy. This proposal is classified as “Metric Learning”.
While various methods have been proposed in the field of “Image Recognition [23–25]”,
previous YOLO proposals do not adopt it. One reason for this is the training method used
in YOLO. YOLO calculates the loss per N × N cell within the image. Therefore, the entire
image feature cannot be treated at one time. This paper incorporates distance learning into
YOLO using head vectors instead of image feature vectors. The weights are defined as
“lossobj:losscls:lossiou(:lossaux) = 10:1:2(:1)” for the PASCAL VOC dataset. This ratio remains
in the open-source code. On the other hand, the lossaux ratio is defined by us. We set the
weights such that the auxiliary losses are small compared to the other losses. When this
loss is too large, the class information is broken, and detection will be difficult. To achieve
this, we carefully choose the weight ratios.

3.2. Scaled Binary Cross Entropy

The second one, referred to as “Scaled Binary Cross Entropy (SBCE)”, integrates object
size into Lossobj. Industrial datasets such as agricultural data often exhibit an imbalanced
distribution of object sizes, as shown in Figure 6. This imbalance must be addressed when
aiming to train AI models more efficiently. On the other hand, Binary Cross Entropy (BCE)
is used to calculate the loss regardless of object size. BCE can be written as follows:

BCE =
n

∑
i=1

n

∑
j=1

−(GTij ∗ log(Prij) + (1 − GTij) ∗ log(1 − Prij)), (7)

BCE is not suitable for training unbalanced and small data because it does not consider
an uneven distribution of object sizes. Also, excessive back-propagation with small datasets
should be avoided, as it can lead to overfitting. When a user implements AI into industries
such as agriculture, users often need to create custom datasets. These original datasets,
however, often suffer from imbalances in object size distribution. To address this issue, our
proposed Scaled Binary Cross Entropy (SBCE) method incorporates object size into the
loss function, emphasizing the importance of each object during training. Adapting the
training process to fit the characteristics of the dataset can help to mitigate data imbalance.
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As mentioned earlier, these original datasets often contain a large number of small objects.
Treating large and small objects equally under these conditions can negatively affect the
training process. To remedy this, SBCE scales Lossobj for small objects, prioritizing their
detection. Larger loss values lead to greater parameter adjustments, making it easier for
the model to detect small objects.

Figure 6. Examples of datasets with poor distributions for training.

SBCE can be written as follows:

SBCE =
n

∑
i=1

n

∑
j=1

−(GTij ∗ log(Prij)
r + (1 − GTij) ∗ log(1 − Prij)

r), (8)

To prioritize smaller objects during training, the SBCE scales the BCE using r. It
becomes bigger than 1 with sizes below a predefined threshold to scale Lossobj. The smaller
the object size, the larger the value of r, and the larger the value of Loss. Since larger values
of Lossobj lead to more significant parameter updates, r indicates the importance of that
object in training. To determine this threshold, SBCE needs to define M before training
as shown in Algorithm 2. M represents the maximum object size for which the Lossobj is
scaled. When YOLO adopts SBCE, the object sizes in the Ground Truth (GT) dataset must
be computed. The object size percentage in the images (w × h/W × H) is pre-calculated
and used during training. For GT objects with sizes larger than M, r is set to 1, and the
standard BCE is applied. In contrast, for GT objects smaller than M, r is set to a value
between 1 and 2, and Lossobj is scaled accordingly.

Algorithm 2 Scaled Binary Cross Entropy

Input: : M:maxsize, GT:Ground Truth, Pr:Prediction
Output: Lobj

1: for image in Dataset do
2: get image width as W
3: get image height as H
4: imagesize = W ∗ H
5: for object in image do
6: get object width as w
7: get object height as h
8: objectsize = w ∗ h/imagesize
9: if objectsize < M then

10: r = 2 − objectsize/M
11: else if M ≤ objectsize then
12: r = 1
13: end if
14: Lobj = SBCE(GT, Pr, r)
15: end for
16: end for
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The main advantage of the proposed method is the flexibility to adjust the scaling
range according to the characteristics of the dataset. In this paper, we define an appropriate
range for datasets that contain many small objects. When the dataset contains many large
objects and the user aims to detect larger objects, the suitable range can be specified for the
size of the object.

4. Dataset and Hyper-Parameter
In this study, we evaluate our proposed methods using two datasets. First, our model

is trained on the PASCAL VOC dataset, which is widely used for quantitative evaluation.
Additionally, we train our model on a tomato leaf disease dataset to demonstrate its
application in industrial AI.

4.1. PASCAL VOC Dataset

Our proposed methods are evaluated using the PASCAL VOC dataset [26], which
enables quantitative evaluation. The dataset contains 8069 training images and 997 test
images, providing a reliable basis for assessing the proposed methods. Additionally, the
dataset includes 20 object classes (e.g., airplane, person, dog, etc.) , as shown in Figure 7,
further supporting the quantitative evaluation of the proposed approaches.

Figure 7. PASCAL VOC dataset.

4.2. Tomato Leaf Disease Dataset

This dataset consists of images of diseased tomato leaves [27]. These diseases are
classified into six types (bacterial spot, black spot, early blight, late blight, leaf mold, and
target spot). Leaves without disease symptoms are labeled as healthy , as shown in Figure 8.
The model is trained using 645 images, with the results evaluated on 61 inference images
and 31 test images. All image sizes are 640 × 640 pixels.

Figure 8. Tomato leaf disease dataset.
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4.3. Hyper-Parameter

YOLO has various hyper-parameters for training, which are determined based on the
size of the training data and the model. For the tomato leaf disease dataset, we set the
batch size to 8, the number of epochs to 400, and the input shape to 640 × 640 pixels. For
the PASCAL VOC dataset, the batch size is set to 64, the number of epochs to 500, and the
input shape to 640 × 640 pixels. The optimizer used is Adam, and weight decay is adjusted
from 1 × 10−3 to 1 × 10−5 using a cosine annealing function.

5. Results
In this paper, YOLOv7 is used as the baseline model due to its optimal dimensionality

for representing vectors. When the dimensionality is too large, the VSR may easily produce
a cosine similarity of −1. Conversely, when the dimensionality is too small, the VSR cannot
achieve a cosine similarity of −1 without distorting the vector. To achieve these conditions,
we balance YOLOv7.

As mentioned earlier, this paper trains and evaluates the proposed method on two
datasets: the PASCAL VOC dataset and the tomato leaf dataset. Table 1 presents the
evaluation results of the proposed method using the PASCAL VOC dataset.

Table 1. Results of PASCAL VOC dataset.

Model mAP50 (%) F1 mIoU (%)

YOLOv7-tiny 81.51 0.766 52.91
+VSR 83.53 0.802 54.32

+SBCEmaxobj 81.96 0.787 53.47
+VSR+SBCEmaxobj 83.53 0.806 54.24

YOLOv7 97.68 0.966 64.87
+VSR 97.71 0.967 64.77

+SBCEmaxobj 97.56 0.966 64.62
+VSR+SBCEmaxobj 97.57 0.965 64.83

Additionally, Tables 2 and 3 present the evaluation results of the proposed method
using the tomato leaf disease dataset. Table 2 defines the size of the largest object in the
dataset as M for SBCE. Table 3 also defines the largest object size as M for SBCE, focusing
on the detection of smaller disease symptoms that are more critical to identify, as shown
in Figure 9. Tables 4 and 5 present the evaluation results between proposed method and
existing method on the tomato leaf disease dataset. Finaly, Table 6 present the ablation
study about wVSR, and Table 7 compares between our model and existing models on tomato
leaf disease dataset.

Table 1 shows that the loss improvement of our proposed methods is effective for the
PASCAL VOC dataset. Compared to the base model (YOLOv7-tiny and YOLOv7), VSR
improved the mAP of YOLOv7-tiny from 81.51% to 83.53% and the mAP of YOLOv7 from
97.68% to 97.71%. Additionally, SBCE improved the map of YOLOv7-tiny from 81.51%
to 81.96%. When both proposed methods are applied together, the mAP of YOLOv7-tiny
improved from 81.51% to 83.53%.

Table 2 demonstrates that the loss improvement achieved by the proposed method
is effective for the tomato leaf disease dataset. Compared to the base models (YOLOv7-
tiny and YOLOv7), VSR improved the mAP of YOLOv7-tiny from 61.81% to 68.16%.
Additionally, SBCE improved the mAP of YOLOv7-tiny from 61.81% to 68.55% and the
mAP of YOLOv7 from 70.60% to 74.27%. When both proposed methods are applied
together, the mAP of YOLOv7-tiny improved from 61.81% to 68.95%, and the mAP of
YOLOv7 improved from 70.60% to 73.24%.
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Figure 9. The distribution of tomato leaf disease dataset.

Table 2. Results of tomato leaf disease dataset, which defines max object size as M.

Model mAP50 (%) F1 mIoU (%)

YOLOv7-tiny 61.81 0.61 65.03
+VSR 68.16 0.71 63.83

+SBCEmaxobj 68.55 0.64 65.80
+VSR+SBCEmaxobj 68.95 0.70 65.30

YOLOv7 70.60 0.66 65.98
+VSR 69.35 0.70 48.83

+SBCEmaxobj 74.27 0.75 64.58
+VSR+SBCEmaxobj 73.24 0.73 65.69

Table 3 demonstrates that the loss improvement achieved by the proposed method
is effective for the tomato leaf disease dataset. Compared to the base models (YOLOv7-
tiny and YOLOv7), VSR improved the mAP of YOLOv7-tiny from 68.16% to 61.81%.
Additionally, SBCE improved the mAP of YOLOv7-tiny from 63.16% to 61.81% and the
mAP of YOLOv7 from 70.60% to 71.95%. When both proposed methods are applied
together, the mAP of YOLOv7-tiny improved from 61.81% to 70.21%, and the mAP of
YOLOv7 improved from 70.60% to 73.09%.

Table 3. Results of tomato leaf disease dataset, which defines max disease size as M.

Model mAP50 (%) F1 mIoU (%)

YOLOv7-tiny 61.81 0.61 65.03
+VSR 68.16 0.71 63.83

+SBCEmaxdis 63.16 0.58 65.67
+VSR+SBCEmaxdis 70.21 0.71 66.44

YOLOv7 70.60 0.66 65.98
+VSR 69.35 0.70 64.20

+SBCEmaxdis 71.95 0.74 65.47
+VSR+SBCEmaxdis 73.09 0.75 64.00

Figures 10 and 11 show the results of disease detection in the image. Our proposed
methods enable the detection of diseases on leaves in the background of the images, which
YOLOv7-tiny fails to detect.
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Figure 10. Comparison of image results on YOLOv7-tiny.

Figure 11. Detection results on YOLOv7 with our proposal.

As shown in Table 4, our proposed method achieves higher detection performance
compared to existing methods. While focal loss reduces the mAP from 61.81% to 49.42%,
our proposed method improves the mAP from 61.81% to 68.55%. Additionally, as shown in
Table 5, the detection accuracy for leaf mold is particularly improved with both SBCEmaxdis

and SBCEmaxobj on YOLOv7.

Table 4. Comparison results of tomato Leaf disease dataset with existing loss functions.

Model mAP50 (%) F1 mIoU (%)

YOLOv7-tiny 61.81 0.610 65.03
+Focal Loss 49.42 0.376 64.81
+SBCEmaxdis 63.16 0.580 65.67
+SBCEmaxobj 68.55 0.640 65.80
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Table 5. Evaluation results of SBCEmaxobj and SBCEmaxdis on tomato leaf disease dataset.

Model Class AP50 (%) F1 Recall (%) Precision (%)

Bacterial Spot 50.00 0.67 50.00 100.00
Black Spot 59.68 0.50 35.71 83.33

Early Blight 84.33 0.86 84.85 87.50
YOLOv7 Healthy 100.00 1.00 100.00 100.00

Late Bright 80.21 0.73 60.00 92.31
Leaf Mold 30.00 0.40 33.33 50.00
Target Spot 90.00 0.89 100.00 80.00

Bacterial Spot 50.00 (±0) 0.67 (±0) 50.00 (±0) 100.00 (±0)
Black Spot 52.67 (−7.01) 0.55 (+0.05) 42.86 (+7.15) 75.00 (−8.33)

Early Blight 79.36 (−4.97) 0.79 (−0.07) 81.82 (−3.03) 77.14 (−10.36)
+SBCEmaxobj Healthy 100.00 (±0) 1.00 (± 0) 100.00 (±0) 100.00 (±0)

Late Bright 77.89 (−2.32) 0.78 (+0.05) 70.00 (+10.00) 87.50 (−4.81)
Leaf Mold 60.00 (+30.00) 0.73 (+0.33) 66.67 (+33.34) 80.00 (+30.00)
Target Spot 100.00 (+10.00) 0.73 (−0.16) 100.00 (±0) 57.14 (−22.86)

Bacterial Spot 50.00 (±0) 0.50 (−0.17) 50.00 (±0) 50.00 (−50.00)
Black Spot 52.77 (−6.91) 0.57 (+0.07) 42.86 (+7.15) 85.71 (+2.38)

Early Blight 82.99 (−1.34) 0.86 (±0) 81.82 (−3.03) 90.00 (+2.50)
+SBCEmaxdis Healthy 100.00 (±0) 0.92 (−0.08) 85.71 (−14.29) 100.00 (±0)

Late Bright 77.86 (−2.35) 0.78 (+0.05) 70.00 (+10.00) 87.50 (−4.81)
Leaf Mold 56.67 (+26.67) 0.73 (+0.33) 66.67 (+33.34) 80.00 (+30.00)
Target Spot 83.33 (−6.67) 0.80 (−0.09) 100.00 (±0) 66.67 (−13.33)

Table 6 presents the ablation results for the Laux weight. With a weight of 0.2, our VSR
achieves an mAP from 81.51% to 83.53% on the PASCAL VOC dataset. Other weight values
also achieve higher mAP, such as 82.42% and 82.20%. In addition, all weights show a better
mAP with SBCE on yolov7-tiny.

Table 6. Ablation study of Laux weight on PASCAL VOC dataset.

Model mAP50 (%) F1 mIoU (%)

YOLOv7-tiny 81.51 0.766 52.91

+VSR(w = 0.1) 82.42 0.786 54.29
+VSR(w = 0.1)+SBCE 82.71 0.804 54.05

+VSR(w = 0.2) 83.53 0.802 54.32
+VSR(w = 0.2)+SBCE 83.53 0.806 54.24

+VSR(w = 0.3) 82.20 0.770 52.78
+VSR(w = 0.3)+SBCE 82.60 0.794 53.47

Table 7 presents the results of our proposed methods and existing YOLO series models.
When compared to other YOLO models with similar architectures, our proposed methods
achieve higher mAP and F1 scores.

Table 7. Comparison results of our proposed methods with existing models on PASCAL VOC dataset.

Model mAP50 (%) F1

YOLOX-tiny 64.57 0.548
YOLOX-nano 79.47 0.747
YOLOv7-tiny 81.51 0.766
YOLOv8-nano 79.73 0.768

YOLOv8-s 82.70 0.813

Ours (VSR+SBCE) 83.53 0.802
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6. Discussion
Our proposed methods demonstrate improved performance on the PASCAL VOC and

tomato leaf disease datasets. As shown in Table 1, YOLOv7-tiny shows better performance
on the PASCAL VOC dataset with our proposed enhancements. However, applying SBCE
slightly reduces the performance of YOLOv7. This result suggests that, with sufficiently
large datasets and model sizes, YOLOv7 can achieve satisfactory performance without
additional training adjustments, such as head vector optimization using VSR. Furthermore,
the 20-class configuration of the PASCAL VOC dataset increases the complexity of VSR
training. For SBCE, the wide variation in object sizes within a single class, combined with a
large number of training samples, makes weighted back-propagation less effective. These
factors explain the limited improvements observed with our methods on the PASCAL
VOC dataset.

Conversely, as shown in Table 2, our proposed methods are highly effective when
applied to smaller datasets and models. Smaller models, such as YOLOv7-tiny, naturally
struggle with expressive power due to their limited number of parameters. However,
VSR facilitates the creation of more optimal parameters, compensating for this limitation.
Additionally, SBCE effectively weights back-propagation, which is especially beneficial for
datasets with limited training samples, where each back-propagation step carries greater
significance.

For these reasons, YOLOv7-tiny, with its smaller model size, achieved a significant
improvement in mean Average Precision (mAP) of 7.14%. Similarly, YOLOv7 also showed
an improvement in mAP of 2.64%. These results emphasize the efficacy of our proposed
methods, especially in scenarios involving small models and limited datasets.

Table 3 presents the results of adjusting the scaling range of SBCE from the maximum
object size in the dataset to the maximum disease size. Reducing the scaling range makes
the weighted values relatively more significant, which helps to clarify the training target
and leads to more efficient training. Compared to the results in Table 2, this adjustment
improved the mean Average Precision (mAP) for YOLOv7 from 68.95% to 70.21%.

This improvement is likely influenced by inadequate annotations, as illustrated in
Figure 12. For example, detecting multiple diseases in a single annotated image, as shown
in the “Train Image” example, can lead to false positives, which negatively impact the
training process.

Figure 12. An example of poor annotation in tomato leaf disease dataset.

As shown in Table 4, our proposed methods achieve higher detection results compared
to existing methods. Focal loss is a method that considers confidence for training. However,
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focal loss may not be suitable for training datasets that contain multiple similar classes,
such as different disease types.

Additionally, Table 5 compares the results across different classes. SBCE enhances Lobj,
allowing the model to detect more objects. However, the smaller scaling range and the lack
of scaling for the healthy (leaf) loss contribute to inadequate training and lower accuracy in
some cases. These challenges highlight the challenges of improving detection performance
with limited and unbalanced datasets.

Table 6 presents the ablation results of Laux weight. The results highlight the impor-
tance of selecting an appropriate value. Values that are too small reduce the effectiveness
of VSR, while values that are too high increase the difficulty of training VSR. Therefore, it is
crucial to define an optimal value for the Laux weight. To prevent parameter breakdowns
as shown in Figure 13 during YOLO training, this weight should be set to its optimal value.

Figure 13. When YOLO trains with high Laux weight like 0.50, head parameter become unstable.

Based on these findings, we conclude that our proposed method is most effective
when applied to YOLOv7-tiny, as shown in Table 7. This model benefits the most from the
optimized training process, leading to significant improvements in both detection efficiency
and accuracy.

7. Conclusions
This paper proposes two loss improvement methods to enhance detection performance

on industrial datasets. Industrial datasets are often imbalanced and contain a limited num-
ber of images due to challenges in data preparation. Training on such datasets requires
careful optimization, as each back-propagation step is more significant than training on
large-scale datasets. Additionally, small AI models, favored for agricultural applications
due to their lower cost and energy requirements, have fewer parameters compared to
large-scale AI models. This limitation requires more precise parameter tuning to achieve
satisfactory performance. To address these challenges, we propose the following improve-
ments: “VSR” optimizes class classification by separating the head vector values for each
class, thereby reducing false positives and improving prediction accuracy; “SBCE” incor-
porates object size into the training process, ensuring that the training is appropriately
tailored to the specific characteristics of the dataset. This approach enhances the model’s
ability to detect objects of varying sizes in imbalanced datasets.

By integrating these improvements, our proposed method enhances the detection
accuracy of compact models on imbalanced industrial datasets, making it particularly
suitable for applications in agriculture and other industries where data constraints are
common. In future work, we plan to further validate the effectiveness of our methods
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through quantitative comparisons across various model architectures and datasets. This
will provide deeper insights into the broader applicability of our approach.
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