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Abstract: The applications of evolutionary optimizers such as genetic algorithms, differential
evolution, and various swarm optimizers to the parameter estimation of the fuel cell polarization
curve models have increased. This study takes a novel approach on utilizing evolutionary
optimization in fuel cell modeling. Model structure identification is performed with genetic
algorithms in order to determine an optimized representation of a polarization curve model with
linear model parameters. The optimization is repeated with a different set of input variables and
varying model complexity. The resulted model can successfully be generalized for different fuel cells
and varying operating conditions, and therefore be readily applicable to fuel cell system simulations.
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1. Introduction

Hydrogen-fed polymer electrolyte membrane fuel cells (PEMFC) are known to be an efficient and
flexible energy conversion technique with the capability of operating in future carbon-free, renewable,
and distributed energy markets. Although PEMFCs are already commercialized, further research,
especially regarding stack level, is required [1]. Computational tools and numerical modeling of
PEMFC stacks play an important role in studying the effect of operating conditions, system parameters,
and different configurations on fuel cell performance [2]. The fuel cell system comprises not only the
fuel cell assembly, but also the auxiliary equipment related to fuel storage, air and fuel supply, cooling,
and power conditioning [1]. In fuel cell stack models, electrochemical phenomena, energy balance,
and mass balances are typically treated as separate modules. The electrochemical behavior of PEMFC
is governed by the membrane electrode assembly, which is depicted in Figure 1, and characterized by
a polarization curve, which is presented in Figure 2. An equivalent circuit model is used to determine
the polarization curve of the fuel cell (FC) in the steady state. The dynamics of a FC are governed by
the energy and mass balance, as well as their interlinkage to the polarization curve model.
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and flexible energy conversion technique with the capability of operating in future carbon-free, 
renewable, and distributed energy markets. Although PEMFCs are already commercialized, further 
research, especially regarding stack level, is required [1]. Computational tools and numerical 
modeling of PEMFC stacks play an important role in studying the effect of operating conditions, 
system parameters, and different configurations on fuel cell performance [2]. The fuel cell system 
comprises not only the fuel cell assembly, but also the auxiliary equipment related to fuel storage, air 
and fuel supply, cooling, and power conditioning [1]. In fuel cell stack models, electrochemical 
phenomena, energy balance, and mass balances are typically treated as separate modules. The 
electrochemical behavior of PEMFC is governed by the membrane electrode assembly, which is 
depicted in Figure 1, and characterized by a polarization curve, which is presented in Figure 2. An 
equivalent circuit model is used to determine the polarization curve of the fuel cell (FC) in the steady 
state. The dynamics of a FC are governed by the energy and mass balance, as well as their 
interlinkage to the polarization curve model. 

 
Figure 1. Membrane electrode assembly of a polymer electrolyte membrane fuel cell (PEMFC). 
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Figure 1. Membrane electrode assembly of a polymer electrolyte membrane fuel cell (PEMFC).
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Figure 2. A typical PEMFC polarization curve. 

The polarization curve depicts the voltage–current characteristics of a fuel cell. Typically, such a 
model is constructed to describe the thermodynamic potential (or the open-circuit voltage) and the 
different losses (or overvoltage) in the performance. Often, the model is presented as a parameterized 
semi-empirical model with a theoretical background [3–6]. In addition, several other model 
structures can be found in the literature, and they have been recently presented [7]. This kind of 
modeling approach aims to provide a generalizable model structure for different fuel cells, but it is 
simple enough to be utilized in a simulation of complete fuel cell power systems, where rigorous 
first principle (mechanistic) models may often be too complicated to be applied [2]. The 
semi-empirical models can also be found as a part of more rigorous fuel cell models [8]. 

Parameter estimation (or identification) of the above-mentioned semi-empirical models has 
gained a lot of attention over the past 10 years. In particular, it leads to an industrially relevant 
nonlinear optimization problem for evolutionary optimizers. Evolutionary optimizers are understood 
as heuristic search methods that mimic the evolution in nature. For example, established methods 
such as genetic algorithms [9,10], differential evolution [11,12], and many new methods [13–15] have 
been proven to work for the parameter estimation problem of the fuel cell polarization curve. During the 
course, the authors have also altered the model structure [15] in order to improve the model accuracy. 

In this study, an alternative way of applying evolutionary optimizer tools for polarization curve 
modeling is presented. Our novel approach involves model structure identification for the 
steady-state FC polarization curve model. Although evolutionary optimizers, such as genetic 
programming [16], have previously been applied for determining solid oxide fuel cell models, they 
have been focused on reproducing the behavior of one FC system. Here, the aim is to find one model 
structure that can also be generalized to different PEMFC systems. The resulted FC polarization 
curve model is linear with respect to its parameters, but nonlinear by its variables. This significantly 
simplifies the parameter estimation part of the model development. Although the structure 
identification essentially leads to a data-driven black-box model, the models developed in this study 
can be considered semi-empirical or gray box, as they utilize some of the auxiliary equations that are 
used also in the well-known semi-empirical model [9,10,12]. In this study, the structure search results 
from Ohenoja et al. [7] are extended to handle an alternative input variable set, and the structure 
search is repeated with varying model complexity. The proposed model structure is validated for 
different fuel cells and operating conditions, and the applicability of the model is discussed. 

The outlook of this paper is as follows. In Section 2, the optimization algorithm and the data 
utilized are presented. In Section 3, the model structure identification results for three different cases 
are presented. In sections 4 and 5, the results are discussed, and the findings are summarized. 
  

Figure 2. A typical PEMFC polarization curve.

The polarization curve depicts the voltage–current characteristics of a fuel cell. Typically, such a
model is constructed to describe the thermodynamic potential (or the open-circuit voltage) and the
different losses (or overvoltage) in the performance. Often, the model is presented as a parameterized
semi-empirical model with a theoretical background [3–6]. In addition, several other model structures
can be found in the literature, and they have been recently presented [7]. This kind of modeling
approach aims to provide a generalizable model structure for different fuel cells, but it is simple
enough to be utilized in a simulation of complete fuel cell power systems, where rigorous first
principle (mechanistic) models may often be too complicated to be applied [2]. The semi-empirical
models can also be found as a part of more rigorous fuel cell models [8].

Parameter estimation (or identification) of the above-mentioned semi-empirical models has gained
a lot of attention over the past 10 years. In particular, it leads to an industrially relevant nonlinear
optimization problem for evolutionary optimizers. Evolutionary optimizers are understood as heuristic
search methods that mimic the evolution in nature. For example, established methods such as genetic
algorithms [9,10], differential evolution [11,12], and many new methods [13–15] have been proven
to work for the parameter estimation problem of the fuel cell polarization curve. During the course,
the authors have also altered the model structure [15] in order to improve the model accuracy.

In this study, an alternative way of applying evolutionary optimizer tools for polarization curve
modeling is presented. Our novel approach involves model structure identification for the steady-state
FC polarization curve model. Although evolutionary optimizers, such as genetic programming [16],
have previously been applied for determining solid oxide fuel cell models, they have been focused on
reproducing the behavior of one FC system. Here, the aim is to find one model structure that can also
be generalized to different PEMFC systems. The resulted FC polarization curve model is linear with
respect to its parameters, but nonlinear by its variables. This significantly simplifies the parameter
estimation part of the model development. Although the structure identification essentially leads to a
data-driven black-box model, the models developed in this study can be considered semi-empirical
or gray box, as they utilize some of the auxiliary equations that are used also in the well-known
semi-empirical model [9,10,12]. In this study, the structure search results from Ohenoja et al. [7] are
extended to handle an alternative input variable set, and the structure search is repeated with varying
model complexity. The proposed model structure is validated for different fuel cells and operating
conditions, and the applicability of the model is discussed.

The outlook of this paper is as follows. In Section 2, the optimization algorithm and the data
utilized are presented. In Section 3, the model structure identification results for three different cases
are presented. In Sections 4 and 5, the results are discussed, and the findings are summarized.
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2. Materials and Methods

2.1. Fuel Cell Data

The fuel cell data used in this study originated from a visual interpretation of the polarization
curve data in Mo et al. [9] and Xue et al. [17]. It comprises four different fuel cells, namely the SR-12,
BCS, Ballard, and 250W. For the SR-12, BCS, and Ballard, 10 current–voltage pairs recorded in constant
operating conditions are available [17]. For the 250W, the data sets consist of four polarization curves
observed in different operating conditions, with each data set having 15 current–voltage pairs [9].
Hence, the fuel cell data comprises seven subsets, and the total number of current–voltage pairs, nk,
is 90.

In addition to current–voltage values, the FC operating conditions (temperature T, total pressure
Ptot, anode pressure Pa, and cathode pressure Pc) can be used as input data for the model identification.
This data was also available in [9,17], and it has further been complemented with the calculated values
for the saturation pressure of water (psat

H2O), partial pressures of oxygen (pO2) and hydrogen (pH2),
and anode oxygen concentration (CO2). The equations adopted from Mo et al. [9] are presented in
Appendix A. For the 250W FC, both anode and cathode relative humidity (RHa and RHc, respectively)
are equal to one [9].

Also, the cell properties, such as the cell active area (A), membrane thickness (Lmem), resistivity of
the membrane (ρm), limiting current (ilim), and thermodynamic potential (E0) can be utilized in the
model development. The fuel cell data that was used in this study can be found in the Supplementary
Material. In total, the data comprises one output, the FC voltage (y(k)), and nine possible input variable
candidates Xj(k), where k is an integer number between 1 and nk, and j is an integer number between
one and nine. The input data naturally comprise the FC current (i) and the limiting current in order to
be able to model the FC voltage throughout the current range. The operating conditions (T, CO2, pO2,
pH2) and cell properties (Lmem, A) are needed to capture the voltage–current characteristics in different
FC systems or in the different conditions of a single FC.

2.2. Reported Model Structures

Different kinds of model structures have been proposed to ensure the adequate prediction abilities
of the polarization curve models. In Table 1, some of them are presented in terms of utilized variables
and the number of free model parameters (np). It can be observed that the reported model structures
are with varying complexity. A more detailed review is given in Ohenoja et al. [7]. As mentioned,
these parameterized models are simplifications of electrochemical phenomena, and are easily tuned
with the measurable variables from the operating fuel cells. With the aid of experimental data,
the curve-fitting properties—and therefore the prediction abilities of the models—are further enhanced,
but with the expense of losing the generalization abilities for the unseen FC systems. Purely empirical,
or data-driven models for the FC polarization curve also exist [18], but they are not in the scope of
this work.

Table 1. Overview on seven different polarization curve models showing the number of free parameters
(np) and variables utilized (denoted by x in the table).

Ref. np i Ptot pO2 ilim CO2 T pH2 RHa RHc psat
H2O Pa Pc A Lm ρm E0

[19] 2 x x
[20] 3 x x
[2] 5 x x x x
[21] 4 x x x
[6] 10 x x x x x x x x x x x x
[3] 6 x x x x x x x x x x x x x x
[22] 7 x x x x x x x x x x x x x x x
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2.3. Algorithm for Model Structure Identification

In this study, a generic model structure shared by all of the studied FCs is identified.
The differences in voltage–current characteristics of the studied FCs are captured by their model
parameters. Hence, model parameter estimation is performed separately for each FC. Finally,
the model identification involves an internal validation step for one FC in different operating
conditions. The overall approach is illustrated in Figure 3. The selected optimization method, encoding
procedure, parameter estimation method, and performance evaluation strategy are described in the
following subsections.
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2.3.1. Genetic Algorithms

A genetic algorithm (GA) is an optimization method mimicking evolution [23]. In this study,
binary coded genetic algorithms are utilized to find an optimized nonlinear model structure.
The coding and optimization are performed with Matlab® software. The genetic algorithm applied
uses uniform crossover and mutation operations; tournament selection is used with the number of
candidates set to five, and elitism is applied by replacing the worst candidate from the new generation
with the best candidate from the previous generation. In all of the studied scenarios, the population
size is 500, the number of generations is 100, the crossing probability is 0.9, the mutation probability is
0.05, and the optimization loop is repeated 100 times with different initial populations. The Matlab®

random number generator was initialized prior to the execution in order to be able to repeat the results.
The elitism ensures that the best individual is preserved throughout the generations in a single GA
run. The overall best solution is selected among the 100 best individuals from GA repetitions. The GA
objective function (fitness function) that was used is given in Section 2.3.4. As the optimization task in
this study is not critical with respect to computational time, the selection of optimization algorithm
tuning parameters is more guided by experience and an algorithms’ ability to converge, rather than
finding a compromise between convergence properties and computational time.
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2.3.2. Chromosome Encoding and Decoding

The model structure identification comprises the selection of model variables, or features,
mathematical operators for the selected features, and the arithmetic operations between the generated
terms. In Figure 4, the chromosome encoding principle is presented. First, Nj bits are reserved to
represent the different model variable candidates in the binary format. Similarly, the number of
mathematical transformation operators (m) and uniting mathematical operators (u) to be tested are
defined, and a correct number of bits (Nm and Nu) are determined, respectively. Finally, the allowable
maximum number of variables (n) in the final model structure is defined, and the chromosome size is
propagated to be able to describe the model structure in binary format. An example of binary coded
chromosome with j = 8, m = 4, u = 2, n = 3 and the resulted mathematical expression after decoding are
presented in Figure 5.
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model structure (n = 3) with up to eight possible variables (j = 8 = 23, Nj = 3), four possible
transformation operators (m = 4= 22, Nm = 2), and two possible uniting operators (u = 2 = 21, Nu = 1).

The decoding is executed with a sequential approach by reading the chromosome bits determining
the variable, the transformation operator, and the uniting operator. The result is collected to a matrix
by calculating the first model term (T2 in Figure 5) and adding a matrix column for it. Then, other
model terms are dynamically added either as new columns (summation) or uniting the last matrix
column with the new model term (multiplicative and power terms). Finally, a unit vector is added as a
last column. The resulted matrix has a size of nk rows and nt columns, where nt ≤ n + 1.

The maximum number of model variable candidates was restricted to eight in this study, resulting
as Nj = 3. Eight functional transformations (mathematical operators) are applied; 1, ˆ2, ˆ3, sqrt,
exp(−), 1/, exp, and ln. Hence, three bits are required to describe these eight operations. The uniting
mathematical operators that are used in this study are +, ×, ÷, ∧. These four operators are described
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with two bits. The resulting individual contains a vector of bits, which are interpreted (decoded) into a
model with the following general structure:

ŷ(k) = a0 + a1 f1(+/× /÷ /∧)a2 f2(+/× /÷ /∧)...an fn (1)

where ŷ(k) is the predicted FC voltage, f 1 . . . f n are the selected variables among Xj with their
mathematical transformations, and a0 . . . an are the regression coefficients. Mathematical operators
applied to the model variables may make the model nonlinear. The model can be solved as an
ordinary regression equation, because it is always linear with respect to the regression coefficients.
Since the terms are fused together, the number of regression coefficients (nt) in the final model
may also be less than the number of selected variables (n). However, this depends on the applied
mathematical operators.

2.3.3. Parameter Estimation

GA provides the candidate solution for the model structure. The performance of that candidate
is evaluated after the estimation of the regression coefficients. The parameter estimation problem is
linear, and the least squares solution of Equation (2) gives the regression coefficients:

 a0
...

ant−1

 =

 1 f1(1) . . . fnt−1(1)
...

...
. . .

...
1 f1(k) . . . fnt−1(k)


−1 y(1)

...
y(k)

 (2)

where y(k) is the measured FC voltage for nk instances. As the inverted matrix is non-square,
the Moore–Penrose pseudoinverse is used (‘pinv’ in Matlab®). Linear regression parameters are
calculated separately for each cell. The data sets from SR-12, BCS, and Ballard, and the two data sets
from 250W are utilized in the parameter estimation.

2.3.4. Objective Function and Model Performance

The model performance is evaluated based on the objective function value. The objective function
utilized is the sum of squared errors (SSE) between the experimental voltage and the predicted voltage
from the candidate model comprising all the available FC data sets:

SSE =
nk

∑
k=1

(y(k)− ŷ(k))
2

(3)

As indicated in Figure 3, the parameter estimation utilizes 60 voltage–current pairs comprising the
SR-12, BCS, and Ballard FC, and data sets 1 and 2 for the 250W FC. The objective function calculation
incorporates all 90 available voltage–current pairs. The predicted values for data sets 3 and 4 for
250W FC are calculated based on the candidate solution for the model structure and the regression
coefficients estimated with data sets 1 and 2. Overall, the optimized solution has a generalization
ability with respect to different FCs; the model structure that was found can be used to represent
four different FCs, when the FC specific model parameters are used. The data division also leads to a
generalization ability with respect to different operating conditions; the 250W FC has four data sets,
where only half of the data is utilized in parameter estimation, and the other half is used in an internal
validation stage with the defined model structure and model parameters.

3. Results

The model structure identification is presented for three different cases. The model structure
inspected in numerous studies [9,10,12,22] consists of seven unknown parameters. Hence, the first case
presented in this study considers a maximum number of seven terms (n = 7) in the model structure,
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ensuring a comparable model complexity with the widely used semi-empirical model structure.
This case was also presented in Ohenoja et al. [7], and is here accompanied by new results from two
additional cases. In the second case, a different set of possible model variable candidates is taken.
In the third and final example, the model structure identification is performed with varying model
complexity. The model structures presented are tested with four different FCs, one of them comprising
polarization curves in four different operating conditions. The optimizations were run with 3.4 GHz,
12 GB i7 PC using Matlab® R2016a without parallel computing. The model structure search involved
5,000,000 objective function evaluations (and 20,000,000 regressions), requiring 38−51 min of wall-clock
time, where the elapsed time increased linearly as a function of allowed model complexity.

3.1. Case 1

The input variables for the first case, which were also presented in [7], were i, T, CO2, pO2, pH2,
ilim, and a calculated variable, i/ilim. The optimization results for the nominal model complexity are
presented in Figure 6, where the seven predicted polarization curves with experimental data are shown.
Clearly, the model can follow the experimental data very accurately. In Table 2, the SSE values for each
case are given. In comparison, the SSE values from our earlier studies [10,24] are given. It should be
noted that all of these studies use exactly the same data sets, and thus, a comparison of SSE values
is straightforward.
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Table 2 shows that the optimized model structure led to better results than the model structure
in [24] in terms of the SSE for the SR-12 and Ballard FCs. In the BCS case, [24] gives a better fit.
For these three fuel cells, SSE values are very low, and both studies led to acceptable results. For the
250W FC, we had data on several operating points, and the optimized model structure results in
significantly lower SSE than in [10]. In Ohenoja et al. [10], the best fit had an SSE value of 8.4854,
whereas this model achieved an SSE of 1.6154. Yang et al. [15] reached even a lower SSE value of
1.1746 for the 250W FC. This was achieved by adding three more free parameters in the modeling and
parameter fitting.
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Table 2. Model performance for the studied fuel cells. SSE: sum of squared errors.

Fuel Cell
SSE

Case 1 Ohenoja et al. [24] Ohenoja et al. [10] Case 2

250W/1 0.2384 0.2739
250W/2 0.2782 0.7142
250W/3 0.2059 0.3107
250W/4 0.8929 0.0476

250W/all 1.6154 8.4854 1.3464
SR-12 0.0615 0.4475 0.5762
BCS 0.2148 0.1040 0.1427

Ballard 0.0640 0.0918 0.4825
Total SSE 1.96 2.55

The optimized model structure found for the FC polarization curve can be written as:

ŷ = a0 + a1,2 f1̂ f2 + a3 f3 + a4 f4 + a5,6 f5 ÷ f6 + a7 f7 (4)

where:

f1 =
1

CO2
, f2 =

i
ilim

, f3 = 10
i

ilim , f4 = pH2, f5 =

√
i

ilim
, f6 = T, f7 = 10−

i
ilim (5)

The linear regression coefficients a0 . . . a7 are presented in the Supplementary Material. Equation
(5) shows that the model structure that was found incorporates operating conditions (CO2, pH2, T).
This is important in order to generalize the model predictions into different operating conditions.
However, from the high SSE value for the 250W/4 polarization data, it is clear that this generalization
ability is limited. Term i/ilim is repeated several times in the optimized model. Indeed, ilim has a strong
effect on the polarization curve, as it determines the end point for the curve. In this exercise, it was
assumed that the value for the ilim is known and fixed throughout the operating conditions. Naturally,
unknown ilim values would require new model structure identification.

3.2. Case 2

As recognized in [7], the model structure search can also incorporate additional variables. Hence,
the optimization is repeated with an altered set of input variables. In this case, the input variables were
i, T, CO2, pO2, pH2, Lmem, A, and ilim. This way, the number of variable candidates remains constant.
The model complexity is also kept at a comparable level by allowing up to seven terms in the resulting
model. The resulting SSEs are presented in Table 2, and the optimized model structure in Equations (6)
and (7):

ŷ = a0 + a1,2,3 f1 ÷ f2 × f3 + a4 f4 + a5,6 f5 × f6 + a7 f7 (6)

where:
f1 = 10i, f2 = T, f3 = ln(pO2), f4 = ln(CO2), f5 = ln(i), f6 = ln(Lmem), f7 = i2 (7)

In this case, the model does not comprise ilim. This might result in a predicted polarization curve
that has zero crossing outside the actual current range of the FC. Hence, predictions in high currents
may not be reliable with this model structure. Additionally, the incorporation of the logarithmic
transformation of i leads to a situation where the model cannot represent open-circuit voltage, as it has
no solution when i = 0. However, such a shortage may also be found in the semi-empirical models,
as discussed in [25]. The comparison of the SSE values between the two model structures shows that
this model structure has a higher total error (2.55). A closer look at the SSE values shows that in Case 2,
the prediction performance of the 250W FC was emphasized with a cost of the modeling performance
of the three other fuel cells. This indicates a poor generalization ability for the model structure. Hence,
the conclusion is that the variables set used in Case 1 is preferred over Case 2.
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3.3. Case 3

In the third case, the effect of the model complexity on the model performance is studied.
The structure search was performed with the number of allowable model terms varying between four
and nine. The same variable candidates as in Case 1 were used. The resulted total SSEs (all data) and
SSE for 250W FC are shown in Figure 7. As expected, the model performance increases as the number
of allowable model terms increases. However, it is notable that only minor improvement is achieved
after n = 5.

The results in Case 3 outperform the model fitting observed in [15], where a 10-parameter
model structure had a SSE value of 1.1746 for the 250W FC. They focused on the high-current region,
and proposed two new expressions for the high-current region in order to improve the curve-fitting
properties of the semi-empirical model. In Figure 7, it is indicated that an even better model fitting for
the 250W FC can be achieved with a nine-parameter model.

Figure 7. Objective function value with varying model complexity.

4. Discussion

The model structure found in this study (Case 1) provides very low SSE values with the same
number of free parameters, and therefore with a comparable model complexity to the semi-empirical
model structure used in [9,10,12,22,24]. Naturally, the remarkable difference in the observed SSE
values can be partly explained with the constrained parameter values in the semi-empirical model.
It was shown in [10] that the expanded search range leads to more accurate results. With the approach
taken here, the optimization problem is unconstrained. It should also be noted that several authors
have used the semi-empirical model structure, and have been able to find better SSE values than
reported in [10] using different optimization algorithms. For example, Sun et al. [12] managed to
reach a SSE value of 7.99 for the 250W fuel cell compared with 8.49 in [10]. However, the data sets
are not exactly the same, although they were interpreted from the same original polarization curves.
Therefore, the direct comparison of SSEs between different studies can be misleading.

In Case 2, the altered variable candidate list did not improve the model performance.
An optimization case formulated with all of the possible variables, comprising ρm and the number
of cells in an FC stack, for example, would be preferable. In addition, the structure identification
could incorporate more than one nonlinear transformation in a series. Such alternations can be made
with the approach presented, but require carefully made modifications to the optimization algorithm.
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Based on the results in Case 3, the model structure search could be utilized to extend the work in [15].
It would be interesting to observe what kind of expression for the high-current region could be found
with an evolutionary optimizer. However, in order to facilitate such a test, more data is required,
as only a few data points in the polarization curve data that were utilized in this study are in this
high-current region.

The approach taken in this study is fundamentally data-driven, and the link between the model
parameter values and the physical phenomena that the mechanistic models hold is lost. However,
the model structure established had (limited) generalization ability, and the model was linear with
respect to its parameters. This feature can be beneficial in many FC system applications related to
diagnostics, control, and large-scale simulations where easy model implementation or continuous
adaptation is required. Naturally, an extension to dynamic models is required in such instances.
The model structures that were identified in this study incorporated operating conditions, which can
be linked to the mass and energy balances of an FC system. However, the model’s ability to capture
transient states requires further studies.

Typically, the data-driven methods use a rather vast amount of (measured) data and data
pre-processing. In this exercise, the data were very limited. Although the model was efficiently
fitted to four different fuel cell polarization curves, a more rigorous benchmark test with a rich data
set is needed. Data originating from [9,17] provide only an example with the limited amount of
data points. Benchmark data could be, for example, simulated via a rigorous model in different
operating conditions with added noise and drift elements. Such data would allow efficient testing of
the model performance.

5. Conclusions

A novel approach to find a generalizable FC polarization curve model structure utilizing only
directly or indirectly measurable variables, known FC properties, and operating conditions was
taken. The identification task was converted to an optimization problem and solved with binary
coded genetic algorithms. The effect of model complexity on the model performance was investigated.
The optimized model structure with comparable model complexity in comparison to the semi-empirical
model structure utilized in a number of studies was found to outperform the semi-empirical model.
A sufficient modeling result can also be achieved with lower model complexity. The results indicated a
limited generalization ability with respect to different fuel cells and operating conditions, but proper
benchmark data are required for more comprehensive tests in order to draw solid conclusions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-431X/7/4/60/s1,
Spreadsheet with fuel cell data, and regression coefficients for Case 1 and Case 2.

Author Contributions: Conceptualization, M.O.; Formal analysis, M.O.; Investigation, M.O.; Methodology, M.O.
and A.S.; Software, M.O.; Supervision, K.L.; Validation, M.O.; Visualization, M.O.; Writing—original draft, M.O.;
Writing—review & editing, A.S. and K.L.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The auxiliary equations required to calculate the oxygen and hydrogen partial pressures and
oxygen concentration are adopted from [9]. Equation (A1) solves the saturation pressure of water,
Equations (A2) and (A3) solves the oxygen partial pressure in air fed FC and oxygen fed FC, respectively.
Equation (A4) solves the oxygen concentration and Equation (A5) solves the hydrogen partial pressure.

log10
(

psat
H2O

)
= −2.18 + 2.95 · 10−2(T − 273.15)

−9.18 · 10−5(T − 273.15)2 + 1.44 · 10−7(T − 273.15)3 (A1)

http://www.mdpi.com/2073-431X/7/4/60/s1
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pO2 =
(

Pc − RHc psat
H2O

)
·
[

1 +
0.79
0.21
· exp

(
0.291( i

A )

T0.832

)]−1

(A2)

pO2 =
(

RHc psat
H2O

)
[

exp

(
4.192( i

A )

T1.334

)(
RHc psat

H2O
Pc

)]−1

− 1

 (A3)

CO2 =
pO2

5.08 · 106 exp(−498/T)
(A4)

pH2 =
RHa psat

H2O
2


[

exp

(
1.635( i

A )

T1.334

)(
RHa psat

H2O
Pa

)]−1

− 1

 (A5)
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