On Granular Rough Computing: Handling Missing Values by Means of Homogeneous Granulation †
Abstract
:1. Introduction
1.1. Selected Key Variants
- Variant A: in granulation process *=each value, when fixing the unadsorbed values *, *=each value.
- Variant B: in granulation process *=each value, when fixing the unadsorbed values *, .
- Variant C: in granulation process, when fixing the unadsorbed values *, *=each value.
- Variant D: in granulation process, when fixing the unadsorbed values *, .
1.1.1. For Variant , the Granulation Process of the i-th Training Set Looks as Follows (A, B Variants)
1.1.2. For Variant , The Granulation Process of the Set Looks as Follows (C, D Variants)
1.1.3. For Variant , the Way We are Fixing the Unadsorbed Values of Looks as Follows (A, C Variants)
1.1.4. For Variant , the Way We Fix the Unabsorbed Values of Looks as Follows (B, D Variants)
2. Homogenous Granulation in and Variant
3. Testing Session
3.1. The Steps of the Procedure
- (i)
- Selected dataset was uploaded,
- (ii)
- The data have been prepared for the Cross Validation 5 model,
- (iii)
- The was granulated using a proper variant,
- (iv)
- The was classified based on using kNN (the nil case),
- (v)
- was filled with a fixed percentage of random stars;
- (vi)
- was fixed by granulation based on the chosen variant—, or D
- (vii)
- classification of was performed based on a fixed training system using kNN,
- (viii)
- the average result of the classification was calculated from all of the folds,
3.2. Verification of Results Stability
3.3. Overview of the Testing Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets and information granularity. Adv. Fuzzy Set Theory Appl. 1979, 11, 3–18. [Google Scholar]
- Zadeh, L.A. Graduation and granulation are keys to computation with information described in natural language. In Proceedings of the 2006 IEEE International Conference on Granular Computing, Atlanta, GA, USA, 10–12 May 2006; p. 30. [Google Scholar]
- Skowron, A.; Polkowski, L. Synthesis of decision systems from data tables. In Rough Sets and Data Mining; Lin, T.Y., Cercone, N., Eds.; Kluwer: Dordrecht, The Netherlands, 1997; pp. 289–299. [Google Scholar]
- Lin, T.Y. Granular computing: Examples, intuitions and modeling. In Proceedings of the 2005 IEEE International Conference on Granular Computing, Beijing, China, 25–27 July 2005; Volume 1, pp. 40–44. [Google Scholar]
- Yao, Y.Y. Granular computing: Basic issues and possible solutions. In Proceedings 5th Joint Conference Information Sciences I; Wang, P.P., Ed.; Association for Intellectual Machinery: Atlantic, NJ, USA, 2000; pp. 186–189. [Google Scholar]
- Yao, Y. Information Granulation and Approximation in a Decision-Theoretical Model of Rough Sets. In Rough-Neural Computing. Cognitive Technologies; Pal, S.K., Polkowski, L., Skowron, A., Eds.; Springer: Berlin, Germany, 2004. [Google Scholar]
- Yiyu, Y. Perspectives of granular computing. In Proceedings of the 2005 IEEE International Conference on Granular Computing, Beijing, China, 25–27 July 2005; Volume 1, pp. 85–90. [Google Scholar]
- Skowron, A.; Stepaniuk, J. Information granules: Towards foundations of granular computing. Int. J. Intell. Syst. 2001, 16, 57–85. [Google Scholar] [CrossRef]
- Skowron, A.; Stepaniuk, J. Information Granules and Rough-Neural Computing. In Rough-Neural Computing. Cognitive Technologies; Pal, S.K., Polkowski, L., Skowron, A., Eds.; Springer: Berlin, Germany, 2004; pp. 43–84. [Google Scholar]
- Polkowski, L.; Semeniuk–Polkowska, M. On rough set logics based on similarity relations. Fund. Inf. 2005, 64, 379–390. [Google Scholar]
- Liu, Q.; Sun, H. Theoretical study of granular computing. In Proceedings RSKT06, Chongqing, China, 2006—Lecture Notes in Artificial Intelligence 4062; Springer: Berlin, Germany, 2006; pp. 92–102. [Google Scholar]
- Cabrerizo, F.J.; Al-Hmouz, R.; Morfeq, A.; Martínez, M.A.; Pedrycz, W.; Herrera-Viedma, E. Estimating incomplete information in group decision-making: A framework of granular computing. Appl. Soft Comput. 2020, 86, 105930. [Google Scholar] [CrossRef]
- Capizzi, G.; Lo Sciuto, G.; Napoli, C.; Połap, D.; Woźniak, M. Small Lung Nodules Detection based on Fuzzy-Logic and Probabilistic Neural Network with Bio-inspired Reinforcement Learning. IEEE Trans. Fuzzy Syst. 2019. Available online: https://ieeexplore.ieee.org/abstract/document/8895990 (accessed on 13 February 2020).
- Hryniewicz, O.; Kaczmarek, K. Bayesian analysis of time series using granular computing approach. Appl. Soft Comput. 2016, 47, 644–652. [Google Scholar] [CrossRef]
- Martino, A.; Giuliani, A.; Rizzi, A. (Hyper) Graph Embedding and Classification via Simplicial Complexes. Algorithms 2019, 12, 223. [Google Scholar] [CrossRef] [Green Version]
- Martino, A.; Giuliani, A.; Todde, V.; Bizzarri, M.; Rizzi, A. Metabolic networks classification and knowledge discovery by information granulation. Comput. Biol. Chem. 2020, 84, 107187. [Google Scholar] [CrossRef] [PubMed]
- Pownuk, A.; Kreinovich, V. Granular approach to data processing under probabilistic uncertainty. In Granular Computing; Springer: Berlin, Germany, 2019; pp. 1–17. [Google Scholar]
- Zhong, C.; Pedrycz, W.; Wang, D.; Li, L.; Li, Z. Granular data imputation: A framework of granular computing. Appl. Soft Comput. 2016, 46, 307–316. [Google Scholar] [CrossRef]
- Grzymala-Busse, J.W.; Grzymala-Busse, W.J. Handling Missing Attribute Values. In Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L., Eds.; Springer: Boston, MA, USA, 2005. [Google Scholar]
- Polkowski, L. A model of granular computing with applications. In Proceedings of the IEEE 2006 Conference on Granular Computing GrC06, Atlanta, GA, USA, 10–12 May 2006; pp. 9–16. [Google Scholar]
- Polkowski, L. Formal granular calculi based on rough inclusions. In Proceedings of the IEEE 2005 Conference on Granular Computing GrC05, Beijing, China, 25–27 July 2005; pp. 57–62. [Google Scholar]
- Polkowski, L.; Artiemjew, P. Granular Computing in Decision Approximation—An Application of Rough Mereology. In Intelligent Systems Reference Library 77; Springer: Berlin, Germany, 2015; pp. 1–422. ISBN 978-3-319-12879-5. [Google Scholar]
- Ropiak, K.; Artiemjew, P. On Granular Rough Computing: Epsilon homogenous granulation. In Proceedings of International Joint Conference on Rough Sets, IJCRS’18, Quy Nhon, Vietnam, Lecture Notes in Computer Science (LNCS); Springer: Berlin, Germany, 2018. [Google Scholar]
- Ropiak, K.; Artiemjew, P. A Study in Granular Computing: Homogenous granulation. In Proceedings of the Information and Software Technologies—ICIST 2018—Communications in Computer and Information Science; Dregvaite, G., Damasevicius, R., Eds.; Springer: Berlin, Germany, 2018. [Google Scholar]
- Artiemjew, P.; Ropiak, K. Missing Values Absorption Based on Homogenous Granulation. In Information and Software Technologies—ICIST 2019—Communications in Computer and Information Science; Damaševičius, R., Vasiljeviene, G., Eds.; Springer: Berlin, Germany, 2019; Volume 1078. [Google Scholar]
- Ropiak, K.; Artiemjew, P. Homogenous Granulation and Its Epsilon Variant. Computers 2019, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Artiemjew, P.; Ropiak, K. A Novel Ensemble Model—The Random Granular Reflections. In Proceedings of the 27th International Workshop on Concurrency, Specification and Programming, CEUR, Berlin, Germany, 24–26 September 2018. [Google Scholar]
- Polkowski, L.; Artiemjew, P. On Granular rough computing with missing values. In Proceedings of the International Conference on Rough Sets and Intelligent Systems Paradigms RSEiSP’07, Lecture Notes in Computer Science; Springer: Berlin, Germany, 2007; Volume 4585, pp. 271–279. [Google Scholar]
- Polkowski, L.; Artiemjew, P. Granular computing: Granular classifiers and missing values. In Proceedings of the 6th IEEE International Conference on Cognitive Informatics ICCI’07, Lake Tahoo, CA, USA, 6–8 August 2007; pp. 186–194. [Google Scholar]
- UCI Data Repository. Available online: https://archive.ics.uci.edu/ml/index.php (accessed on 13 February 2020).
- Jerez, J.M.; Molina, I.; García-Laencina, P.J.; Alba, E.; Ribelles, N.; Martín, M.; Franco, L. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif. Intell. Med. 2010, 50, 105–115. [Google Scholar] [CrossRef] [PubMed]
Name | Description |
---|---|
i-th training decision system, used in cross validation process | |
i-th object of selected decision system | |
granule | |
granulation radius | |
set of conditional attributes | |
indiscernibility relation | |
d | decision attribute |
Majority Voting procedure | |
concept-dependent variant of granulation | |
cardinality of the set |
Accuracy | Bias_Acc | Trn_Size | |||||||
---|---|---|---|---|---|---|---|---|---|
Data Set | * = Each Value | * = * | * = Each Value | * = * | * = Each Value | * = * | |||
552 | |||||||||
216 | |||||||||
124 | |||||||||
800 |
Name | |
---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artiemjew, P.; Ropiak, K.K. On Granular Rough Computing: Handling Missing Values by Means of Homogeneous Granulation. Computers 2020, 9, 13. https://doi.org/10.3390/computers9010013
Artiemjew P, Ropiak KK. On Granular Rough Computing: Handling Missing Values by Means of Homogeneous Granulation. Computers. 2020; 9(1):13. https://doi.org/10.3390/computers9010013
Chicago/Turabian StyleArtiemjew, Piotr, and Krzysztof Krzysztof Ropiak. 2020. "On Granular Rough Computing: Handling Missing Values by Means of Homogeneous Granulation" Computers 9, no. 1: 13. https://doi.org/10.3390/computers9010013
APA StyleArtiemjew, P., & Ropiak, K. K. (2020). On Granular Rough Computing: Handling Missing Values by Means of Homogeneous Granulation. Computers, 9(1), 13. https://doi.org/10.3390/computers9010013