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Abstract: This paper proposes a novel framework for solving the portfolio selection problem. This
framework is excogitated using two newly parameters obtained from an existing basic mean variance
model. The scheme can prove entirely advantageous for decision-making while using computed
values of these significant parameters. The framework combines effectiveness of the mean-variance
model and another significant parameter called Conditional-Value-at-Risk (CVaR). It focuses on
extracting two newly parameters viz. αnew and βnew, which are demarcated from results obtained
from mean-variance model and the value of CVaR. The method intends to minimize the overall cost,
which is computed in the framework using quadratic equations involving these newly parameters.
The new structure of ANFIS is designed by changing existing structure of ANFIS and this new
structure contains six layers instead of existing five-layered structure. Fuzzy sets are harnessed for the
design of the second layer of this new ANFIS structure. The output parameter acquired from the sixth
layer of the new ANFIS structure serves as an important index for an investor in the decision-making.
The numerical results acquired from the framework and the new six-layered structure is presented
and these results are assimilated and compared with the results of the existing ANFIS structure.

Keywords: portfolio selection; conditional-value-at-risk; Lagrangian multiplier; adaptive neuro fuzzy
inference system; cuckoo intelligence algorithm

1. Introduction

The core pursuit in the portfolio selection issue is to seek for an optimal solution that can be used
by an investor for making a decision on investing a stipulated amount, provided that a set of assets or
securities is disposed. Primarily, a portfolio may be defined in terms of finding a solution among the
numerous ways for distributing this invested amount between different assets. A prevalent model
named a mean-variance model for finding an appropriate solution of the above-mentioned portfolio
selection case has been presented by Markowitz [1]. The overall return of a portfolio is characterized in
terms of mean value of the gain of the investments and risk amidst different investments [1]. An eligible
optimization solution can be characterized in terms of portfolios, which seek the minimal risk for a
disposed of the value of return. Moreover, for a disposed of the mean value of return, an eligible
optimization solution confers the excellent optimal way of investing this amount. Nevertheless,
a constraint, which will ensure an optimal investment made for a variety of assets, is lacking in the
above-mentioned model. A description of another constraint that is capable of binding the limit
for the investing amount is also not defined in the above-mentioned model. These constraints play
a significant role for an investor; therefore, to overcome these deficiencies, the constraints must be
included in the changed framework. An effective way of contriving a new framework is put forward
in this paper, so that an efficient solution for this optimization problem may be found that will have an
optimal solution, considering the efficacy of the above-mentioned mean-variance model and another
significant parameter viz. Conditional-Value-at-Risk (CVaR). The structure of the new framework
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is demarcated using two newly parameters which are derived from the results obtained from basic
mean-variance model and CVaR. The objective of this framework is to minimize the overall cost that is
being computed using quadratic equations based on these newly parameters.

1.1. Related Work

Heuristic methods have been employed for the solution of portfolio optimization problem and
the majority of researchers have exploited evolutionary algorithms concept for the above-mentioned
purpose. Some researchers [2] have used the concept of constraints trustworthiness based on the event
for portfolio selection. Real world investments involve multi-criteria decisions, so keeping in mind this
fact some researchers [3], have developed a novel multi-objective scheme for portfolio selection based
on the concept of reliability where constraints are represented by fuzzy logic. One of the major aspects
of portfolio selection problem is that assets returned can be easily realized in terms of fuzzy variables.
Keeping in view the above aspect researchers [4] have used the concept of reliability theory, which is
formulated using fuzzy logic and the mean-variance model. The above work was further extended
based on semi-variance [5] and skewness [6]. There were certain limitations of possibility measures
used for portfolio selection in order to overcome the problem risk factor was included. The inclusion
of risk in the portfolio selection model using fuzzy logic is given in [7]. A cross breed algorithm
based on wise learning for common situations is provided. Using the concept of predicated value in a
multiobjective environment based on fuzzy logic is given in [8,9]. A portfolio selection model based
on fuzzy-value-at-risk is given in [10] and developed a particle swarm optimization algorithm to find
the best solution. An alternative risk measure is given in [11,12], named as Conditional-Value-at-Risk
(also known as Expected Shortfall, Expected Tail Loss). CVaR is thoroughly identical to VaR measure
of risk for normal distributions and has better attributes than VaR. A multi-period mean-semivariance
model is given in [13–15] for portfolio selection problem. A significant role of adaptive neuro-fuzzy
inference system to stock market prediction is presented in [16–19]. Type-2 fuzzy sets play a vital
role in portfolio selection, which is shown in [20,21]. A metaheuristic solution to complicated futures
portfolio optimization problem is presented in [22]. Fuzzy theory based models are given in [23–25] to
portfolio selection problem. A optimization method based on particle swarm optimization is given
in [26], has applied to portfolio selection. Wang et al. [27] proposed a novel model for multiple
objectives using fuzzy logic for solving a portfolio selection problem with alternative risk measure
and the existing particle swarm optimization is also modified in the model. A multiple stage adaptive
optimization model to portfolio optimization problem is introduced in [28]. A predication based
mean-variance model to solve the constrained portfolio optimization is given in [29]. A description
of methods employing different evolutionary algorithms in [30–35]. Some recent new version of the
ANFIS are presented in [36–39]. An approach is proposed in [40,41] against the mean-variance method
for portfolio selection problem named as full-scale optimisation. Allowing distributional asymmetries
makes it possible to enhance mean-variance portfolio selection [42]. The optimized portfolios are
better than weighted portfolio [43]. For the in copula opinion pooling (COP) technique for getting
the returns of assets from modelling co-dependence, it has been recommended to use multivariate
t-copula. However, for describing the dependence structure in high-dimensional cases, t-copula is not
as flexible as vine copula [44]. Problems pertaining to portfolio selection can be optimized with a utility
optimization approach known as Full-Scale Optimization (FSO), which is theoretically appealing, but,
when it comes to massive scale problems, it gets burdened with computations. Hence, in order to
overcome this problem, one heuristic algorithm named as differential evolution is applied in [45].
A comparative study of distance, co-integration, and copula Methods is presented in [46] regarding
the pairs trading. A comparative study of mean-variance model and full-scale optimization model is
given in [47].
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1.2. Concept of the Proposed Framework

1.2.1. Phase 1. Optimization of Newly Derived Parameters

Formulating a framework of the issue of portfolio selection is completed by minimizing the
costs, which are calculated from two newly parameters viz. αnew and βnew. The first parameter
αnew is computed from the output values obtained from the basic mean-variance model. The cost
calculated from parameter αnew is given by quadratic Equation (4). Drafting the value of the parameter
βnew is made by correlating another significant value, which is Conditional-Value-at-Risk. Thus,
the parameter βnew has a significant contribution in the framework for depicting variation in
the portfolio selection model. The cost calculated from the parameter βnew is given by quadratic
Equation (5). The computation of the optimal values of the costs is made by using a classical Lagrangian
multiplier method. The description of the parameters used in the proposed framework is given below:

Objective function Minimized value of {C1 + C2},

αnew First parameter used in the proposed framework whose value is derived from the output
values obtained from the basic mean-variance model,

βnew The second derived parameter whose value is derived from another important
parameter Conditional-Value-at-Risk,

C1 Cost computed from parameter αnew,
C2 Cost computed from parameter βnew.

This proposed framework has a description of a novel scheme, which is used for computing
the values of the parameters αnew and βnew. The classical Lagrangian multiplier method is used
in the proposed framework for finding the optimal values of the costs C1 and C2. Furthermore,
a scheme is formulated for generating a model which computes eight new sub-parameters viz. BC1,
BC2, . . . , BC8 from the computed value of the parameter βnew. These sub parameters are essential in the
decision-making process related to bounding values of the parameter βnew. Therefore, these values can
be utilized by a decision maker of portfolio selection, in selecting an appropriate value of the parameter
βnew. The value of the parameter βnew is correlated with Conditional-Value-at-Risk; therefore,
it plays a significant role in the decision-making. The amount of risk and the level uncertainty
can be controlled by selecting an appropriate value of the parameter βnew in the proposed framework.
Fuzzy sets are used in the proposed framework for framing the values of the sub parameters.
The fuzzy sets are employed so that uncertainty can be included in the proposed framework. Without
the inclusion of appropriate level of uncertainty, the accurate modeling of risk in the model can not be
achieved. Hence, these sub-parameters, which are described in this paper, has contributed significantly
towards accurately depicting risk in the portfolio selection.

1.2.2. Phase 2. Design of New Six-Layered Structure of ANFIS

As described in Phase 1, a novel scheme for bounding the value of parameter βnew using
sub-parameters BC1, BC2, . . . , BC8 is provided in proposed framework. Furthermore, to depict the role
of uncertainty in financial data, a new six-layered structure of ANFIS is formulated. The newly framed
structure of ANFIS may be utilized to evaluate the performance of the proposed framework. The output
parameter obtained from this structure of ANFIS is a kind of benchmark for the performance of the
proposed framework. The basic model of ANFIS is described in [17] and the recent new version of
the ANFIS is given in [36–39]. A modified model is presented in this paper that has a new structure
having six layers. Fuzzy sets are being employed for changing the structure of existing second layer
(layer 2). In addition, the two rules which are used for computing parameters in fifth layer (layer 5) are
optimized using the Cuckoo Intelligence Algorithm. The values of the parameters, which are used
in the two rules, are selected from the output obtained from Cuckoo Intelligence Algorithm and the
output obtained from this newly structured ANFIS is given in this paper.
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The structure of the modified ANIS has six-layered instead of five-layered ANFIS structure.
The first–layer nodes are kept the same in the modified ANFIS as well as in the existing ANFIS
structure. The modified ANFIS structure uses a new parameter ji, which is employed for assigning
weights nodes in second layer.

The modifications in the fifth layer of modified ANFIS is based upon optimizing parameters that
are used in two rules that calculate values of nodes in this layer. Quadratic equations are used for
calculating these values of optimizing parameters. Along with these optimizing parameters, the third
parameter is introduced in the rules. The cuckoo intelligence algorithm is used for calculating these
optimal parameters. The structure of different nodes used in the existing ANFIS and modified ANFIS
is given in Table 1.

Table 1. Nodes available in different layers of existing ANFIS and modified ANFIS.

Existing ANFIS
(Number of Layers = 5)

Modified ANFIS
(Number of Layers = 6)

Inputs = F1, F2

S. No Layer Nodes of Existing ANFIS Nodes of Modified ANFIS

1. First (Layer 1)

P_spot11 → Q11 = µA1(F1)
P_spot12 → Q12 = µA2(F1)
P_spot21 → Q21 = µB1(F2)
P_spot22 → Q22 = µB2(F2)

P_spot11 → Q11 = µA1(F1)
P_spot12 → Q12 = µA2(F1)
P_spot21 → Q21 = µB1(F2)
P_spot22 → Q22 = µB2(F2)

2. Second (Layer 2) P_spot21 → Q21 → w1 = µA1 ∗ µB2
P_spot21 → Q21 → w2 = µA2 ∗ µB2

w1a = µA1F1 ∗ j1 ∗ µB1_F2
w1b = µA1F1 ∗ j2 ∗ µB1_F2
w2a = µA2F1 ∗ j3 ∗ µB2_F2
w2b = µA2F1 ∗ j4 ∗ µB2_F2

w1 = w1a + w1b
w2 = w2a + w2b

3. Third (Layer 3)
P_spot31 → w31 → w1 = w1

(w1+w2)

P_spot31 → w31 → w2 = w2
(w1+w2)

P_spot31a = w1a
(w1a+w2a)

P_spot32a = w2a
(w1a+w2a)

P_spot31b = w1b
(w1b+w2b)

P_spot32b = w2b
(w1b+w2b)

4. Fourth (Layer 4)
Pspot41

→ Q41 = w1(f1)
Pspot41

→ Q42 = w2(f2)
w1 bar = w1a bar + w1b bar
w2 bar = w2a bar + w2b bar

5. Fifth (Layer 5) faout = ∑ wi·fi
P_spot41 = $·fa1
P_spot42 = $·fa2

6. Last layer None Pspot5i
= faout = ∑$·fai

1.2.3. Economic and Statistical Significance of Using the ANFIS Structure

The significance of using ANFIS structure is given below:

• Statistical Significance: ANFIS structure is utilized for providing a prediction capability in
portfolio selection. Since forecast of expected returns may be a desirable feature in view of
the investor’s selections. This prediction scheme should be capable of accurately modeling the
desired parameters based on existing data points. This can be achieved by means of an ANFIS
structure that has a fuzzy inference system. Furthermore, situations where ANFIS with different
data points are desirable for selective time duration, an adaptive structure needs to be employed.
This adaptive nature is required for a different set of parameters.

Moreover, techniques based on algorithms using artificial intelligence would be highly complex
with a large set of rules. Other available techniques might require details of the types of the parameters
used for prediction. These parameters would yield to complex equations, which are hard to realize.
Hence, utilizing an ANFIS structure is the more practical aspect for modelling and implementation.
An efficient method requiring few computations can be easily framed using this ANFIS structure.
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• Economic Significance: Designing of efficient models for portfolio selection can be suitably crafted
using the computational index represented by the output of the last node in the ANFIS structure.
While obtaining the expected returns in case of multi-assets data, this index can be employed as a
decision parameter. The expected returns would correspondingly alter in the view of the selected
value of this index. Even though a nominal value of this index is employed while designing,
this scheme could substantially alter the values of expected returns. These designs may also be
employed for finding an optimal solution in the areas beyond financial applications. The investor
would like to select an option that yields lower values of risk.

The scheme based on ANFIS is an appropriate choice for investors, finance companies and corporates
that computes risk-based solutions. It can prove useful in the case of multi-asset domains. This usage
might provide solutions that depict returns based on simple implementations. In situations where risk is
computed by different simulations and investor selects one of the obtained solutions, the design based on
ANFIS structure may provide an accurate modelling of risk. This ANFIS structure can be combined with
efficient algorithms to provide a rich variety of optimal solutions to investors. An attractive mathematical
representation of computation of expected returns can be generated for usage of the investors.
The different set of solutions generating by utilizing ANFIS structure will provide a chance for the
investor to select an appropriate portfolio based on minimum value of the risk. The most appropriate
portfolio selection may be done by the investor, who is intended to make a selective choice of the
expected returns. The investor may be interested in selecting solutions that are approximate to the
desired solution. Another significant aspect could be having a scheme that has capabilities to modify
multiple assets together. These computations can be projected with simple representations to the
investor. The structure of the proposed model is illustrated in Figure 1.
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1.2.4. Advantageous of Using the Proposed Methodology

The advantage of the methodology adopted in the paper is a more accurate design of computer
algorithms by including the effects of uncertain nature of data in the application. Since the randomness
of input data needs to be accounted for in the desired solution, a more practical approach has to be
implemented for generating an optimal solution. In general, simple gradient search algorithms are
prone to slow convergence if the data values are largely varying in nature. These methods rely on
computation of the gradient. A suitable algorithm needs to be selected. If the constraints are added,
this might yield complex calculations. Computational difficulties may arise if any of the constraints
are violated. The quadratic programming approaches may be computationally highly demanding for
bigger system. The portfolio selection problem requires frequent recalculation of different application
parameters, with only selected computer memory size.

Thus, the methodology applied should be simple in structure and fast at calculation. The inherent
advantage of the robust methodology employed is simplicity with rich different computing parameters
evaluated and different constraints may be evaluated. An additional major benefit realized by this
rigorous methodology is that the optimal solution may be obtained with few computations. These
applications require a similar rigorous methodology that is needed for computing various parameters
associated with evaluation of the selected solution.

The remaining sections of the paper are arranged as follows. An overview of basic mean-variance
model is given in Sections 2 and 3 describes the formation of a new model for portfolio selection based
on two newly derived parameters αnew and βnew. Section 4 has a description of sub-parameters that
are generated from parameter βnew. The need for the design of a model using fuzzy logic and an
overview of new modified ANFIS is presented in Sections 5 and 6. A discussion on experiment and
comparison is provided in Section 7 and the conclusions is given in Section 8.

2. Overview of the Basic Mean-Variance Model

An evaluation model was proposed by Markowitz to deal with issues of portfolio optimization,
which was basically a framework to analyze the nature of investment under uncertainty [1]. Returns
obtained from the investment are modeled as stochastic variables and the past data is used to calculate
expected values. Similarly, returns obtained from the overall portfolio are analyzed and its variance is
calculated to measure risk. The Risk is also analyzed by making a comparative analysis of the returns
obtained from individual assets. Joint return distribution is used to calculate a covariance matrix. Thus,
a financial portfolio aims to achieve two objectives: minimizing the variance of portfolio return and
maximizing the return obtained from the expected portfolio. The aim of this framework was to obtain
maximum expected return with the minimum value of adversity [3]:

Min ∑n
i=1 ∑n

j=1 σijxixj, (1)

Subject to ∑n
i=1 rixi = r0, (2)

∑n
i=1 xi = 1, xi ≥ 0, i = 1, 2, . . . , n. (3)

Here, r0 represents desired return. Equation (3) describes a capital budget constraint on the
proportions of the assets and Equation (4) makes sure that there is no short selling of assets. σij is the
covariance of the returns of assets i and j, and xi is the weight of asset i in the portfolio. A sample
output of the mean-variance model is given in Table 2.

The values of portfolio weights are zero for columns 1, 2, 3, 4, 6, 7 and column 9. The portfolio
return is computed on a sample data given in [33]. The variations of output values of r0 and risk are
shown in Figure 2.



Computers 2018, 7, 57 7 of 31

Table 2. Output of the mean-variance model on sample data.

S. No Portfolio Return Portfolio Weights

r0 Risk Col.5 Col.8 Col.10

1 0.2572 0.1622 0.5630 0 0.4370
2 0.2775 0.1641 0.5005 0 0.4995
3 0.2979 0.1697 0.4379 0 0.5621
4 0.3183 0.1787 0.3754 0 0.6246
5 0.3387 0.1905 0.3128 0 0.6872
6 0.3590 0.2047 0.2502 0 0.7498
7 0.3794 0.2207 0.1554 0.0580 0.7866
8 0.3998 0.2376 0.0485 0.1376 0.8139
9 0.4202 0.2557 0 0.1124 0.8876
10 0.4405 0.2773 0 0 1.000
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The different parameters and variables used in formulating the mathematical model are
described below:

Combined_desired_value Desired value of αnew,βnew (Input).
(weight of objective)1 Parameters used while correlating βnew with CVaR.
(weight of objective)2 Parameters used while correlating βnew with CVaR.
w1a, w1b,w2a, w2b Nodes of Layer 2 (Modified ANFIS).
P_spot3ia, P_spot3ib Nodes of Layer 3 (Modified ANFIS).
P_spot4i, P_spot5i Nodes of Layer 5 (Modified ANFIS).
sum41, sum42 Parameters used while correlating βnew with CVaR.
Wk Weight associated with αnew and βnew.
Pk The values of parameter of αnew or βnew.
Ck Cost associated with αnew or βnew.
PL This term is representing loss incurred in the investment process.
w1, w2 Weight associated with αnew and βnew respectively.

Term7
This is a control parameter that represents maximal weighted cost associated with
(w1αnew + w2βnew).

riskmax Maximum value of risk.
riskmin Minimum value of risk.
SF1, SF2 Scaling parameters.
αi,βi,γi Cost coefficient used in calculating cost, ci.
sum4, sum5, sum7 Parameters used while correlating βnew with CVaR.
L Lagrangian Function.
BCi Sub parameters generated from βnew using fuzzy sets.
Si Membership values from fuzzy sets associated with sub parameters BCi.
µ(BCi) Membership values of fuzzy sets = Si.
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Tc This parameter represents the total cost associated with parameters S1, S2, . . . , S8.
CSi Values used in minimization equation = WiSi.
gi, hi Cost coefficients used in minimization problem.
Fi Input parameter used in ANFIS.
Fmin

i , Fmax
i Minimum and maximum value of Fi.

P_spot1i Nodes of Layer 1 (Modified ANFIS).

3. Proposed Novel Portfolio Selection Model Based on Costs Associated with αnew and βnew

The values of the new parameters αnew and βnew are computed using the Lagrangian Multiplier
method and the minimization problem used in the proposed model utilize these parameters. The
minimization problem considers costs C1 and C2, where these costs are associated with parameters
αnew and βnew, respectively.

Cost C1 is computed using the following equation [30,31]:

C1 = α1α
2
new + β1αnew + γ1. (4)

Cost C2 is computed using the following equation [30,31]:

C2 = α2β
2
new + β2βnew + γ2,

Minimize{C1 + C2}.
(5)

It may be represented by the following equations [30,31]:

Minimize ∑M
k=1 wkCkPk, (6)

Subject to k = ∑M
k=1 Pk − (combined_desried_value + PL), (7)

where P1 = αnew, P2 = βnew, PL is a term that represents losses incurred in the investment process:

w1α
2
new + w2

2β
2
new ≤ Term7.

Term7 is a control parameter that represents a maximal weighted cost associated with
(w1αnew + w2βnew):

Pmin
k ≤ Pk ≤ Pmin

k (k = 1, 2, 3, . . . , M),

∑M
k=1 wk = 1 (wk ≥ 0). (8)

3.1. Correlate Parameter αnew with Parameter r0 That Is Being Computed from the Basic Mean-Variance Model

Parameter r0 is obtained from the basic mean-variance model. The value of parameter r0 has a
maximum value of rmax and the minimum value of rmin. The value of αnew parameter is related to
parameter r0 using the following equation:

αnew=
(rmax − rmin)× 102

(riskmax − riskmin)× SF1
. (9)

riskmax, riskmin are calculated from the mean-variance model. Scaling factor SF1 is being used to
normalize the value of αnew so that it can be used in the proposed minimization problem described
above. The values of SF1 assumed in the proposed method are 1.5, 1.75, 1.85 and 1.95. Corresponding
to these values, the computed values of αnew are 238.87, 278.69, 294.61 and 310.54, respectively.
The proposed framework makes use of classical Lagrangian multiplier method to compute the optimal
values of αnew as well as βnew.
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3.2. Correlate Parameter βnew with Conditional-Value-at-Risk (CVaR)

The parameter βnew is correlated with (CVaR) in the proposed model. A scheme is devised
for categorizing the value CVaR into four categories viz. category A, B, C, D. The value of βnew is
computed using the following equation:

βnew = Weight_matrix(i)× factor_βnew(i)× SF2. (10)

The value of parameters βnew is categorized into four different categories viz. category A, category B,
category C and category D. These categories are used while generating sub parameters, which are
described in Section 4. Scaling factor SF2 is being used to normalize the value of βnew so that it can
be used in the minimization problem. In the proposed framework, the values of Weight_matrix(i)
and factor_βnew(i) are assumed depending upon the above-mentioned categories and Term7 is the
maximal weighted cost associated with (w1αnew + w2βnew). A description of the scheme for deriving
the value of parameter βnew is given next. The different parameters used in the proposed algorithm are:

sum41 = (weight of objective)1 × (2α1αnew + β1), (11)

sum42 = (weight of objective)2 × (2α2βnew + β2), (12)

(weight of objective)1= (0.52− 1.0−w1

10
). (13)

The value of parameter (weight of objective)1 is normalized with a constant 0.52, as shown in
Equation (13), because the outputs obtained by running with w1 and w2 is skewed near the value of
weight w1 = 0.52:

(weight of objective)2= 1− (weight of objective)1, (14)

sum4 = sum41 + sum42, (15)

sum5 = sum4 − Lagrangian Multiplier, (16)

sum7 = αnew + βnew, (17)

Term7 = (sum5)
2 + (combined desired value− sum7)

2. (18)

Now, the minimization problem described in Equation (6) can be represented by the following
Lagrangian function [35]:

L = ∑ wkCk + λ(Combined desired value + PL −∑2
i=1 Pk) + λ2(w2

1α
2
new + w2

2β
2
new − Term7). (19)

The inputs used are:

(a) Cost coefficient (α1,α2,β1,β2,γ1,γ2) as inputs in Lagrangian Multiplier [35]:

C1 = α1α
2
new + β1αnew + γ1, (20)

C2 = α2β
2
new + β2βnew + γ2, (21)

(b) Weights (W1, W2) [35]

Minimize ∑M
k=1 WkCkPk. (22)

The flow diagram of this scheme depicting output parameters is given in Figure 3.
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The weighted-scheme used is given in [30,31,34,35] and the results obtained are described
in Table 3.

(c) Combined_desired_value:

The Combined_desired_value is represented by the following equation [35]:

∑M
k=1 Pk − (combined_desired_value + PL). (23)

The classical Lagrangian multiplier method is employed on a sample data, which is assumed for
testing purposes as given in [30–33,35]:

α1 = 0.0089 α2 = 0.00741,

β1 = 10.333 β2 = 10.833,

γ1 = 200.0 γ2 = 240.0,

43.44 ≤ αnew ≤ 119.16,

22.22 ≤ βnew ≤ 70.56,

combined_desired_value = 150.0.

The outputs are computed:

The optimal value of Pk: P1 = αnew, P2 = βnew.

Table 3. Output of the classical Lagrangian multiplier method (optimal values of αnew and βnew).

S. No Weight (w1) Weight (w2) αnew βnew

1. 1.0 0.0001 ≈ 0 95.8799 70.5697
2. 0.9 0.1 95.8799 70.5697
3. 0.7 0.3 95.8800 70.5667
4. 0.51 0.49 97.8193 68.4395
5. 0.5 0.5 101.0353 64.9947
6. 0.49 0.51 104.3293 61.5669
7. 0.48 0.52 107.7027 58.1558
8. 0.47 0.53 111.1578 54.7610
9. 0.46 0.54 114.6992 51.3820
10. 0.45 0.55 118.3202 48.0185
11. 0.4 0.6 119.1606 47.2520
12. 0.1 0.9 119.1606 47.2518

The impact of changing weight w1 (between the ranges 0.1–1.0) on the output values of αnew as
well as βnew is given in Figure 4.
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Figure 4. Output of the Lagrangian multiplier method.

4. Generating Novel Sub-Parameters (BC1, BC2, . . . , BC8) from Parameters βnew and Finding
Optimal Values of Sub-Parameters Using Fuzzy Sets

The parameter βnew is correlated with Conditional-Value-at-Risk (CVaR) in the proposed
framework. The parameter βnew used in the proposed framework has a significant role, while finding
the optimal solution of the system based on the parameters αnew and βnew. Since the parameter βnew
plays a vital role in decision-making for selecting the optimal solution of the proposed framework,
it becomes quite essential to bifurcate this parameter into sub parameters. These sub parameters are
associated with uncertainty in their values. The representation of these sub parameters using three
fuzzy sets is provided, which uses the following sets: Fuzzy Set A, Fuzzy Set B1 and Fuzzy Set B2.
There are eight sub parameters viz. BC1, BC2, . . . , BC8. Each of these sub parameters is associated with
one of the above-mentioned Fuzzy Sets. A description of association of these sub parameters with
fuzzy sets is given below:

The range used for parameter βnew as used in the model is 46.5 to 70.56.

1. Fuzzy Set A is used when the value of parameter β_new lies in Category A

Category A: A0 ≤ βnew ≤ A25,

where A25 is the value = 70.5697 and A0 is the value = 61.5669.
2. Fuzzy Set B1 is used when the value of parameter βnew lies in Category B

Category B: B20 ≤ βnew ≤ B25,

where B20 is the value = 51.3820 and B25 is the value = 58.1558.
3. Fuzzy Set B2 is used when the value of parameter βnew lies in Category C

Category C : C20 ≤ βnew ≤ C24,

where C20 is the value = 47.2518 and B25 is the value = 48.0185.

Let S1, S2, . . . , S8 denote the membership values from these fuzzy sets associated with sub
parameters BC1, BC2, . . . , BC8, respectively, i.e., membership value of sub parameters BC1 in fuzzy set
A is represented by parameter S1:

µ(BCi) = Si i = 1, 2, . . . , 8.

To find the optimal values S1, S2, . . . , S8, the Lagrangian Multiplier method is employed.
The minimization problem using the Lagrangian Multiplier is formulated below:
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Tc = Parameter representing total cost associated with parameters S1, S2, . . . , S8,

Tc = ∑8
i=1 Si i = 1, 2, . . . , 8, (24)

Si = µ(BCi) i = 1, 2, . . . , 8. (25)

The Lagrangian Multiplier method is used to find the solution of the above-mentioned
minimization problem. The coding of the program is done using C-language. A flow graph for
the process Tc is given in Figure 5.
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Figure 5. Data flow graph (DFG) of process Tc (Lagrangian multiplier method).

It may be noted that triangular membership functions are used for µ(FA), µ(B1) and µ(B2).
A graphical representation of the triangular membership functions is shown in Figures 6–8 and
definitions of these membership functions are given in [30–32,35]. The selection of triangular
membership function in fuzzy sets is justified in view of the data values of the parameters used
in the methodology. The parameter has the highest membership value when the value of parameter
is near its mean-value. If the value of the parameter deviates from this mean-value, the membership
value is assumed to have linear behavior. This selection of triangular membership function is mainly
for modeling the membership values with the help of mathematical equations in the methodology,
although other types of membership functions may be employed instead of the triangular membership
function depending upon the structure of the chosen application.
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4.1. Description of Various Equations Used in Fuzzy Sets

The various equations used in describing a fuzzy set for a specific category are given below.

4.1.1. Category A: Fuzzy Set-A

Here, A2 is representing the value of parameter βnew:

µ(BC1) =


1 ; A2 = 0.0

A21−A2
A21−A26

; 0 < A2 < A21,
0 ; A2 ≥ A21

(26)

µ(BC2) =


1 ; A2 = A24

A24−A2
A24−A20

; A20 < A2 < A24

0 ; A2 ≥ A20
A23−A2
A23−A24

; A24 < A2 < A23

, (27)

µ(BC3) =


1 ; A2 ≥ A25

A25−A2
A25−A22

; A22 < A2 < A25.
0 ; A2 ≥ A22

(28)

4.1.2. Category B: Fuzzy Set-B1

The equations for membership value of fuzzy set B1 are given next.

µ(BC4) =


1 ; A2 = 0.0

B21−A2
B21−0 ; 0 < A2 < B21,

0 ; A2 ≥ B21

(29)



Computers 2018, 7, 57 14 of 31

µ(BC5) =


1 ; A2 = B24

B24−A2
B24−B20

; B20 < A2 < B24

0 ; A2 < B20
B23−A2
B23−B24

; B24 < A2 < B23

, (30)

µ(BC6) =


1

B25−A2
B25−B22

0

; A2 ≥ B25

; B22 < A2 < B25.
; A2 ≤ B22

(31)

4.1.3. Category C: Fuzzy Set-B2

The equations for membership value of fuzzy set B2 are given next.

µ(BC7) =


1 ; A2 = 0.0

C21−A2
C21−0 ; 0 < A2 < C21,

0 ; A2 ≥ C21

(32)

µ(BC8) =


1 ; A2 = C24

C24−A2
C24−C20

; C20 < A2 < C24.
0 ; A2 ≤ C20

(33)

The inputs used are:

(a) The values of cost-coefficients gi, hi as used in the following equation:

Minimize Tc = ∑8
i=1 gis

2
i + hisi = ∑8

i=1 CSi. (34)

(b) The values of these coefficients are given in Table 4.
(c) The specified value of Tc.

Table 4. Values of the coefficient used in Lagrangian Multiplier method.

S. No gi hi

1 0.01 0.8
2 0.015 0.9
3 0.02 0.96
4 0.011 0.85
5 0.009 0.88
6 0.008 0.80
7 0.007 0.81
8 0.006 0.87

The outputs computed are:
The optimal values of outputs Parameters (S1, S2, . . . , S8) which are computed using the

Lagrangian Multiplier method:

Si = µ(BCi) i = 1, 2, . . . , 8.

4.2. Mathematical Modeling of Module for Computing Sub Parameters

The maximum and minimum values of Si is represented by the following equation:

Smin
i ≤ Si ≤ Smax

i .

Minimize Tc = w1s1 + w2s2 + . . . + w8s8, (35)
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Tc = ∑8
i=1 CSi, (36)

Tc = ∑8
i=1 WiSi

CSi = WiSi,

∑8
i=1 WiSi = Specified_Limit,

W = [0.89, 0.75, 0.75, 0.4, 0.4, 0.4, 0.1, 0.1, 0.1, 0.1].

The weights used in the program are listed above. The chosen list shows a sample list selected for
testing purposes:

Minimize Tc = ∑8
i=1 CSi

Tc = ∑8
i=1 gis

2
i + hisi,

Subject to ∑8
i=1 WiSi = Specified Limit,

where, CSi = gis
2
i + hisi.

4.3. Equations for Parameters CSi (i = 1 to 8)

The equations used for parameters CSi are given below.

Parameter CSi = WiSi,

CS1 = (A21 − BC1)×
W1

J1
, 0 ≤ S1 ≤ 0.89, (37)

J1 = (A21 −A26),

CS2 = (BC2 −A20)×
W2

J2
, 0 ≤ S2 ≤ 0.75, (38)

J2 = (A24 −A20),

CS3 = (BC3 −A22)×
W3

J3
, 0 ≤ S3 ≤ 0.75, (39)

J3 = (A25 −A22),

CS4 = (B21 − BC4)×
W4

J4
, 0 ≤ S4 ≤ 0.4, (40)

J4 = (B21 − B26),

CS5 = (BC5 − B20)×
W5

J5
, 0 ≤ S5 ≤ 0.4, (41)

J5 = (B24 − B20),

CS6 = (BC6 − B22)×
W6

J6
, 0 ≤ S6 ≤ 0.4, (42)

J6 = (B25 − B22),

CS7 = (C21 − BC7)×
W7

J7
, 0 ≤ S7 ≤ 0.1, (43)

J7 = (C21 −C26),

CS8 = (BC8 −C20)×
W8

J8
, 0 ≤ S8 ≤ 0.1, (44)

J8 = (C24 −C20).
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4.4. Description of Different Outputs of the Module for Sub-Parameters

The parameter Tc represents total cost and is defined using Equation (36). Different inputs
values of parameter Tc are selected and the optimal values of parameters CSi are computed using the
Lagrangian Multiplier method. Here, the parameter CSi represents values WiSi, where Wi is weight
used in the program. The values of parameters CS2 and CS5 are fixed at their maximum values of
0.210 and 0.310 in the program. Now, the values of sub-parameters BCi are computed using Equations
(37)–(44). The outputs of sub-parameters are quite helpful for a portfolio optimization decision maker
to choose an appropriate value of BCi, given an input value of Tc. For example, if given input value
of Tc is 1.9, then the decision maker may choose the value of parameter BC1 as 64.33. As this value
of BC1 belongs to category-A as shown in Table 5. Thus, the selector may choose category-A for the
parameter βnew. The minimum and maximum values of Si are given in Table 6. The output values of
CSi computed using the Lagrangian Multiplier method for different input values of parameter Tc are
shown in Table 7. The output values of sub-parameters BCi are given in Table 8 and the variations in the
values of BC1, BC3, BC6 and BC7, with a change in the value of parameter Tc (Scale used = Value ×103)
is shown in Figure 9.

Table 5. Depicting the association of parameter βnew with parameter BC1, BC2, . . . , BC8.

S. No Category Range of Values of βnew Parameter BCi

1 A 70.56–70.56 BC3
2 A 68.43–70.56 BC2
3 A 61.56–64.99 BC1
4 B 55.00–58.15 BC6
5 B 51.52–54.76 BC5
6 B 49.00–51.38 BC4
7 C 47.25–48.01 BC8
8 C 46.50–47.25 BC7

Table 6. Depicting the maximum and minimum values of parameter Si.

S. No. Parameter Si min Si max

1 S1 0.05 0.8
2 S2 0.21 0.21
3 S3 0.01 0.75
4 S4 0.15 0.4
5 S5 0.31 0.31
6 S6 0.1 0.4
7 S7 0.05 0.1
8 S8 0.05 0.15

Table 7. Output values of parameters CSi computed using Lagrangian multiplier method.

S. No Tc CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8

1 2.9 0.579 0.210 0.750 0.400 0.310 0.400 0.100 0.150
2 2.7 0.414 0.210 0.750 0.400 0.310 0.365 0.100 0.150
3 2.6 0.355 0.210 0.750 0.400 0.310 0.324 0.100 0.150
4 2.3 0.221 0.210 0.676 0.400 0.310 0.232 0.100 0.150
5 1.9 0.155 0.210 0.393 0.400 0.310 0.188 0.92 0.150
6 1.45 0.99 0.210 0.153 0.336 0.310 0.149 0.70 0.120
7 1.35 0.88 0.210 0.104 0.314 0.310 0.142 0.66 0.113
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Table 8. Computed values of parameter BCi for specified value of Tc.

S. No Tc BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8

1 2.9 62.51 69.5 70.57 49.0 54.56 58.15 46.5 48.01
2 2.7 63.22 69.5 70.57 49.0 54.56 57.87 46.5 48.01
3 2.6 63.47 69.5 70.57 49.0 54.56 57.55 46.5 48.01
4 2.3 64.05 69.5 70.46 49.0 54.56 56.82 46.5 48.01
5 1.9 64.33 69.5 70.06 49.0 54.56 56.48 46.5 48.01
6 1.45 64.57 69.5 69.71 49.38 54.56 56.17 46.72 47.82
7 1.35 64.61 69.5 69.64 49.51 54.56 56.12 46.75 47.82
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5. Need for Design of a Model Using Fuzzy Logic

A decision maker can keep fuzzy or vague objectives for portfolio selection. Since the decision
about an objective lacks exactness, it is desirable to contemplate a fuzzy model for selecting an
appropriate portfolio. A fuzzy set makes use of equations, which are called membership function in a
fuzzy set and the value of this membership function can lie between 0 and 1.

If this membership value is 0, then it implies that the object is impertinent with the given fuzzy
set. If this membership value is 1, then it implies that the object is fully compatible with the given
fuzzy set. A membership function µ(Fi) may be considered for the objective, which is used in portfolio
selection. We are considering a strictly monotonic decreasing (or monotonic increasing) and continuous
membership function µ(Fi) [31–33,36]:

µ(Fi) =


1 ; Fi ≤ Fmin

i
Fmax

i −Fi

Fmax
i −Fmin

i
; Fmin

i < Fi < Fmax
i .

0 ; Fi ≥ Fmax
i

(45)

To analyze the performance of the proposed model for fuzzy inference system, the model is coded
in Matlab and results are used in a C program.

We use the following rules in the fuzzy inference system:

Input1 = F11, Input2 = F12, Input3 = F21, Input4 = F22

Rule 1: IF (F11 is Low & F12 is Low & F21 is Low & F22 is Low) THEN (Output is Low)

Rule 2: IF (F11 is Low & F12 is Low & F21 is Average & F22 is Average) THEN (Output is Low)

Rule 3: IF (F11 is Average & F12 is Average & F21 is Low & F22 is Low) THEN (Output is Average)
Rule 4: IF (F11 is Average & F12 is Average & F21 is Average &F22 is Average) THEN (Output is Average)
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Rule 5: IF (F11 is High & F12 is High & F21 is High & F22 is High) THEN (Output is High)
Rule 6: IF (F11 is Low & F12 is Average & F21 is Low & F22 is Average) THEN (Output is Average)
Rule 7: IF (F11 is Low & F12 is High & F21 is Low & F22 is High) THEN (Output is High)
Rule 8: IF (F11 is Average & F12 is High & F21 is Average & F22 is High) THEN (Output is High).

6. New Model Using Modifications in ANFIS: Six-Layered Structure

Fuzzy inference systems require a prior knowledge about the data of a problem. The designing
of the complicated rules of fuzzy inference system is arduous in understanding. Similarly, neural
networks also have a drawback related to the design of the complicated structure of the network.
The design involving this complicated structure is hard to understand. Due to these reasons, the need
for neural fuzzy systems came into existence. A neural fuzzy system keeps the advantages of fuzzy
systems and neural networks. This system also overbalances the disadvantages of fuzzy systems and
neural networks. This system relies on creating information about a problem by a training network
in the neural inference system. The drawback of the complicated structure of the neural network is
outweighing by defining linguistic variables. These linguistic variables are suitable for explaining
the outputs. The proposed model, used in this paper, makes use of modified adaptive neuro-fuzzy
inference system and it has six layers.

Layer 1: This Layer contains adaptive nodes with node functions as:

P_spot1i = µAi(F1) for i = 1, 2, (46)

P_spot1i = µBi−2(F2) for i = 3, 4, (47)

where F1 and F2 are input nodes, A and B are the linguistic labels, and µ(F1) and µ(F2) are the
membership functions. Different membership functions are used in the model where it is assumed
that µ(Fi) is a strictly monotonically decreasing and continuous function defined as:

a1 = Fmax
1 , b1 = Fmin

1 , a2 = Fmax
2 , b2 = Fmin

2 ,

where c1 = 1, c2 = 1,

µ(F1) =


c1 ; F1 ≤ b1

a1−F1
a1−b1

; b1 < F1 < a2,
0 ; F1 ≥ a2

(48)

(F2) =


c2 ; F2 ≤ b2

a2−F2
a2−b2

; b2 < F2 < a2,
0 ; F2 ≥ a2

(49)

where ai, bi, and ci are the parameters. The membership function varies while the values of parameters
are changing.

Layer 2: Every node i in this layer is computed using the product of incoming signals and
parameter ji. It outputs the product out by Equations (42) and (43). The weights j1, j2, j3 and j4 are used
with T1, T2, T3 and T4, respectively. Parameters T1 and T2 are being used with node µB1_F2, whereas
parameters T3 and T4 are being used with node µB2_F2.

Case 1: If j1 has a greater value than j2 and j3 has a greater value than j4 i.e., j1 > j2, j3 > j4.
The assumed values of j1 and j2 are given below:

j1 = 0.6, j2 = 0.45,
w1a = µA1F1

∗ j1 ∗ µB1_F2, w1b = µA1F1
∗ j2 ∗ µB1_F2,

T1 = j1 ∗ µB1_F2, T2 = j2 ∗ µB1F2
,

w1 = w1a + w1b.

(50)
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The assumed values of j3 and j4 are given below:

j3 = 0.56, j4 = 0.44,
w2a = µA2F1

∗ j3 ∗ µB2_F2, w2b = µA2F1
∗ j4 ∗ µB2F2

,

T3 = j3 ∗ µB2_F2, T4 = j4 ∗ µB2F2
,

w2= w2a + w1b.

(51)

Case 2: If j2 has a greater value than j1 and j4 has a greater value than j3:

j1 < j2, j1 = 0.45 and j2 = 0.59,

j3 < j4, j3 = 0.40 and j4 = 0.59.

Layer 3: Every node i in this layer is a square node labelled P_spot3ia and P_spot3ib. The i-th node
calculates the ratios wia/∑2

i=1 wia and wib/∑2
i=1 wib for i = 1, 2 by (44) and (46):

P_spot31a =
w1a

(w1a + w2a)
, P_spot32a =

w2a

(w1a + w2a)
, (52)

w1a bar = P_spot31a, w2a bar = P_spot32a, (53)

P_spot31b =
w1b

(w1b + w2b)
, P_spot32b =

w2b

(w1b + w2b)
, (54)

w1b bar = P_spot31b, w2a bar = P_spot32b.

Layer 4: Every node i in this layer is a square node with a node function wibar = wiabar + wibbar:

w1 bar = w1a bar + w1b bar, w2 bar = w2a bar + w2b bar. (55)

Layer 5: Every node i in this layer is a square node with a node function$·fai, for i = 1, 2

P_spot4i = $·fai, for i = 1, 2, (56)

where fa1 and fa2 are the fuzzy IF-THEN rules given below:

Rule 1: IF F1 is P_spot11 and F2 is P_spot13 THEN fa1 = p1F1 + q1F2 + r1,
Rule 2: IF F1 is P_spot12 and F2 is P_spot14 THEN fa2 = p2F1 + q2F2 + r2,

where pi, qi and ri are the parameters set, referred to as the consequent parameters. Parameters are
P1, P2 and P3. Scale used in the layer = Value of the parameter/1000. The following limits are used in
the layer:

Pmin
1 = 0.15, Pmax

1 = 0.6, Pmin
2 = 0.1, Pmax

2 = 0.4, Pmin
3 = 0.05, Pmax

3 = 0.2.

Proposed Modifications in Fifth Layer (Layer 5) for Modified ANFIS Using the Cuckoo Intelligence Algorithm

This portion puts forth the details of the proposed modifications in the fifth layer of modified
ANFIS. The modifications are centred around optimizing parameters that are being used in two rules
viz. Rule 1 and Rule 2 employed in the existing Fifth layer. A newly framed scheme has been proposed
in the following section that optimizes the values of parameters in these two rules by employing
cuckoo intelligence algorithm.

General Framework of the Modification

The existing Fifth layer is based upon computing the values of nodes fa1 and fa2 as given below:

Rule 1: fa1 = p1F1 + q1F2 + r1,
Rule 2: fa2 = p2F1 + q2F2 + r2.

The different parameters identified in these rules are listed below:

Parameters: p1, p2, q1, q2, r1 and r2.
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The optimization of computed values of these parameters is felt in view of the outputs obtained by
abovementioned rules. If we associate cost parameters for the given parameters p1 and p2, then these
costs can be modeled accuretly using the following quardatic equations:

Optimized value used in the node (p1)= a1p2
1 + b1p1 + c1, (57)

Optimized value used in the node (p2) = a2p2
2 + b2p2 + c2. (58)

Here, a new parameter p3 is assumed that is correlated with sum of three parameters (is that
p1 + p2 + p3). The cost for the parameter can be specified as:

Optimized value used in the node
(
p3)= a3p2

3 + b3p3 + c3. (59)

If this sum is specified example 850/1000 in the problem, the value of the p3 is calculated as
given below:

p3 =
850

1000
− (p1 + p2).

This value of parameter sum can be chosen by the user of the portfolio and gives a decision-making
capability to the user.

The algorithm will optimize three values viz. (p1, p2 and p3) if the sum is specified. The optimized
model for computing values of p1, p2 and p3 can be described by Equations (57)–(59).

A new scheme has been put forth as described below:

Rule 1 (modified) : fa1 = α1F1 + β1F2 + γ1, (60)

where the values of coefficients are specified below:

α1 =
p1 + p2

2
; β1 =

p1
p1 + p2 + p3

; γ1 =
p1
p2
× 0.01,

Rule 2 (modified) : fa2 = α2F2 + β2F2 + γ2, (61)

where the values of coefficients are specified below:

α2 =
p2 + p3

2
; β2 =

p2
p1 + p2 + p3

; γ2 =
p2
p3
× 0.01.

The optimizied values of the parameters p1, p2 and p3 are computed by running cuckoo
intelligence algorithm and these values are given in Tables 9 and 10. The coefficients used in modified
Fifth layer and described by Equations (60) and (61).

Table 9. Optimized values of parameters obtained using the cuckoo intelligence algorithm.

S. No Parameters Lower
Limit

Upper
Limit Coefficients

Optimized Values by
Executing Cuckoo

Intelligence

Scaled
Optimized

Values

Optimized Value
of Fifth Layer

(Layer 5)

1. p1 150 600 a1 0.001562 338.8589 8.1945
b1 7.92 0.3388589
c1 300

2. p2 100 400 a2 0.00194 333.7502
b2 7.85 0.3337502
c2 320

3. p3 50 200 a3 0.00482 127.3909
b3 7.97 0.1273909
c3 329
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Table 10. Optimized values of parameters obtained using a cuckoo intelligence algorithm with different
values of upper and lower limits.

S. No Parameters Lower
Limit

Upper
Limit Coefficients

Optimized Values by
Executing Cuckoo

Intelligence

Scaled
Optimized

Values

Optimized Value
of Fifth Layer

(Layer 5)

1. p1 500 800 a1 0.001562 529.7067 0.5297067 10.3241
b1 7.92
c1 300

2. p2 200 600 a2 0.00194 377.013 0.377013
b2 7.85
c2 320

3. p3 50 300 a3 0.00482 171.2219 0.1712219
b3 7.97
c3 329

Layer 6: The single node in this layer is a circle node, which computes the summation of all
incoming signals as the overall output (see (62)):

Pspot5i
= faout = ∑$·fai = overalloutput, (62)

faout = $1·fa1 +$2·fa2 =
w1

w1 + w2
·fa1 +

w2

w1 + w2
·fa2, (63)

faout = ($1·F1)P1 + ($1·F2)q1 + ($1)r1 + ($2·F1)P2 + ($2·F1)P2 + ($2·F2)q2 + ($2). (64)

A general architure of the modified ANFIS is given in Figure 10.
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7. Performance Analysis and Experimental Results

7.1. Discussion on Modifications of the Range Used within a Cuckoo Intelligence Algorithm (Layer 5 of
Modified 6 Layered ANFIS)

The Cuckoo Intelligence algorithm is being used to find the optimal values of three parameters
viz. p1, p2 and p3. The values of these parameters are used to find the outputs of Rule1 and Rule2,
which are currently used in Layer 5 of modified ANFIS model.

Scale used for describing the limits for p1, p2 and p3 = Actual value/1000.
The following new ranges are used in the cuckoo intelligence algorithm:

pmin
1 = 0.15 ≤ p1 ≤ pmax

1 = 0.6,
pmin

2 = 0.1 ≤ p2 ≤ pmax
2 = 0.4,

Pmin
3 = 0.05 ≤ p3 ≤ Pmax

3 = 0.2.

The output obtained by executing the cuckoo intelligence algorithm with the first set of ranges
is given in Table 9. The output obtained by using new ranges that are mentioned above is given
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in Table 10. The optimized value obtained with new ranges in the cuckoo intelligence algorithm is
10.3241. Although the optimizied value is more with new ranges, it is justified in view of selecting more
accurate limits for parameters p1, p2 and p3. Hence, the decision maker may choose an appropriate
range of limits for these parameters and may obtain an accurate optimal value.

The computed values of the coefficients used in the fifth layer of modified ANFIS are given in
Table 11. The outputs obtained for the first layer (layer 1) of existing ANFIS and modified ANFIS is
given in Table 12. As shown in this table membership values of F1 and F2 are same as values of A1

and A2 in the existing ANFIS whereas, the output values of layer 2 are different in the new modified
model. Thus, corresponding output values of layer 3 is also different consequently. The output of
existing ANFIS (consisting of layer 5) is given in Table 13. A comparison of different outputs obtained
for second layer (layer 2), fifth layer (layer 5) and last layer (layer 6) of modified ANFIS is given in
Tables 14–16. As evident from the outputs given in Table 15, those changes incorporated in the fifth
layer (layer 5) result in a significant change in the outputs of the last layer. If we incorporate changes
in multiple layers (second and fifth layers), then the output node value of last layer (layer 6) abruptly
deviates and reaches a value of 888.7410. Thus, a modified ANFIS has a significant role in determining
the outputs of last layer. The output of layer 6, in a modified ANFIS model, changes drastically with
these modifications. Hence, the final output obtained from layer 6 of the modified ANFIS model can be
used as an important index for measuring the performance of the proposed framework. This modified
ANFIS model is an important tool for establishing the performance index of the proposed framework.
This performance index is a significant indicator of evaluating the performance of the framework. The
output values of the existing cuckoo intelligence algorithm and new ranges with the same algorithm
are shown in Figure 11.

Table 11. Computed values of the coefficients used in the Fifth layer of the modified ANFIS.

S. No Coefficients Used in Modified Fifth Layer Values

1. α1 0.45335985
2. α2 0.27411745
3. β1 0.49140574
4. β2 0.34975271
5. γ1 0.01405009
6. γ2 0.02201897
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7.2. Computational Results with Analysis of ANFIS

In what follows next, we compare the outputs obtained from modified ANFIS and the existing
ANFIS [18].
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7.2.1. Comparison of Various Outputs Obtained by Changing Different Layers of ANFIS

To test the effectiveness of the ANFIS, we compare the outputs of layer 2 and layer 5 by modifying
structure layer 2 and layer 5. It is evident that the output of the last layer is quite different in case we
make changes in layer 5. Thus, the modification done in layer 5 has a significant role in changing the
structure of the ANFIS model. In Figure 12, the cost computed using a Cuckoo Intelligence algorithm
for setting the values of parameters used in layer 5 of the modified ANFIS has been given. Although,
the cost is more with new ranges, but it is justified in view of selecting more accurate limits for
parameters p1, p2 and p3. Hence, the decision maker may choose an appropriate range of limits for
these parameters and may obtain an accurate value of fifth layer. The output of modified ANFIS
(consisting of six layers) is given in Tables 14–16. As it is evident from the data, output values of layer
2, layer 3, layer 4 and layer 5 are different from the output of the existing ANFIS model. The output
faout has a value of 1606.3 in the existing ANFIS model, whereas, in the modified ANFIS, it has values
of 925.8, 1527.0 and 888.74.
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7.2.2. Comparison of Values of Output Nodes of the Last Layer in Existing and Modified ANFIS

Corresponding to the final output of modified ANFIS, as given in Tables 14–16 we find that
the output of layer 6 is 888.7410 (by changing layer 2 and layer 5 simultaneously) and the output of
existing ANFIS layer 5 is 1606.3 (given in Table 13). Since this output is a performance index for the
ANFIS model, it can be seen that the modified ANFIS provides a very less value of this index. Hence,
it is accurately modeling the different layers of the system. The output of the ANFIS system final by
changing only layer 2 is 1527.0. Therefore, it has an impact on the final output compared to the output
of existing ANFIS, which is 1606.3. Similarly, the output of ANFIS system by changing only layer 5
is 925.8. It is seen that the modifications done in layer 5 have a greater impact in changing the final
output of ANFIS. The impact of changing layer 5 can be seen in Figure 13. The impact of changes made
in layer 2 and layer 5 is shown in Figure 14. The existing output values of layer 3 nodes viz. w1bar,
w2bar and new output values of layer 4 viz. w1bar, w2bar are shown in Figure 15. In addition, the new
modified ANFIS obtained by changing layer 2 and layer 5 has the best evaluation performance index
as the final output of layer 6. A comparison of values of the output node of last layer for modified
ANFIS is given in Table 17.
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Table 12. Output of the first layer (layer 1) in existing and modified ANFIS.

Selected Layer in Existing and
Modified ANFIS

Nodes Used in the
Selected Layer

Chosen Values of the
Selected Nodes

First layer (layer 1) P_spot11 0.3477
P_spot12 0.1944
P_spot13 0.6811
P_spot14 0.8250
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Table 13. Case 1: Output of Existing ANFIS.

Selected Layer in Existing ANFIS Nodes Used in the Selected Layer Output

Second layer (Layer 2) w1 0.2368
w2 0.1604

Third layer (Layer 3) w1 0.5963
w2 0.4037

Fourth layer (layer 4) P_spot41 1154.7
P_spot42 451.52

Last output layer (layer 5) Output node of Existing ANFIS 1606.3

Table 14. Case 2: Outputs of different layers by incorporating changes in a single layer of modified ANFIS.

Selected Layer in Modified ANFIS Nodes Used in the Selected Layer Output

Second layer (layer 2) w1 * 0.4040
w2 * 0.4050

Fifth layer (layer 5) P_spot41 967.1194
P_spot42 559.8678

Last output layer (layer 6) Output node of Modified ANFIS 1527.0

Outputs are obtained by incorporating changes in second layer. The following range is employed for second layer:
range (second layer) = 0.1–0.5, range (fifth layer) = 100–1000 and range (output layer) = 1–2000. (* Values of w1 and
w2 are chosen for simulation purpose).

Table 15. Case 3: Outputs of different layers by incorporating changes in a single layer of modified ANFIS.

Selected Layer in Modified ANFIS Nodes Used in the Selected Layer Output

Second layer (layer 2) w1 0.2368
w2 0.1604

Fifth layer (layer 5) P_spot41 644.3709
P_spot42 281.5149

Last output layer (layer 6) Output node of Modified ANFIS 925.8858

Outputs are obtained by incorporating changes in fifth layer. The following range is employed for fifth layer:
range (second layer) = 0.1–0.5, range (fifth layer) = 100–1000 and range (output layer) = 1–2000.

Table 16. Case 4: Outputs of different layers by incorporating changes in multiple layers of modified ANFIS.

Selected Layer in Modified ANFIS Nodes Used in the Selected layer Output

Second layer (layer 2) w1 * 0.4040
w2 * 0.4050

Fifth layer (layer 5) P_spot41 539.6790
P_spot42 349.0620

Last output layer (layer 6) Output node of Modified ANFIS 888.7410

Outputs are obtained by incorporating changes in second and fifth layers. (* Values of w1 and w2 are chosen for
simulation purpose).
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Table 17. Comparison of values of output node of last layer in the Modified ANFIS structure for
different cases.

S. No. Particular
Case

Selected Layers in Which Changes
Are Incorporated

Value of Output Node of
the Last Layer ANFIS Structure Used

1. Case 1 No layer changed (Existing ANFIS) 1606.3 Existing ANFIS
2. Case 2 Second layer (layer 2) 1527.0 Modified ANFIS
3. Case 3 Fifth layer (layer 5) 925.8858 Modified ANFIS
4. Case 4 Second and Fifth layer 888.7410 Modified ANFIS

Range used for output node of last layer: 1–3000.

A novel scheme is presented next, which is devised for computing the expected returns for 10
assets [33] after appropriately modifying the basic mean-variance model. Firstly, the return for the next
month is forecasting by applying rules of thumb to approximate the trend obtained from 12 months of
data [33]:

Modified value of expected return = ((returns of 12 month) + forecast value of next month)/13. (65)

This computation is performed for all the assets, thus providing the expected returns for 10 assets.
The variance and co-variance are found using these 10 values of expected returns. The final outputs are
obtained using expected returns and covariance. The coding is done in MATLAB The results obtained are
given in Tables 18–20. The impact of change on expected returns and allocation is depicted in the tables:

Final value of expected return = Modified value of expected return +
(
Scalingfactor1 ∗ Decisionparameter

)
. (66)

Firstly, the decision parameter used is the value of Tc (Tc = 2.3) and scaling_factor1 is taken
as 1 × 10−2. The output obtained are given in Table 18. Next, the decision parameter used is the
value of TA1 (TA1 = 888.7410) and scaling_factor1 is taken as 1 × 10−4. The output obtained are
given in Table 19. Here, TA1 is representing the output of modified ANFIS by changing Layer 2
and Layer 5 simultaneously. Lastly, the decision parameter used is the value of TA2 (TA2 = 1606.3)
and scaling_factor1 is taken as 1 × 10−5. The output obtained are given in Table 20. Here, TA2 is
representing the output of existing ANFIS. As shown in Tables 18–20, the values of expected returns
as well as the allocation of 10 assets is changed even though the decision parameter is chosen to be
nominally based upon either Tc, TA1 or TA2. While comparing the values of expected returns and
allocation of assets, it is observed that these values are more with decision parameter TA1 as compared
with values obtained with values obtained with Tc, whereas these values are less with decision
parameter TA2 when compared with values obtained with Tc. It is evident from these observed values
that the proposed framework provides a necessary model for including uncertainty in the form of
newly parameters given by αnew and βnew. Furthermore, the modified ANFIS has the ability to modify
the expected returns based upon its output.

Table 18. Expected return for 10 assets using forecast for the 13th month and using the value of Tc

(Tc = 0.023).

Portfolio Returns (r0)
Allocation

Portfolio Risk
B1 B2 B3 B4 B5

PP1 0.2560 - - - - 0.5628 0.1622
PP2 0.2786 - - - - 0.5002 0.1641
PP3 0.3012 - - - - 0.4377 0.1698
PP4 0.3238 - - - - 0.3752 0.1788
PP5 0.3464 - - - - 0.3126 0.1907
PP6 0.3690 - - - - 0.2501 0.2050
PP7 0.3916 - - - - 0.1876 0.2212
PP8 0.4142 - - - - 0.1251 0.2390
PP9 0.4368 - - - - 0.0438 0.2579
PP10 0.4594 - - - - 0.0 0.2779
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Table 18. Cont.

Portfolio Returns (r0)
Allocation

Portfolio Risk
B6 B7 B8 B9 B10

- - - - 0.4372
- - - - 0.4998
- - - - 0.5623
- - - - 0.6248
- - - - 0.6874
- - - - 0.7499
- - - - 0.8124
- - - - 0.8749
- - - - 0.9259
- - - - 1.0

Where PPi is representing the particular portfolio (i = 1 to 10). The sign of the hyphen (-) is representing zero and Bi
represents the name of a particular company (i = 1 to 10).

Table 19. Expected return for 10 assets using a forecast for the 13th month ((TA1 = 0.08887) modified ANFIS).

Portfolio Returns (r0)
Allocation

Portfolio Risk
B1 B2 B3 B4 B5

PP1 0.2606 - - - - 0.5639 0.1622
PP2 0.2833 - - - - 0.5012 0.1642
PP3 0.3059 - - - - 0.4386 0.1698
PP4 0.3286 - - - - 0.3759 0.1789
PP5 0.3512 - - - - 0.3133 0.1908
PP6 0.3739 - - - - 0.2506 0.2052
PP7 0.3965 - - - - 0.1880 0.2215
PP8 0.4192 - - - - 0.1253 0.2393
PP9 0.4418 - - - - 0.0411 0.2583
PP10 0.4645 - - - - 0.0 0.2783

B6 B7 B8 B9 B10

- - - - 0.4361
- - - - 0.4988
- - - - 0.5614
- - - - 0.6241
- - - - 0.6887
- - - - 0.7494
- - - - 0.8120
- - - - 0.8747
- - - - 0.9240
- - - - 1.0

Table 20. Expected return for 10 assets using the forecast for the 13th month ((TA2 = 0.01606) existing ANFIS).

Portfolio Returns (r0)
Allocation

Portfolio Risk
B1 B2 B3 B4 B5

PP1 0.2555 - - - - 0.5626 0.1622
PP2 0.2781 - - - - 0.5001 0.1641
PP3 0.3007 - - - - 0.4376 0.1698
PP4 0.3233 - - - - 0.3751 0.1788
PP5 0.3459 - - - - 0.3126 0.1907
PP6 0.3685 - - - - 0.2501 0.2050
PP7 0.3911 - - - - 0.1875 0.2212
PP8 0.4137 - - - - 0.1250 0.2390
PP9 0.4363 - - - - 0.0441 0.2579
PP10 0.4589 - - - - 0.0 0.2779
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Table 20. Cont.

Portfolio Returns (r0)
Allocation

Portfolio Risk
B6 B7 B8 B9 B10

- - - - 0.4374
- - - - 0.4999
- - - - 0.5624
- - - - 0.6249
- - - - 0.6874
- - - - 0.7499
- - - - 0.8125
- - - - 0.8750
- - - - 0.9261
- - - - 1.0

7.2.3. Economic Significance of the ANFIS Methodology for Additional Constraints

The additional constraints permit optimization algorithms to account for the random nature of
the risk, which unavoidably affects the expected return and which can cause significant changes in the
values of expected returns for the multi-asset data set. A comparison of the expected return is provided
in Table 21. As evident from the values given in the table, the inclusion of additional constraints allows
the investor with more accurate modelling for risk-based portfolio selection, thus generating better
values of the expected returns. Hence, this modified ANFIS increases the accuracy of the presently
available ANFIS structure, in terms of the risk-based approach.

Table 21. Details of expected returns obtained using existing ANFIS and modified ANFIS.

Portfolio Expected Return with Existing ANFIS Expected Return with Modified ANFIS

PP1 0.2555 0.2606
PP2 0.2781 0.2833
PP3 0.3007 0.3059
PP4 0.3233 0.3286
PP5 0.3459 0.3512
PP6 0.3685 0.3739
PP7 0.3911 0.3965
PP8 0.4137 0.4192
PP9 0.4363 0.4418
PP10 0.4589 0.4645

8. Conclusions

This paper has formulated, in a formal way, the portfolio based on two newly parameters.
The minimization model is further framed by considering optimal values of the costs associated
with these newly parameters. Here, a modern scheme is presented, in order to correlate the derived
parameters with output parameters of the basic mean-variance model and Conditional-Value-at-Risk.
This recent technique is quite advantageous for finding optimal values of the newly parameters as
well as helping the investor in selecting an optimal portfolio. Another useful attribute of the scheme is
that it can be easily implemented online. Another significant scheme is contemplated to formulate
sub parameters, which are used for selecting an appropriate value of parameter βnew. This scheme
is framed by making use of fuzzy sets, which are appropriate in accommodating uncertainty in the
values of sub parameters. Such a novel scheme is thoroughly adaptable for the decision-making
process of the investor in order to select a more accurate value of parameter βnew. Finally, a six-layered
structure of ANFIS model is given in the paper. The changes incorporated in the existing ANFIS model
are described here and the outputs obtained from the modified ANFIS are provided in the paper.
The obtained result signifies contribution of the new structure as well as the impact of modifications
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made in different layers. Lastly, a comparison is made between the existing ANFIS model and the
modified ANFIS model. The output of the modified model is drastically different from the output
of the existing model. This can be harnessed as an indicator for estimating the performances of the
models. Thus, the designer has an essential tool to appraise the performance of the model.

The solution obtained for the proposed model with respect to multiobjective functionals can
be investigated with this methodology and additional objectives can be added as future work.
Nowadays, big data analytics play a vital role in handling information. Thus, this is another
dimension for investigating the methodology. The role of user-satisfaction might be studied along
with the methodology.
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