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Abstract: This paper investigates the dynamics of information spread across social network services
(SNSs) such as Twitter using the susceptible-infected-recovered (SIR) model. In the analysis,
the non-responsiveness of individual users is taken into account; a user probabilistically spreads
the received information, where not spreading (not responding) is equivalent to that the received
information is not noticed. In most practical applications, an exact analytic solution is not available
for the SIR model, so previous studies have largely been based on the assumption that the probability
of an SNS user having the target information is independent of whether or not its neighbors have that
information. In contrast, we propose a different approach based on a “strong correlation assumption”,
in which the probability of an SNS user having the target information is strongly correlated with
whether its neighboring users have that information. To account for the non-responsiveness of
individual users, we also propose the “representative-response-based analysis”, in which some
information spreading patterns are first obtained assuming representative response patterns of
each user and then the results are averaged. Through simulation experiments, we show that
the combination of this strong correlation assumption and the representative-response-based
analysis makes it possible to analyze the spread of information with far greater accuracy than
the traditional approach.

Keywords: social network service; Twitter; information spread; SIR model; correlation

1. Introduction

When a major event occurs, a large number of original tweets and copies of these tweets commonly
called “retweets” are posted on Twitter. Most tweets posted when a major event occurs are known
to be retweets [1], and a large number of retweets are linked to a small number of original tweets
describing the event. Posting retweets on a viral tweet getting many (thousands or more) retweets
is very bursty: A large number of retweets are posted to the viral tweet in a short period of time.
Such bursty spread of information, often referred to as information cascade, is found not only on Twitter
but also on other social network services (SNSs). Understanding the information spread on Twitter
through retweets is the first step toward understanding the more complex phenomena of information
spread on SNSs.

In this paper, we investigate the spread of a piece of the target information, corresponding to
an original (and viral) tweet on Twitter, using the susceptible-infected-recovered (SIR) model [2,3]
with a given network topology representing the connections between SNS users. The SIR model is
a mathematical epidemiological model originally designed for describing the spread of infectious
diseases, but which can also be used to model the spread of information [3]. The simplicity of the SIR
model makes it possible to analyze the spread of the target information by exactly taking into account
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the network topology. However, with the exception of very small networks, performing an exact
analysis is impossible with the SIR model [3]. Therefore, in most existing studies on the spread of an
epidemic disease [4–8], the probability that a given person is infected is assumed to be independent of
whether its neighboring persons are infected. The assumption of the independence between neighbors
is not appropriate for investigating the information spread on SNSs because SNS users are likely to
form clusters [9] and whether or not each user knows the target information is strongly related to
whether other members within the cluster know.

We previously proposed an approach not assuming independence between neighbors, in which
the probability of a user knowing the target information is strongly correlated with whether its
neighbors have that same information [10], which we call the “strong correlated assumption (SCA)”.
In that work, we assumed that all users that received the target information broadcast it to their
neighbors. In real situations, SNS users do not always respond to the information sent from their
neighbors. Twitter users receive many tweets and retweets every day and these tweets/retweets are
frequently overlooked (not noticed). This non-responsiveness of individual users should be considered
in the model. Note that the original SIR model takes into account the non-responsiveness of individuals
because a susceptible individual does not always become infected when interacting with an infected
individual. In previous studies on epidemic spreading based on the SIR model, the response of each
individual is first averaged and represented as a parameter often called the rate of infection, and then
the spread of the epidemic is analyzed by solving differential equations with a given rate of infection.

Expanding the idea in our previous paper [10], we use the SIR model to analyze how the target
information spreads in the presence of the non-responsiveness of individual users. In this paper,
we investigate whether the SCA is still effective when accounting for the non-responsiveness of
individual users. In addition to this, we investigate whether the conventional analysis, which solves
differential equations with a given response rate (the rate of infection), is appropriate for taking into
account the non-responsiveness of individual users. Accordingly, we propose an alternative approach
called the “representative-response-based analysis”, where some information spreading patterns are
first obtained assuming representative response patterns of each user and then the results are averaged,
and we compare the representative-response-based analysis with the conventional analysis in terms of
the accuracy of reproducing the simulation results. Note that this paper is an extended version of our
recent conference paper [11].

The remainder of this paper is organized as follows. Section 2 briefly describes previous work on
the SIR model and its application to the analysis of information spread on SNSs. Section 3 provides a
mathematical model that explains the information spread on SNSs and proposes an analytical method
based on the SCA and a new treatment of the responses of individual users. Section 4 outlines the
results of simulations which show the superiority of the proposed analytical method over existing
methods and Section 5 concludes the paper.

2. Previous Work

In the Susceptible-Infected-Susceptible (SIS) model, a person that is susceptible to contagion
(S) can become infected (I) when exposed to an adjacent infected person. Infected persons may
subsequently recover, but later become susceptible to reinfection. This state transition repeats until
the whole network reaches a homogeneous stationary state. In the SIR model, persons are initially
susceptible (S) to a contagion, and then may become infected (I) when exposed. However, the infected
persons subsequently recover (R) and become resistant to the contagion. A large number of studies
have been conducted on the spread of epidemic disease using the SIS or SIR model [3]. Among those,
Anderson et al. [12] studied infectious diseases using both the SIS and SIR models based on mean-field
approximation without explicitly considering network structures, while Pastor-Satorras et al. [13]
and Boguna et al. [14] studied SIS and/or SIR models using node degree information, that is,
the distribution of the number of neighboring persons. Based on this work, numerous studies have
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been conducted on SIS and SIR models in which network structures are directly considered via
adjacency matrices [5–7,15,16].

Recently, several studies have been conducted on the spread of information over SNSs using the
SIS and/or SIR models [17–21]. For example, Leskovec et al. [17] studied information spread through
a social network over the Internet by examining the propagation patterns between blog posts using
an information propagation model based on the SIS model. Cha et al. [18] investigated information
cascades in Flickr, in which it often takes a long time for photo bookmarks to spread: an initial phase
of exponential growth in the number of fans is followed by a phase of linear growth over several years.
They showed that this phenomenon can be explained by the SEIR model, which has one additional
state called exposed (denoted E), between the S and I states. In the exposed state, a user is more likely
to access the photos in Flickr than in the susceptible state. Okada et al. [19] studied a topic propagation
model based on the macroscopic SIS model which does not explicitly consider network structure,
while Bauckhage et al. [20] investigated the change in people’s attention to viral videos from the point
of view of mathematical epidemiology using the SIR model. Cheng et al. [21] performed an analysis
of information cascades on Facebook over long time scales (almost one year) and showed that many
such cascades recur, exhibiting multiple bursts of popularity, with periods of quiescence in between.
They also showed that these phenomena could be explained by a revised SIR model in which resistant
persons have a reduced risk of reinfection.

Retweet, which is the broadcasting of a received tweet to all followers, is the simplest way of
spreading information, and the phenomenon observed on Twitter is the superposition of retweets on
each original tweet. In this sense, understanding the broadcasting-based information spread is the first
step toward understanding Twitter’s more complex phenomena. However, the broadcasting-based
information spread has not been addressed in the previous studies on the information spread through
social networks. Thus, in this paper, we focus on the broadcasting-based information spread using the
SIR model explicitly considering the network topology. Explicitly considering the network topology in
the analysis allows us to quantitatively discuss the phenomena on Twitter. Note that most of previous
studies on the information spread using the SIS and/or SIR models take the macroscopic approach;
they do not explicitly consider the network topology.

3. Information Spread on a Directed Network

3.1. Model Description

In this subsection, we consider the phenomenon in which a piece of information (such as an
original tweet) spreads from an information holder on a directed network with N nodes where each
such node is referred to as an agent; here, an agent corresponds to a user of an SNS who sends or
receives the target information on the Internet. Each agent can be in one of the following three states,
which are similar to the SIR model states:

State 0: Target information has not yet been received, or the information has been sent from neighbors
but overlooked.

State 1: Target information has been received and will be spread in the subsequent time steps.
State 2: Target information has been received and spread.

At time 0, all agents except for the initial information holders are in state 0 and the initial
information holders broadcast the target information for all their adjacent agents at time 0. If agent i

receives the target information when it is in state 0, agent i (i ∈ N def
= {1, . . . , N}) changes from state

0 to 1 with probability qi. In what follows, qi is referred to as the response probability. Note that a
transition from state 0 to 1 corresponds to the situation where agent i notices the target information and
decides to spread it in the subsequent time. If agent i changes state from 0 to 1, it stays in state 1 for a set
period of time. The length of time in which agent i stays in state 1 follows an exponential distribution
with rate parameter 1/λi. After staying in state 1 for this set period, agent i then broadcasts the target
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information to all adjacent agents, transitions from state 1 to state 2, and remains in that state without
rebroadcasting the information. Note that, in this model, in reproducing information by retweeting
on Twitter, the information is assumed to be spread by broadcasting (from one to many). The state
transition diagram is given as Figure 1.

０ 1 2
𝑞

1െ 𝑞

transition caused by the receipt of the target information 

self transition with broadcasting the target information

Stay for a length of time exponentially 
distributed with mean 1/𝜆

Figure 1. State transition.

Although the above model is quite simple, it has the potential to explain real-world
information spread on Twitter through retweets. Here, an example is presented to verify this claim.
When Naomi Osaka, a tennis player with dual US and Japanese nationality, won the US Open in
September 2018, a number of tweets were issued to mark her victory. Among those, a tweet issued by
Shinzo Abe, Japanese Prime Minister, obtained over 20,000 retweets. The blue line in Figure 2 shows
the actual number of retweets per 10-minute interval, while the red line shows what was predicted in
this respect by the model. We assumed that λi = λ and qi = q for all i ∈ N , and λ and q were time
dependent. The time dependencies of λ and q are depicted in Figure 3; these were manually determined
so that the actual data (red line) roughly matches the simulation results (blue line). The simulation was
conducted in a directional graph with 81,306 nodes and 1,786,149 links. The graph was constructed
based on Twitter follower-followee data available in [22]. The figure shows that the results of the
model (blue line) accord well with the real data (red line). The time dependence of parameters λ

and q is not explicitly considered in the analysis of this paper; rather, this example simply shows the
potential applicability of the model to real-world phenomena.
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Figure 2. Temporal change in the number of retweets per minute: comparison between real data and
simulation results based on the SIR model.
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Figure 3. Temporal dependencies of λ and q.

3.2. Analysis

Let A = {aij}i,j∈N denote an adjacency matrix where aij = 1 if a directed link exists from agent
i to agent j; otherwise, aij = 0. We also let yij denote a random variable which is equal to 1 if
agent j changes its state from 0 to 1 when it receives the target information from agent i; otherwise,
yij = 0. We let E[yij] = qj for all i ∈ N , assuming that the probability that a user notices the received
information (tweet) does not depend on the sender of the information. In what follows, Y = {yij}i,j∈N
is referred to as the response matrix.

Hereinafter, we assume that the outcome of Y is known. That is, whether yij = 1 or 0 is known
for all i, j ∈ N . This assumption is equivalent to cutting off the directed link from i to j if yij = 0 and
making the information spread on the resultant network without any users being non-responsive.
This assumption is relaxed in Section 3.5.

The state of the network is expressed by (Z1(t), Z2(t), . . . , ZN(t)), where Zi(t) denotes the state
of agent i at time t ≥ 0. The transition of (Z1(t), Z2(t), . . . , ZN(t)) is governed by a continuous-time
Markov chain. We define

X(k)
i (t) =

{
1, Zi(t) = k

0. otherwise

With this definition, the probability that agent i is in state k at time t, p(k)i (t), is given by

p(k)i (t) = E[X(k)
i (t)].

Agent i changes its state from 0 to 1 only when it is in state 0 and (at least) one adjacent agent
is in state 1. Agent i changes its state from 1 to 2 at a constant rate λi, but only when it is in state 1.
This observation yields

dp(1)i (t)
dt

= −λi p
(1)
i (t) + ∑

j
ajiyjiλjE[X

(1)
j (t)X(0)

i (t)], (1)

dp(2)i (t)
dt

= λi p
(1)
i (t). (2)

We define

Xi(t)
def
= X(1)

i (t) + X(2)
i (t), pi(t)

def
= E[Xi(t)].
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Note that pi(t) is the probability that agent i is in state 1 or 2 at time t; that is, agent i notices
the target information sent from one of adjacent agents at time t. For later use, we prove the
following identity.

Lemma 1.
ajiyjiX

(2)
j (t)X(0)

i (t) = 0. (3)

Proof. Since (3) holds if ajiyji = 0 or X(2)
j (t) = 0, it is sufficient to prove (3) when aijyij = 1 and

X(2)
j (t) = 1. If X(2)

j (t) = 1, agent j has already sent the target information to all neighbor agents by
time t and if ajiyji = 1, node i notices the target information, which is sent from node j. Thus, node i

should be in state 1 or 2 at time t, that is, X(0)
i (t) = 0, which completes the proof.

Summing (1) and (2) yields

dpi(t)
dt = ∑j ajiyjiλjE[X

(1)
j (t)X(0)

i (t)]

= ∑j ajiyjiλjE[(X(1)
j (t) + X(2)

j (t))X(0)
i (t)]

= ∑j ajiyjiλjE[(X(1)
j (t) + X(2)

j (t))(1− X(1)
i − X(2)

i (t))]

= ∑j ajiyjiλjE[Xj(t)(1− Xi(t))]

= ∑j ajiyjiλj(pj(t)− E[Xj(t)Xi(t)]),

(4)

where the second equality comes from Lemma 1 and the third equality comes from X(0)
i + X(1)

i + X(2)
i = 1.

Remark 1. In the original SIR model, the spread of infection from an infected agent to its adjacent agents
occurs independently at different times, which is different from the model described in this paper. Note that the
information spread (spread of infection disease) is faster in the original SIR model than in the model considered
in this paper. To see the difference, consider an agent (agent A) having two adjacent agents (agents B and C).
Assume that agent A in state 1 at time t, and agents B and C are both in state 0 at time t. In the original SIR
model, agent B receives the information at time t + TB and agent C receive the information at time t + TC,
where TB and TC are mutually independent and exponentially distributed random variables with mean 1/λ.
In the model considered in this paper, agents B and C simultaneously receive the information at time t + T,
where T is an exponentially distributed random variable with mean 1/λ. Since min{TB, TC} is stochastically
smaller than T, the information transfer in the original SIR model stochastically occurs faster than in the
considered model.

3.3. Strong Correlation Assumption

Here, the exact value of pi(t) cannot be obtained by solving (4) because the E[Xi(t)Xj(t)] term is
not known. However, the upper and lower bounds of pi(t) can be obtained using the following lemma.

Lemma 2. If Xi(t) and Xj(t) are non-negatively correlated, that is, they satisfy Cov[Xi(t), Xj(t)] ≥ 0, then

pi(t)pj(t) ≤ E[Xi(t)Xj(t)] ≤ min{pi(t), pj(t)}.

Proof. From the fact that Xi(t) and Xj(t) are non-negatively correlated, it follows that

Cov
[
Xi(t), Xj(t)

]
= E

[
Xi(t)Xj(t)

]
− E [Xi(t)] E

[
Xj(t)

]
≥ 0,
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which means that pi(t)pj(t) ≤ E[Xi(t)Xj(t)]. It is also seen that

E
[
Xi(t)Xj(t)

]
= P

(
{Xi(t) = 1} ∩ {Xj(t) = 1}

)
≤ P ({Xi(t) = 1}) = pi(t),

(5)

and
E[Xi(t)Xj(t)] = P

(
{Xi(t) = 1} ∩ {Xj(t) = 1}

)
≤ P

(
{Xj(t) = 1}

)
= pj(t).

(6)

(5) and (6) yield
E[Xi(t)Xj(t)] ≤ min{pi(t), pj(t)},

which completes the proof.

Most recent related studies have solved (4) by assuming pi(t)pj(t) = E[Xi(t)Xj(t)] (or by using
assumptions similar to this) [15,16,23–25], which is called the independence assumption (IA) in this
paper. In contrast, here we assume E[Xi(t)Xj(t)] = min{pi(t), pj(t)}, which we refer to as the strong
correlation assumption (SCA). To the best of the authors’ knowledge, no previous studies have considered
this assumption. Under this assumption, (4) is expressed as

dpi(t)
dt = ∑j ajiyjiλj(pj(t)−min{pi(t), pj(t)})

= ∑j;pj(t)>pi(t) ajiyjiλj(pj(t)− pi(t)).
(7)

The second line of the above equation means that the target information from agent i is received
and noticed by agent j when pj(t) > pi(t). In other words, the SCA describes the target information
spread from the agents that are most likely to have the target information to agents that are most
unlikely to have the target information. It also gives the lower bound for the probability that an agent
has the target information, while the IA provides the upper bound of the probability.

3.4. Upstream and Downstream Relationship

Here, we introduce the following order relationship between agents, which is referred to as the
upstream and downstream relationship in this paper.

Definition 1 (upstream and downstream relationship). If Xj(t) ≥ Xi(t) for all t, we say that agent i is
downstream of agent j (agent j is upstream of agent i) and denote this by j→ i.

If the upstream and downstream relationship exists for each pair of adjacent agents, the SCA
gives the exact result. To show this, without loss of generality, we assume that agent j is upstream of
agent i (j→ i). Note that pj(t) ≥ pi(t) if j→ i because {Xj(t) = 1} ⊃ {Xi(t) = 1}. We also see that

E[Xi(t)Xj(t)] = P
(
{Xi(t) = 1} ∩ {Xj(t) = 1}

)
= P ({Xi(t) = 1}) = pi(t) = min{pi(t), pj(t)},

which means that the SCA exactly holds. In addition to this, if the upstream and downstream
relationship exists for all pairs of adjacent agents, (7) holds for all t and thus we have

∫ ∞

0

dpi(t)
dt

e−stdt = ∑
j;j→i

∫ ∞

0
ajiyjiλj(pj(t)− pi(t))e−stdt.
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If i is not the initial information holder (that is, pi(0) = 0), we obtain

sp∗i (s) = ∑
j;j→i

ajiyjiλj(p∗j (s)− p∗i (s)), (8)

where p∗i (s) is the Laplace-Stieltjes transform of pi(t) defined as follows:

p∗i (s)
def
=
∫ ∞

0

dpn(t)
dt

e−stdt =
∫ ∞

0
e−stdpn(t).

Note that pi(s) = 1 if i is the initial information holder because pi(t) = 1 for t ≥ 0 and pi(t) = 0
for t < 0.

The upstream and downstream relationship exists for all pairs of adjacent agents when the target
information is spread over a tree-topology network from its root (Figure 4). Assume that agent i is
located n hops downstream from the root, and the path from the root to agent i is given by

i0 → i1 →, . . . ,→ in,

where i0 is the root and in = i. It follows from (8) that

p∗ik (s) =
yik−1ik λik−1

s + yik−1ik λik−1

p∗ik−1
(s), k = 1, . . . , n

and thus we obtain

p∗i (s) =
n

∏
k=1

yik−1ik λik−1

s + yik−1ik λik−1

=

∏n
k=1

λik−1
s+λik−1

, ∏n
k=1 yik−1ik = 1

0. otherwise

In particular, if λik = λ for all k = 1, . . . , n, it is possible to analytically retransform p∗i (s) to pi(t),
and the closed-form representation of pi(t) is obtained as follows:

pi(t) =

∑n−1
k=0

(λt)k

k! e−λt, ∏n
k=1 yik−1ik = 1

0. otherwise

root
(initial information holder)

Figure 4. Tree-topology network.

3.5. Taking the Average on the Response Matrix

Let L(t) be the number of agents that have spread the target information by time t,
which corresponds to the number of retweets posted by time t after the original tweet was posted at
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time 0. The information cascade can be described by L(t). Since L(t) = ∑i X(2)
i (t), the conditional

expectation of L(t) on the response matrix Y, E[L(t)|Y], is calculated as

E[L(t)|Y] = ∑
i

E[X(2)
i (t)|Y] = ∑

i
p(2)i (t|Y),

where p(2)i (t|Y) is the conditional probability that agent i is in state 2 given the outcome of Y. Note that
the results in the previous subsections also have dependence on the outcome of Y and thus, for example,
pi(t) in (4) should be written as pi(t|Y) in a rigorous sense. We did not, however, use this rigorous
notation in the previous subsections for simplicity of expression. Let Ti be the time at which agent i
received the target information and let τi be the period between the time when agent i receives and
spreads the target information. We have

p(2)i (t|Y) = P(Ti + τi ≤ t|Y)

=
∫ t

0
P(Ti ≤ t− u|Y)P(s ≤ τi < u + du|Y)

=
∫ t

0
λiP(Ti ≤ t− u|Y)e−λiudu

=
∫ t

0
λi pi(t− u|Y)e−λiudu =

∫ t

0
λi pi(u|Y)e−λi(t−u)du.

Thus,

E[L(t)|Y] = ∑
i

∫ t

0
λi pi(u|Y)e−λi(t−u)du, (9)

where, as previously noted, pi(t|Y) is the same as pi(t) in the previous sections because the outcome
of Y is assumed to be given in the previous sections. Note that pi(t|Y) can be obtained by numerically
solving (7) if Y is given.

To obtain E[L(t)], we need to calculate E[L(t)|Y] for all possible outcomes of Y and sum the
results using weights which equal the probability of the outcome. Calculating E[L(t)|Y] for all possible
outcomes of Y is, however, impossible because the number of possible outcomes of Y increases
exponentially with the number of agents in the network. One possible approach for approximately
calculating E[L(t)] is to obtain {pi(u)}N

i=1 = {E[pi(u|Y)]}N
i=1 through (4) by assuming that yji is

equal to the response probability, that is, yij = qi(= E[yji]). Under this assumption, {pi(t)}N
i=1 is

approximately given as the solutions to the following differential equations:

dpi(t)
dt

= ∑
j

ajiqiλj(pj(t)− E[Xj(t)Xi(t)]), i ∈ N . (10)

By applying the SCA (or IA) to the above, we can numerically obtain {pi(t)}N
i=1. Once {pi(u)}N

i=1
is obtained, we can calculate E[L(t)] by using the following relationship:

E[L(t)] = ∑
i

∫ t

0
λi pi(u)e−λi(t−u)du.

Most previous studies on epidemic spreading using the SIS model or SIR model [4–8] adopted the
assumption yij = qi(= E[yji]). The response of each individual is first averaged and represented as a
parameter qi, which is often called the rate of infection, and then the spread of the epidemic is analyzed
by solving differential equations similar to (10). We call this approach the “mean-response-based
analysis”. Unfortunately, as shown in the next section, this analytical approach greatly overestimates
E[L(t)] especially when qi is equal to or less than 0.1. The mean-response-based analysis implicitly
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assumes that yij and E[Xj(t)Xi(t)|Y] are statistically independent, but this assumption does not hold,
resulting in a discrepancy between the simulation results and the mean response-based analysis.

Another possible approach is to calculate E[L(t)|Y] for some (randomly selected) outcomes of
Y and take their average. This approach, called the “representative-response-based analysis” in this
paper, corresponds to the notion that some information spreading patterns are first obtained assuming
representative response patterns of each user and then the results are averaged. Surprisingly, as shown
in the next section, the dependence of E[L(t)] on the outcome of Y is very small for large networks
and the representative-response-based analysis yields a much better estimate of E[L(t)] than the
mean-response-based analysis.

Note that the exact result is available when the target information is spread over a tree-topology
network from its root (Figure 4). For example, if the path from the root to agent i is i0 → i1 →, . . . ,→
in = i, and λik = λ for all k = 1, . . . , n, then

pi(t) =

(
n

∏
k=1

qik

)
n−1

∑
k=0

(λt)k

k!
e−λt.

3.6. Mean-Field Approximation

Under the IA E[Xi(t)Xj(t)] = pi(t)pj(t) and SCA E[Xi(t)Xj(t)] = min{pi(t), pj(t)}, interpolating
both approximations with linear equations using the parameter α yields

E[Xi(t)Xj(t)] = (1− α)pi(t)pj(t) + α min{pi(t), pj(t)}. (11)

Setting α = 0 in the above equation gives the IA, while setting α = 1 gives the SCA. Among the
two approximations mentioned in Section 3.5, we use the first one and apply (11) to get

dpi(t)
dt

= ∑
j

ajiqiλj(pj(t)− (1− α)pi(t)pj(t) + α min{pi(t), pj(t)}). (12)

Applying the mean-field approximation, where pi(t) = p(t), λi = λ, and qi = q for all i ∈ N ,
to (12), yields

dp(t)
dt

= dqλ(p(t)− (1− α)p(t)2 − αp(t))

= dqλ(1− α)p(t)(1− p(t)),

in which d is the mean degree of the agent. The above differential equation has the following solution:

p(t) =
p(0)

p(0) + (1− p(0))e−dqλ(1−α)t
.

This result shows that the probability that an agent will have received the target information by
time t follows a logistic curve as per what appears in population growth models. In addition to this,
α acts as a scale parameter of time t, and larger α (which means the approximation is closer to the SCA
has the effect of advancing the time more slowly. The expectation for the total number of agents that
have spread the target information up to time t can then be calculated by the following equation:

E[L(t)] =
∫ t

0

Nλp(0)e−λ(t−s)

p(0) + (1− p(0))e−dqλ(1−α)s
ds. (13)
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4. Simulation and Discussion

4.1. Outline of the Simulation

To evaluate the accuracy of the analytical methods explained in Section 3, we conducted
simulation experiments for the target information spread based on the model described in Section 3.1.
We configured two different graphs based on the data available in [22]. The first graph (called the
Facebook network) represents a social network (friendship relations) on Facebook and the other
(called the Twitter network) represents a followee-follower network on Twitter. The Facebook network
has 4039 nodes and 88,234 links, and the Twitter network has 81,306 nodes and 1,768,149 links.
The target information spread started from broadcasting by a single information source (node).
The outdegree of the information source was 30 for the Facebook network, and 1111 for the Twitter
network. We chose these two networks because Facebook and Twitter are representative SNSs. Also,
because the Facebook network is smaller than the Twitter network, the network size dependence of
the accuracy of the proposed analysis can be seen from the results of these two networks.

The pseudo code of the simulation is shown as Algorithm 1, where S0, S1, and S2 respectively
denote the sets of agents in states 0, 1, and 2, and ti denotes the time at which agent i broadcasts
the target information. RAND(0, 1) is one random number extracted from a uniform distribution on
[0, 1], and EXP(x) is one random number extracted from the exponential distribution with mean x.
In Algorithm 1, we assume that agent 1, the information source, is in state 1 and all agents except agent
1 are in state 0 at time 0. As shown in Algorithm 1, the procedure of the simulation is very simple.
When an agent receives the target information while in state 0, the agent changes from state 0 to state 1
with probability qi. After changing state from 0 to 1, the agent stays in state 1 for some period of time
and then broadcasts the target information to all adjacent agents. After broadcasting, the agent changes
from state 1 to state 2 and stays in that state, never broadcasting the information again. The simulation
stops when no agent is in state 1, that is, when no other agents will broadcast the target information.
The pseudo code has two sets of parameters, {λi}i∈N and {qi}i∈N , where λi is the mean length of the
period that agent i stays in state 1 and qi is the response probability. In the simulations, we set λi = 1
for all i ∈ N . Settings of {qi}i∈N will be considered in the subsequent subsections.

We conducted the simulations using an event-driven simulator written in C on a machine running
an Intel Xeon E5-1650 processor (3.5 GHz). The results obtained in the simulation, namely the number
of broadcasts per 0.1 time units and the cumulative number of broadcasts, were compared with the
results obtained by the proposed analysis.

Algorithm 1 Pseudo Code of Simulation for Information Spread

Initialization: S0 = N \ {1}, S1 = {1}, S2 = ∅, t1 = 0
1: while S1 6= ∅ do

2: Select i ∈ S1 such that ∀j ∈ S1, ti ≤ tj
3: for all j ∈ S0 do

4: rj = RAND(0, 1)
5: if aij = 1 and rj ≤ qj then

6: S1 = S1 ∪ {j}, S0 = S0 \ {j}, tj = ti + EXP(1/λj)
7: end if
8: end for
9: S1 = S1 \ {i}, S2 = S2 ∪ {i}

10: end while

4.2. Result: Response Probability (q = 1)

We first conducted simulation experiments for the case where the response probability of each
agent is equal to one; that is, all agents in state 0 transit to state 1 when they receive the target
information from their neighbors. Figure 5a shows the temporal evolution of the number of agents
spreading the target information, E[L(t)], for the Facebook network. Note that the vertical axis shows
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not E[L(t)], but the net increase of E[L(t)] during a period of 0.1 time units (that is, E[L(t+ 0.1)− L(t)]).
Each filled circle shows the average of the results of 1000 simulations, each of which was conducted
with a different seed in the random number generator algorithm. The red and blue solid curves
show the analytical results under the SCA and the IA, respectively. Note that we do not need to take
the average for the response matrix, Y, for the case where the response probability is equal to one.
Figure 5a shows a typical information cascade in which the number of agents that spread the target
information increases rapidly, reaches a peak, and then gradually decreases. It also shows that an
analysis based on the SCA reproduces the simulation results much more accurately than an analysis
based on the IA.
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Figure 5. Number of broadcasts per 0.1 time units (q = 1): (a) on Facebook, (b) on Twitter.

Figure 5b shows the results for the Twitter network. The SCA-based and IA-based analyses both
accurately reproduce simulation results, although the former is somewhat better than the latter.

4.3. Results: Response Probability (q < 1)

We next conducted simulations for the case where the response probability was less than 1, that is,
all agents in state 0 probabilistically transit to state 1 when they receive the target information from their
neighbors. For simplicity, we assumed that all agents had the same response probability, that is, qi = q
for all i ∈ N , and we conducted four sets of simulations by setting q at four different values: 0.5, 0.3, 0.1,
and 0.05. The time change of the number of broadcasts per 0.1 time units and the cumulative number
of broadcasts E[L(t)] for the Facebook network are respectively shown in Figures 6 and 7. The circles
show the simulation results, while solid and dotted lines show the analytical results. Note that for the
case where the response probability is less than 1, we need to use an approximation for the average
of response matrix Y as explained in Section 3.5. The blue (SCA) and red (IA) solid curves show
the results from the representative-response-based analysis, in which the E[L(t)|Y] are obtained for
ten different outcomes of Y and the results are averaged to yield the final result. We checked the
randomness of the ten outcomes of Y by using the following index:

Cov[Y(m), Y(n)]
def
=

∑i,j aij(y
(m)
ij −Y(m))(y(n)ij −Y(n))√

Var[Y(m)]
√

Var[Y(n)]

Y(m) def
=

∑i,j aijy
(m)
ij

∑i,j aij
, Var[Y(m)]

def
=

∑i,j aij(y
(m)
ij −Y(m))(y(m)

ij −Y(m))

∑i,j aij

(14)

where Y(m) = {y(m)}i,j∈N is the mth outcome of the response matrix. Note that if Y(m) is identical with
Y(n), then Cov[Y(m), Y(n)] = 1. The index defined above was within [−0.01, 0.01] for all pairs of the ten
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outcomes of Y, meaning that the ten outcomes were statistically independent. The blue (SCA) and red
(IA) dashed curves show the results from the mean-response-based analysis.
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Figure 6. Number of broadcasts per 0.1 time units on Facebook: (a) q = 0.5, (b) q = 0.3, (c) q = 0.1, (d) q = 0.05.
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Figure 7. Cumulative number of broadcasts on Facebook: (a) q = 0.5, (b) q = 0.3, (c) q = 0.1, (d) q = 0.05.
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In the figures, we see that the dashed curves are not consistent with the simulation results
compared with the solid curves. In particular, Figure 7 shows that the dashed curves overestimate the
cumulative number of broadcasts more as q becomes smaller. Among the four curves, the red dashed
curve (combination of the mean-response-based analysis and the IA) deviates the most by far from
the simulation results, and the blue solid curve (combination of the representative-response-based
analysis and the SCA) best agrees with the simulation results when q = 0.1 and q = 0.05.

The results for the Twitter network are shown in Figures 8 and 9. As in the case of the Facebook
network, the dashed curves are inconsistent with the simulation results compared with the solid
curves when q = 0.1 and q = 0.05. In particular, as shown in Figure 9, the dashed curves significantly
overestimate the cumulative number of broadcasts when q = 0.1 and q = 0.05. These results show that
the mean-response-based analysis is not suitable especially when the response probability is around
0.1 or smaller. As we mentioned in Section 3.1, the number of retweets of the original tweet issued by
Japanese Prime Minister Shinzo Abe celebrating Naomi Osaka’s victory at the US Open in September
2018 is well reproduced by the SIR model when the response probability is set at values from 0.05 to
0.1. In general, the response probabilities of Twitter users are small, being at most 0.1 [26].
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Figure 8. Number of broadcasts per 0.1 time units on Twitter: (a) q = 0.5, (b) q = 0.3, (c) q = 0.1, (d) q = 0.05.
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Figure 9. Cumulative number of broadcasts on Twitter: (a) q = 0.5, (b) q = 0.3, (c) q = 0.1, (d) q = 0.05.

Figures 8 and 9 indicate that, for the Twitter network, the simulation results are midway between
the red solid curve and blue solid curve. These two curves give good approximations of the simulation
results regardless of the response probability setting.

4.4. Dependence on Response Matrix Outcome

As shown in Section 4.3, the representative-response-based analysis yields better results than
the mean-response-based analysis. However, there is a concern regarding the former analysis that
the information spread may vary greatly depending on the choice of the outcome of Y. To discern
the dependence of information spread on the outcome of Y, in Figure 10 (Facebook) and Figure 11
(Twitter), we present five simulation results, which were separately obtained for five different outcomes
of Y (five different sets of values of {yij}i,j∈N ). Note that the five outcomes are chosen from the ten
outcomes of Y which are used in the analysis in Section 4.3. As the figures indicate, for the Facebook
network, the dependence on the outcome of Y is very small when q = 0.3. In addition to this, the
dependence of the information spread on the outcome of Y for the Twitter network is almost negligible.
These results support the validity of the representative-response-based analysis especially when it is
applied to large-size networks such as that of Twitter. Furthermore, these results suggest that, in the
representative-response-based analysis, it is not necessary to obtain results for multiple outcomes of Y
and then take their average; it is sufficient to take the result for one (randomly selected) outcome of Y.
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Figure 10. Dependence on the outcome of the response matrix on Facebook: (a) q = 0.3, (b) q = 0.1, (c) q = 0.05.
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Figure 11. Dependence on the outcome of the response matrix on Twitter: (a) q = 0.3, (b) q = 0.1, (c) q = 0.05.

Note that the outgoing degree of the information source in the Facebook network is 30. This causes
the large dependence of the information spread on the outcome of the response matrix when q ≤ 0.1
for the Facebook network. The number of the first recipients is equal to the outgoing degree of
the information source. The probability that all of the first recipients do not respond to the target
information is equal to (1− q)n, where n denotes the outgoing degree of the information source.
This no-response probability is equal to 0.21 when q = 0.05 and n = 30. In fact, the number of
broadcasts was equal to zero in the case of outcome Y(3) in Figure 10c, where none of the first recipients
of the target information responded to the information. The degree of the information source in the
Twitter network is 1111, so some of the first recipients should respond to the information even if q is
less than 0.1. The representative-response-based analysis is thus applicable if the number of neighbor
users (e.g., followers in Twitter) of the information source is several hundreds or larger even if the
response probability is less than 0.1. When the representative-response-based analysis is applied to the
case where the number of neighbor users of the information source is small, we should evaluate the
information spread for various outcomes of the response matrix and take their average.

4.5. Mean-Field Approximation

Finally, we show the analytical results for the mean-field approximation (Equation (13)) in
Figure 12 (Facebook) and Figure 13 (Twitter). Each figure shows ten different results with the mean-field
approximation, which were obtained by varying the parameter α from 0 to 0.9 in increments of
0.1. These figures show that the simulation results are not consistent with the results of mean-field
approximation for any value of α. Especially when q = 0.1, the results of mean-field approximation
greatly overestimate the number of broadcasts. This is because the mean-field approximation uses the
mean-response-based analysis. These numerical examples reveal that the mean-field approximation
is not suitable for quantitatively estimating the information spread especially when the response
probability is around 0.1 or smaller.
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Figure 12. Mean-field approximation on Facebook: (a) q = 0.3, (b) q = 0.3.
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Figure 13. Mean-field approximation on Twitter: (a) q = 0.3, (b) q = 0.3.

5. Conclusions

In this paper, we described a method of mathematically analyzing information propagation on
an SNS based on the SIR model. In particular, we proposed an analysis method that can consider the
existence of users who do not respond to the target information. Mathematically taking into account
users who do not respond to the target information is not trivial. In fact, as shown in this paper,
the conventional approach (mean-response-based analysis) produces large errors, especially when the
response probability is small (q ≤ 0.1). The representative-response-based analysis, newly proposed
in this paper, is especially useful for analyzing information spread in large-size networks because it
includes much less error than the conventional approach. The representative response-based analysis
relies on the fact that the number of broadcasts per unit of time does not depend on the details
of the outcome of the reaction matrix, especially for large-size networks. We expect that there is a
mathematical law such as the law of large numbers behind this fact, but finding this mathematical law
is a future subject. We also found that the SCA [10] is still effective in the presence of non-responsive
users. However, we also found that the information spread in the presence of non-responsive users
is roughly midway between the SCA and the IA results. The development of a method to analyze
the information spread with higher accuracy by combining the SCA and the IA is a future task.
We also note that the proposed analysis is applicable to the case where the parameters, λ and q,
have time dependence, but whether the proposed analysis can reproduce simulation results when
time dependence of the parameters exists is to be investigated as a future study. Further, it would
be interesting to apply machine learning, including deep learning, to identify the parameters of the
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proposed model ({λi} and {qi}) from real-time data on tweets and retweets so as to predict how the
number of tweets will increase in the future.
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