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Abstract: We provide sufficient conditions on the primitives of a class of discontinuous Bayesian
games such that all games in the class share equilibria. If a Bayesian game in the class also satisfies
a weak efficiency condition, then we show its normal form is better-reply secure. The invariance
property then provides an existence result for all Bayesian games in the class. Results are shown for
both pure strategy and behavioral strategy equilibrium. We illustrate the application of the results
with an example of a class of contests with bid caps.
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1. Introduction

In many applications of Bayesian games, such as auctions, contests, or in oligopoly
pricing games, payoff discontinuities naturally occur. Recent literature has developed
that provides sufficient conditions for the existence of equilibrium in discontinuous1. This
literature leverages the complete information environment results of [3], who shows that a
“better-reply secure” game possesses a Nash equilibrium, by establishing conditions on
the primitive of a Bayesian game that are sufficient for its normal form to be better-reply
secure2. Ref. [4] introduce “finite payoff security” and use it to show the existence of pure
strategy equilibrium in a Bayesian game. Ref. [5] extend the “uniform payoff security”
condition of [6], and the “uniform diagonal security” condition of [7] to show the existence
of behavioral strategy equilibrium in a Bayesian game. Ref. [8] extend the “disjoint payoff
matching” condition of [9] to show the existence of behavioral strategy equilibrium in
a Bayesian game. These contributions provide valuable new results of the domain of
discontinuous Bayesian games.

In this paper, we provide new sufficient conditions, both for the existence of pure
strategy equilibrium and behavioral strategy equilibrium, for a class of Bayesian games
with discontinuous payoffs. Our approach is based on a Bayesian generalization of the
complete information conditions of [10]. The results for both pure and behavioral strategies
are based on two types of conditions. The first type of condition is a Bayesian game
generalization of “superior payoff matching”, which requires that at any given strategy
profile, each player can match the highest payoff that they would receive near that strategy
profile across all games within that class. There are separate conditions that apply to pure
strategies and behavioral strategies. These matching conditions are used to show that a
class of games possesses the same equilibrium, what we call an invariant class of games.
The second type of condition is a Bayesian game generalization of normal form “weak
efficiency” from [11], which requires that in almost all fixed-type sections of the game, all
players receive their highest possible payoff at any strategy profile for which this payoff
selection is simultaneously feasible. The same second type of condition is used for both
pure strategies and behavioral strategies. We show that if a Bayesian game satisfies these
two types of conditions in pure strategies (behavioral strategies), then its normal form
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(mixed extension) is better-reply secure. Based on the invariance results, the existence of
equilibrium is shown for all Bayesian games in the same class, which can include games
that are not payoff secure.

Our results cover situations in which the extant literature is not directly applicable.
In particular, our results avoid the need to verify reciprocal upper semicontinuity3. Such
verification is particularly challenging, both in the abstract and in application, as there is no
clear connection between reciprocal upper semicontinuity of the game with fixed types and
the Bayesian game, nor between the normal form and mixed extension of a game. In the
existing literature, this property has been guaranteed by the far more restrictive assumption
that the sum of the payoffs is upper semicontinuous. Our adaptation of weak efficiency
along with invariance is a novel approach that allows verification of better-reply security
in a class of games for which the sum of the payoffs is not upper semicontinuous. Since
satisfaction of our matching conditions provides equilibrium invariance across a class of
Bayesian games, only one game in the class must satisfy our weak efficiency condition to
show existence for the entire class of Bayesian games. We apply our results to a contest
with bid caps as an illustrative example in which the contest type-section games violate
reciprocal upper semicontinuity.

The remainder of the paper proceeds as follows: The game environment and all
preliminary definitions are presented in Section 2. The primary results are presented in
Section 3. The example of a class of contests with bid caps is presented in Section 4.

2. Preliminaries
2.1. A Class of Bayesian Games

Consider a class of Bayesian games G. Each Bayesian game G = (u, X, (T, T ), λ) in
the class G is as follows:

There is a finite set of players I = {1, 2, . . . , n}, which is identical for all games within
the class G. Each player i’s action space Xi is a nonempty compact metric space endowed
with a Borel σ-algebra B(Xi). As is standard, we denote the action space by X = ∏i∈I Xi
and the product Borel σ-algebra by B(X) = ⊗i∈IB(Xi).

The measurable space (Ti, Ti) represents the private information space of each player
i. We denote the products as T = ∏i∈I Ti and T = ⊗i∈ITi. The common prior λ is a
probability measure on (T, T ). Denote by λi the marginal probability of λ on (Ti, Ti)
for each i ∈ I. The measure spaces (λi,Ti, Ti) and (λ,T, T ) are assumed to be complete
probability measure spaces. The common prior λ is absolutely continuous with respect to
⊗i∈Iλi with the corresponding Radon-Nikodym derivative ψ : T 7→ R+.

Each game in the class has a particular payoff selection from a countable set of payoff
functions U . The set of payoffs is such that for every u = (u1, u2, . . . , un) ∈ U , each player
i’s payoff ui : X × T 7→ R+ is a bounded function that is B(X)⊗ T -measurable. A class of
games only varies based on the payoff selection u ∈ U . The notation G(u) is used when it
is necessary to be explicit about a particular payoff selection u.

We denote a selection of information profiles by t ∈ T. As is standard, we refer to
the information profile of all players other than i by t−i and the set of all such information
profiles T−i. A similar notation is used for action profiles, strategy profiles, and payoff
profiles. We refer to an information selection ti ∈ Ti as a type for player i.

2.2. Strategies and Expected Payoffs

A pure strategy of player i is a Ti-measurable function si : Ti 7→ Xi. Denote by Si, the
set of all possible pure strategies for player i. Let the set of all possible pure strategy profiles
for the game be denoted by S = ∏n

i=1 Si. A behavioral strategy for player i is a Ti-measurable
function δi : Ti 7→ ∆(Xi), where ∆(Xi) is the set of all Borel probability measures on Xi
endowed with the topology of weak convergence. Denote the set of all behavioral strategies
for player i by Mi, with M = ∏n

i=1 Mi.
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The expected utility of player i given the pure strategy profile s ∈ S is

Ui(s) =
∫

T
ui(s(t), t)λ(dt). (1)

Given a behavioral strategy profile δ ∈ M, the expected utility of player i

U i(δ) =
∫

T

∫
X

ui(x, t)δ(dx|t)λ(dt). (2)

With some abuse of notation, the expected utility of player i given the pure strategy
si ∈ Si and behavioral strategies δ−i ∈ M−i is written as

U i(si, δ−i) =
∫

T

∫
X−i

ui(si(ti), x−i, ti, t−i)δ−i(dx−i|t−i)λ(dt). (3)

Note that a pure strategy si ∈ Si or pure strategy profile s ∈ S has an associated behav-
ioral strategy or strategy profile that will be denoted by fsi ∈ Mi or fs ∈ M, respectively,
where fs is the Dirac measure for which fs(E|t) = 1 if and only if s(t) ∈ E.

A pure strategy equilibrium is a strategy profile s∗ ∈ S such that Ui(s∗) ≥ Ui(si, s∗−i) for
all si ∈ Si and each i ∈ I.

A behavioral strategy equilibrium is a strategy profile δ∗ ∈ M such that U i(δ
∗) ≥

U i(δi, δ∗−i) for all δi ∈ Mi and each i ∈ I.
Denote by EQ(u) the set of pure strategy equilibria of the Bayesian game G(u) and

denote by ẼQ(u) the set of behavioral strategy equilibria of the Bayesian game G(u).
Before continuing, we must establish the topology on Mi. Let Hi be the space of

uniformly finite transition measures from (Ti, Ti, λi) to (Xi,Bi(Xi)). The weak topology
on Hi is the weakest topology for which the functional ν →

∫
Ti

∫
Xi

c(ti, xi)ν(dxi|ti)λi(dti)

is continuous on Hi for every integrably bounded Caratheodory function c, i.e., for every
function c for which c(·, xi) is Ti-measurable and c(ti, ·) is continuous. The space Mi is a
subspace of Hi endowed with the relative topology, which we denote by Υi. The space M
is thus endowed with the product topology Υ = ⊗i∈NΥi.

2.3. Normal Form

We now express the class of ex ante normal form games G that corresponds to the class
of Bayesian games G. First, let us denote by Gd = (X, u) a normal form game with the set
of players I, the action space X, and a payoff selection u ∈ U . The Bayesian game G can be
expressed as a normal form game G0 = (S, U) with pure strategies S and expected payoffs
defined by (1). Further, the mixed extension of the normal form version of G is denoted by
G̃0 = (M, U).

A Nash equilibrium of the game G0 is a strategy profile s∗ ∈ S such that Ui(s∗) ≥
Ui(si, s∗−i) for all si ∈ Si and each i ∈ I. A mixed strategy Nash equilibrium of the game G0 is
a Nash equilibrium of G̃0, that is, a strategy profile δ∗ ∈ M such that U i(δ

∗) ≥ U i(δi, δ∗−i)
for all δi ∈ Mi and each i ∈ I. Clearly, the set of pure strategy equilibria of the Bayesian
game G is the same as the set of Nash equilibria in its normal form and the set of behavioral
strategy equilibria of the Bayesian game G is the same as the set of mixed strategy Nash
equilibria in its normal form.

2.4. Extreme Payoffs

We define the upper and lower envelopes of a player’s payoff for each fixed infor-
mation profile within a given game as well as for the entire class of games. First, given
a countable base {Vm}m≥1 for X, we define for each payoff selection u ∈ U the functions
um

i (x, t) and um
i (x, t) as follows, where γ is an arbitrary upper bound on all ui

4:

um
i (x, t) =

{
supx∈Vm

ui(x, t) if x ∈ Vm,
γ otherwise.

,
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and

um
i (x, t) =

{
infx∈Vm ui(x, t) if x ∈ Vm,

0 otherwise.
.

u = (u1, u2, . . . , uI) and u = (u1, u2, . . . , uI), where ui and ui are the upper and lower
envelopes of ui, respectively, defined for each player i as

ui(x, t) = inf
m≥1

um
i (x, t), and

ui(x, t) = sup
m≥1

um
i (x, t).

Similarly, define

πm
i (x, t) =

{
supx∈Vm

supu∈U ui(x, t) if x ∈ Vm,
γ otherwise.

,

and

πm
i (x, t) =

{
infx∈Vm infu∈U ui(x, t) if x ∈ Vm,

0 otherwise.
.

We then define πi and πi to be the upper and lower envelopes across all payoff selections,
respectively, defined for each player i as

πi(x, t) = inf
m≥1

πm
i (x, t), and

πi(x, t) = sup
m≥1

πm
i (x, t).

We state the following preliminary result that is used repeatedly in what follows.

Lemma 1. For all i, the functions ui, ui, πi, and πi are B(X)⊗ T -measurable.

The proof of this lemma and all others not appearing in the main text are provided in
the Appendix A.

The set of action profiles for which at least one player’s payoff is not maximal is
Σ(u) = {(x, t) ∈ X × T : u(x, t) < π(x, t)} and we define Uu = {v ∈ U : Σ(v) ⊂ Σ(u)}.
The set of pure strategy equilibrium shared by the class of Bayesian games with payoffs
v ∈ Uu is denoted by IE(Uu) =

⋂
v∈Uu EQ(v). We call this the set of invariant pure strategy

equilibrium for the games Uu.

3. Main Results

In this section, we establish sufficient conditions for equilibrium invariance of a class
of games in terms of pure strategies and behavioral strategies.

3.1. Invariance

We begin by formally defining the notion of random matching, which serves as a basis
for the conditions developed within this paper. For the purpose of the following definition,
we denote a profile of payoffs by ϕ : T → R. Given an information vector t ∈ T, a player
i can match a payoff ϕ(t) at a strategy profile if player i can deviate and receive a payoff
that is either greater than ϕ(t) or arbitrarily close. Player i can random match the profile
ϕ if player i can match the payoff ϕ(t) for almost all t. This notion is formalized in the
following definition.

Definition 1. Given a Bayesian game G ∈ G, player i can random match ϕ at s ∈ S if, for any
ε > 0, there exists an s′i ∈ Si such that ui(s′i(ti), s−i(t−i), t) ≥ ϕ(t)− ε for λ-almost all t ∈ T.

Next, we define our primary matching condition.
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Definition 2. A Bayesian game G ∈ G satisfies random superior payoff matching (RSPM) if
each player i ∈ N can random match πi(s) = (πi(s(t), t))t∈T for any s ∈ S.

Now we state our result pertaining to the invariance of pure strategy equilibrium
across a class of games.

Theorem 1. Let G be a class of games, and u ∈ U be such that G(u) satisfies RSPM, then
EQ(u) = IE(Uu).

The following lemma is used in the proofs of Theorems 1 and 2.

Lemma 2. Suppose that each player i can random match a measurable function ϕi(s, t) for any
s ∈ S. Then, in any equilibrium s∗ ∈ EQ(u), each player’s equilibrium payoff Ui(s∗) ≥∫

T ϕi(s∗, t)λ(dt). Consequently, if a Bayesian game G ∈ G satisfies RSPM, then U(s∗) =∫
T π(s∗(t), t)λ(dt) in any equilibrium s∗ ∈ EQ(u).

Proof of Lemma 2. Let s∗ ∈ EQ(u) and suppose that Ui(s∗) <
∫

T ϕi(s∗(t), t)λ(dt) for
some player i. Choose ε ∈ (0,

∫
T ϕi(s∗(t), t)λ(dt) − Ui(s∗)). Since player i can random

match ϕi, each player has a deviation si ∈ Si such that

ui(s′i(ti), s−i(t−i), t) ≥ πi(s(t), t)− ε

for λ-almost all t ∈ T. Since ui and πi are B(X)⊗ T -measurable, it follows that for this
deviation that ∫

T
ui(s′i(ti), s−i(t−i), t)λ(dt) ≥

∫
T

ϕ(s(t), t)λ(dt)− ε (4)

> Ui(s∗).

This contradicts s∗ as an equilibrium.
The second conclusion of the lemma follows directly from the fact that u ≤ π.

Proof of Theorem 1. Let s∗ ∈ EQ(u). Lemma 2 implies that U(s∗) =
∫

T π(s∗(t), t)λ(dt).
We will use this fact to argue that EQ(u) ⊂ EQ(v) for all v ∈ Uu.

Let v ∈ Uu and suppose s∗ /∈ EQ(v). Since u ≤ π and U(s∗) =
∫

T πi(s∗(t), t)λ(dt), it
must be that u(s∗(t), t) = π(s∗(t), t) for λ-almost all t ∈ T. By definition of Uu, v(s∗(t), t) =
π(s∗(t), t) whenever u(s∗(t), t) = π(s∗(t), t), and thus v(s∗(t), t) = π(s∗(t), t) for λ-almost
all t ∈ T. It follows that

V(s∗) =
∫

T
πi(s∗(t), t)λ(dt). (5)

Since s∗ /∈ EQ(v), there exists a player i ∈ I with strategy s′i ∈ Si such that

Vi(s′i, s∗−i) > Vi(s∗)

=
∫

T
πi(s∗(t), t)λ(dt).

Let ε ∈ (0, Vi(s′i, s∗−i)−
∫

T πi(s∗(t), t)λ(dt)). From RSPM, there exists an s′′i ∈ Si such that

Ui(s′′i , s∗−i) ≥
∫

T
πi(s′i(ti), s∗−i(t), t)λ(dt)− ε

≥ Vi(s′i, s∗−i)− ε

> Vi(s′i, s∗−i)−
(

Vi(s′i, s∗−i)−
∫

T
πi(s∗(t), t)λ(dt)

)
=

∫
T

πi(s∗(t), t)λ(dt)

= Ui(s∗).
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This contradicts s∗ ∈ EQ(u). We conclude that s∗ ∈ EQ(v) and IE(Uu) =
⋂

v∈Uu EQ(v) =
EQ(u).

At this point, we turn to establishing invariance results for the set of behavioral
strategy equilibrium.

Definition 3. A Bayesian game G ∈ G satisfies random uniform superior payoff matching
(RUSPM) if each player i ∈ N can random match πi(s) = (πi(s(t), t))t∈T using the same
si = (si(ti))ti∈Ti ∈ Si for every s−i ∈ S−i.

The following theorem shows that RUSPM is sufficient for the invariance of the set of
behavioral strategy equilibrium.

Theorem 2. Let G be a class of games; take u ∈ U and suppose that G(u) satisfies RUSPM, then
ẼQ(u) = ĨE(Uu).

The proof of Theorem 2 is similar to that of Theorem 1; however, additional care must
be taken to avoid the necessity of defining the less intuitive analogues of u and π in the
mixed extension.

Proof of Theorem 2. First, we show that each player i can random match∫
T

∫
X−i

πiδ(dx|t)λ(dt) at any δ ∈ M. Second, we argue that U(δ∗) =
∫

T

∫
X π(x, t)δ∗(dx|t)λ(dt)

at any δ∗ ∈ ẼQ(u). Lastly, we argue that ẼQ(u) ⊂ ẼQ(v).
Let δ ∈ M and i ∈ I. From Lemma A2 (in Appendix A), there is a T -measurable

selection g′i such that∫
T

∫
X−i

πi(g′i(ti), x−i, ti, t−i)δ−i(dx−i|t−i)λ(dt) ≥
∫

T

∫
X

πi(x, t)δ(dx|t)λ(dt).

From RUSPM, for all ε > 0, there exists s′i ∈ Si such that

ui(s′i(ti), x−i, t) ≥ πi(g′i(ti), x−i, t)− ε,

for all x−i ∈ X−i, and λ-almost all t ∈ T. It follows that for all ε > 0,

∫
T

∫
X−i

ui(s′i(ti), x−i, ti, t−i)δ−i(dx−i|t−i)λ(dt) ≥
∫

T

∫
X−i

πi(g′i(ti), x−i, ti, t−i)δ−i(dx−i|t−i)λ(dt)− ε

≥
∫

T

∫
X

πi(x, t)δ(dx|t)λ(dt)− ε. (6)

We conclude that each player i can random match
∫

T

∫
X−i

πiδ(dx|t)λ(dt) at any δ ∈ M.

Lemma 2 then implies that U(δ∗) ≥
∫

T

∫
X π(x, t)δ∗(dx|t)λ(dt) at any δ∗ ∈ ẼQ(u).

Combining the statement of the previous sentence with the fact that u ≤ π implies that
U(δ∗) =

∫
T

∫
X π(x, t)δ∗(dx|t)λ(dt).

We now show that ẼQ(u) ⊂ ẼQ(v). Let δ∗ ∈ ẼQ(u) and suppose to the contrary that
δ∗ /∈ ẼQ(v). Then there exists a player i ∈ I with behavioral strategy δ′i ∈ Si such that

V i(δ
′
i , δ∗−i) > V i(δ

∗)

=
∫

T

∫
X

π(x, t)δ∗(dx|t)λ(dt).
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Let ε ∈ (0, V i(δ
′
i , δ∗−i)−

∫
T

∫
X π(x, t)δ∗(dx|t)λ(dt) ) and applying the condition (6), there

must be a δ′′i ∈ Si such that

U i(δ
′′
i , δ∗−i) ≥

∫
T

∫
X

πi(x, t)δ′i(dxi|ti)δ
∗
−i(dx−i|t−i)− ε

≥ V i(δ
′
i , δ∗−i)− ε

> V i(δ
′
i , δ∗−i)−

(
V i(δ

′
i , δ∗−i)−

∫
T

∫
X

πi(x, t)δ∗(dx|t)λ(dt)
)

=
∫

T

∫
X

πi(x, t)δ∗(dx|t)λ(dt)

= U i(δ
∗).

This contradicts δ∗ ∈ ẼQ(u). We conclude that δ∗ ∈ ẼQ(v). Since this is true for all v ∈ Uu,
it follows that ĨE(Uu) =

⋂
v∈Uu ẼQ(v) = ẼQ(u).

3.2. Existence

In this section, we demonstrate that RSPM (RUSPM), along with a weak efficiency
condition on the payoffs, is sufficient for the normal form game of a Bayesian game (a
mixed extension of the normal form) to satisfy better-reply security, as introduced by [3].
Reny shows that better-reply security is a sufficient condition for a compact, quasiconcave
game to have a Nash equilibrium. RSPM and RUSPM can therefore be used as alterna-
tive conditions for verifying the existence of a pure and behavioral strategy equilibrium,
respectively.

Before we present our results, we must first define better-reply security. A player i ∈ I
can secure a payoff of α at a strategy profile s ∈ S if there exists an si ∈ Si and neighborhood
N (s−i) of s−i such that Ui(si, s′−i) ≥ α for all s′−i ∈ N (s−i).

Definition 4. A game G0 is better-reply secure if whenever (s∗, U∗) ∈ clG0 and s∗ is not a Nash
equilibrium of G0, there is some player i that can secure a payoff strictly higher than U∗

i at s∗.

In order to connect RSPM to better-reply security, we will need to introduce a weak effi-
ciency condition. Let G0(t) denote the t-section for the game G, that is, G0(t) = (X, u(·, t)),
the normal form of the game with a fixed-type profile t. Define the set of actions Ψ(t)
for which jointly maximal payoffs are simultaneously feasible for all players. That is,
Ψ(t) = {x ∈ X : (x, π(x, t)) ∈ clG0(t)}.

Definition 5. A Bayesian game G ∈ G satisfies random weak efficiency (RWE) if whenever
s ∈ S is such that s(t) ∈ Ψ(t) for λ-almost all t ∈ T, then u(s(t), t) = π(s(t), t) for λ-almost all
t ∈ T.

A game satisfies RWE if, given fixed action and type profiles x and t, all players
receive the maximal payoffs π(x, t) if such an allocation is feasible. As the contest model in
Section 4 clarifies, the distinction between all t and λ-almost t is significant in application.

The following theorem shows that RSPM and RWE can be used to verify that the
normal form of a Bayesian game is better-reply secure.

Theorem 3. If G(u) satisfies RSPM and G(u) satisfies RWE, then G0(u) is better-reply secure.

Proof of Theorem 3. The proof is done in two parts. First, we show that if G(u) satisfies
RSPM, then in G(u) each player i can secure a payoff of

∫
T πi(s(t), t)λ(dt)− ε for any ε > 0

at any strategy profile s ∈ S. Second, we use this security condition along with RWE of
G(u) to show that G0(u) is better-reply secure.
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Let ε > 0 and s ∈ S. From RSPM, as shown in (4) of the proof of Lemma 2, each player
i has a strategy s′i ∈ Si such that∫

T
ui(s

′
i(t), s−i(t), t)λ(dt) >

∫
T

πi(s(t), t)λ(dt)− ε

2
.

By construction, each ui is lower semicontinuous. Therefore, there is a neighborhood
N (s−i(t−i))) such that

ui(si(ti), s′(t), t) > ui(si(ti), s−i(t−i), t)− ε

2

for all s′−i(t) ∈ N (s−i(t−i)). Define N (s−i) = (N (s−i(t−i)))t−i∈T−i
and observe that

N (s−i) is a neighborhood of s−i such that∫
T

ui(s
′
i(t), s′−i(t), t)λ(dt) >

∫
T

ui(s
′
i(t), s−i(t), t)λ(dt)− ε

2
(7)

for all s′−i ∈ N (s−i). It follows that∫
T

ui(s
′
i(t), s′−i(t), t)λ(dt) >

∫
T

πi(s(t), t)λ(dt)− ε (8)

for all s′−i ∈ N (s−i). The fact that u ≥ u then implies that each player i can secure a payoff
of

∫
T πi(s(t), t)λ(dt)− ε in the game G(u).
We now show that G0(u) is better-reply secure. Let (s∗, U∗) ∈ clG0(u) and suppose

that s∗ is not a Nash equilibrium of G0(u). Observe first that the upper semicontinuity of∫
T π(s(t), t)λ(dt) implies that U∗ ≤

∫
T π(s∗(t), t)λ(dt). We consider two cases correspond-

ing to whether U(s∗) =
∫

T π(s∗(t), t)λ(dt) or U(s∗) ̸=
∫

T π(s∗(t), t)λ(dt).
Case 1: U(s∗) =

∫
T π(s∗(t), t)λ(dt)

Since s∗ /∈ EQ(u), there is a player i with strategy s′i ∈ Si such that Ui(s′i, s∗−i) >
Ui(s∗) ≥ U∗

i . Let ε > 0 be such that ε < Ui(s′i, s∗−i) − U∗
i . From the security condition

above, player i can secure a payoff of∫
T

πi(s′i(t), s∗−i(t), t)λ(dt)− ε ≥ Ui(s′i, s∗−i)− ε

> U∗
i .

Thus, the game is better-reply secure.
Case 2: U(s∗) ̸=

∫
T π(s∗(t), t)λ(dt)

We first argue that s∗(t) /∈ Ψ(t) for some T′ ⊂ T with λ-positive measure. Suppose
to the contrary that s∗(t) ∈ Ψ(t) for λ-almost all t. Then RWE implies that u(s∗(t), t) =
π(s∗(t), t) for λ-almost all t, and thus that U(s∗) =

∫
T π(s∗(t), t)λ(dt), a violation of the

assumption of this case. We conclude that s∗(t) /∈ Ψ(t) for some T′ ⊂ T with λ-positive
measure.

Let sk → s∗ be such that U(sk) → U∗. Define u∗(t) = lim supk u(sk(t), t), noting
that U∗ ≤

∫
T u∗(t)λ(dt). Since s∗(t) /∈ Ψ(t), there is a λ-positive measure set T′ ⊂ T

of types for which u∗(t) ̸= π(s∗(t), t); since the set of players is finite, there must be
at least one player i such that u∗

i (t) ̸= πi(s∗(t), t) for some T′′ ⊂ T′ with λ-positive
measure. Further, since u ≤ π, this implies that

∫
T u∗(t)λ(dt) ̸=

∫
T π(s∗(t), t)λ(dt),

and thus that U∗ ̸=
∫

T π(s∗(t), t)λ(dt). It follows that there is some player i such that
Ui(s∗) <

∫
T πi(s∗(t), t)λ(dt).

Let ε > 0 be such that ε <
∫

T πi(s∗(t), t)λ(dt)−U∗
i . Again from the security condition

above, player i can secure a payoff of
∫

T πi(s′i(t), s∗−i(t), t)λ(dt)− ε > U∗
i . We conclude

that the game G0(u) is better-reply secure.

The following theorem extends our analysis to behavioral strategies. Specifically, the
following theorem demonstrates that RUSPM and RWE together can be used to show that
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the mixed extension of the normal form of a Bayesian game is better-reply secure. This is
particularly useful since RUSPM and RWE are conditions on the primitives of the Bayesian
game, and thus better-reply security and the existence of behavioral strategy equilibrium
can be verified without any computations in the mixed extension.

Theorem 4. If G(u) satisfies RUSPM and G(u) satisfies RWE, then G̃0(u) is better-reply secure.
Thus, ẼQ(u) ̸= ∅.

Proof of Theorem 4. The proof follows the same basic structure as that of Theorem 3. First,
we show that if G(u) satisfies RUSPM, then in G̃0(u) each player i can secure a payoff of∫

T

∫
X−i

πi(x, t)δ(dx|t)λ(dt)− ε for any ε > 0 at any strategy profile δ ∈ M. Second, we use

this security condition along with RWE of G(u) to show that G̃0(u) is better-reply secure.
Let ε > 0 and δ ∈ M. From RUSPM and condition (6) in the proof of Theorem 2, there

exists for each player i a strategy s′i ∈ Si such that∫
T

∫
X−i

ui(s
′
i(ti), x−i, ti, t−i)δ−i(dx−i|t−i)λ(dt) ≥

∫
T

∫
X

πi(x, t)δ(dx|t)λ(dt)− ε

2
.

Next, from Lemma A3 (in the Appendix A),
∫

T

∫
X−i

ui(s′i(ti), x−i, ti, t−i)δ−i(dx−i|t−i)λ(dt)
is lower semicontinuous in δ−i. As such, there exists a neighborhood N (δ−i) such that

∫
T

∫
X−i

ui(s
′
i(ti), x−i, ti, t−i)δ

′
−i(dx−i|t−i)λ(dt) >

∫
T

∫
X−i

ui(s
′
i(ti), x−i, ti, t−i)δ−i(dx−i|t−i)λ(dt)− ε

2

for all δ′−i ∈ N (δ−i). Combining these inequalities, we get∫
T

∫
X−i

ui(s
′
i(ti), x−i, ti, t−i)δ

′
−i(dx−i|t−i)λ(dt) >

∫
T

∫
X

πi(x, t)δ(dx|t)λ(dt)− ε (9)

for all δ′−i ∈ N (δ−i). The fact that u ≥ u then implies that each player i can secure a payoff
of

∫
T

∫
X−i

πi(x, t)δ(dx|t)λ(dt)− ε in the game G̃0(u).

We now show that G̃0(u) is better-reply secure. Let (δ∗, U∗) ∈ clG̃0(u) and suppose that
and δ∗ is not a Nash equilibrium of G̃0(u). Observe first that the upper semicontinuity of∫

T

∫
X π(x, t)δ(dx|t)λ(dt) in δ from Lemma A3 implies that U∗ ≤

∫
T

∫
X π(x, t)δ∗(dx|t)λ(dt).

We consider two cases corresponding to whether U(δ∗) =
∫

T

∫
X π(x, t)δ∗(dx|t)λ(dt) or

U∗(δ∗) ̸=
∫

T

∫
X π(x, t)δ∗(dx|t)λ(dt).

Case 1: U(δ∗) =
∫

T

∫
X π(x, t)δ∗(dx|t)λ(dt)

Since δ∗ is not an equilibrium, there is a player i with strategy δ′i ∈ Si such that
U i(δ

′
i , δ∗−i) > U i(δ

∗) ≥ U∗
i . Let ε > 0 be such that ε < U i(δ

′
i , δ∗−i)− U∗

i . From the security
condition above, player i can secure a payoff of∫

T

∫
X

πi(x, t)δ′i(dx|t)δ∗−i(dx−i|t)λ(dt)− ε ≥ U i(s′i, s∗−i)− ε

> U∗
i .

Thus, the game is better-reply secure.
Case 2: U(δ∗) ̸=

∫
T

∫
X πi(x, t)δ∗(dx|t)λ(dt)

We first argue that (x, t) /∈ Ψ(t)×{t} for some λ ⋄ δ∗-positive measure subset of X × T.
Suppose to the contrary that (x, t) ∈ Ψ(t)× {t} for λ ⋄ δ∗-almost all x × t. Then RWE im-
plies that u(x, t) = π(x, t) for λ ⋄ δ∗-almost all x × t, and thus that
U(δ∗) =

∫
T

∫
X π(x, t)δ∗(dx|t)λ(dt), a violation of the assumption of this case. We conclude

that (x, t) /∈ Ψ(t)× {t} for some λ ⋄ δ∗-positive measure subset of X × T.
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Define A(x, t) = ∑i∈I ui(x, t) and define A(x, t) as we defined ui for the function ui.
Clearly, A is B(X) ⊗ T -measurable and upper semicontinuous in x. Since u ≤ π and
(x, t) /∈ Ψ(t)× {t} for some λ ⋄ δ∗-positive measure subset of X × T, then it must be that∫

T

∫
X
A(x, t)δ∗(dx|t)λ(dt) <

∫
T

∫
X

∑i∈I πi(x, t)δ∗(dx|t)λ(dt).

From Lemma A3,
∫

T

∫
X A(x, t)δ∗(dx|t)λ(dt) is upper semicontinuous in δ. Thus,

∑i∈I U∗
i ≤

∫
T

∫
X
A(x, t)δ∗(dx|t)λ(dt)

<
∫

T

∫
X

∑i∈I πi(x, t)δ∗(dx|t)λ(dt).

it follows that U∗
i <

∫
T

∫
X πi(x, t)δ∗(dx|t)λ(dt) for some player i.

Let ε > 0 be such that ε <
∫

T

∫
X πi(x, t)δ∗(dx|t)λ(dt)− U∗

i . Again using the security
condition above, player i can secure a payoff of

∫
T

∫
X πi(x, t)δ∗(dx|t)λ(dt)− ε > U∗

i . We
conclude that the game G̃0(u) is better-reply secure.

Finally, since the mixed extension of the normal form of the Bayesian game is better-
reply secure, Corollary 5.2 of [3] implies that the normal form game has a mixed strategy
equilibrium.

Remark 1. If a Bayesian game satisfies RUSPM and RWE, then Theorem 4 allows for the ap-
plication of Corollary 5.2 of [3] to the mixed extension to get the existence of behavioral strategy
equilibrium in the Bayesian game. Purification results offer an avenue to apply Theorem 4 (combined
with Corollary 5.2 of [3]) to get the existence of pure strategy equilibrium in a Bayesian game
without the restrictive assumption of its own payoff quasiconcavity. Ref. [4] explicitly show the
conditions for applying purification results adopting the “relative diffuseness” conditions of [13] for
a Bayesian game satisfying a uniform payoff security condition. Ref. [14] provide new purification
results based on the “decomposable coarser payoff-relevant information” condition.

4. Contest with Bid Caps

The basic structure of the contest is similar to [15,16] with the addition of incomplete
information5. The inclusion of bid caps complicates the verification of existence and
provides a good illustration of why the “λ-almost all” sufficient conditions are important
for application6.

Consider a contest with a set of players I = {1, . . . , n} and m identical prizes, where
I > m > 1. Each player i has a space of types Ti = [ti, ti], where 0 ≤ ti < ti. Each player
i has a valuation of winning denoted by the measurable function wi : Xi × T → R, and
player i’s valuation of losing is denoted by the measurable function li : Xi × T → R. Each
player i observes their type ti and picks a score xi ∈ Xi(ti) = [0, ti]. We make the following
six assumptions on the primitives of this model:

(i) The common prior λ is absolutely continuous with respect to ⊗i∈Iλi, and each λi is
atomless on Ti.

(ii) For all t ∈ T, wi(xi, t) is upper semicontinuous and nonincreasing in xi.
(iii) wi(xi, t) ≥ li(xi, t) for all (xi, t) ∈ Xi × T.
(iv) li(xi, t) ≤ li(0, t) for all (xi, t) ∈ Xi × T.
(v) For each i and t, there exists ri(t) such that wi(ri(t), t) = li(0, t), wi(xi, t) > li(0, t) for

all xi < ri(t), and wi(xi, t) ≤ li(0, t) for all x > ri(t).
(vi) For every player i and any score xi, the set of t such that ri(t) = xi is λ-measure zero.
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Denote the probability of player i winning a prize given the vector of scores x =
(x1, . . . , xn), by Pi : X × T → [0, 1]. Formally,

Pi(x, t) =


0 if xi < xj for m or more players j ̸= i,
1 if xi > xj for n − m or more players j ̸= i,
αi(x, t) ∈ [0, 1] otherwise.

.

Thus, we can write the payoff of player i for the fixed action profile x as

ui(x, t) = Pi(x, t)wi(xi, ti) + (1 − Pi(x, t))li(xi, ti).

The set of payoffs for the class of games U is the set of all payoffs u for all α such that
αi(x, t) ∈ [0, 1] and ∑n

i=1 Pi(x, t) ≤ m. Notice for every u in the class U , u is the payoff
section in which for all i, x, and t, αi(x, t) = 0. Finally, assume that for any profile x with a
relevant tie (xi = xj for some i ̸= j with no more than m − 1 higher bidders and no more
than n − m − 1 lower bidders), if wi(xi, t) = li(xi, t) and the number K of players k with
either xk > xi or xk = xi and wk(xk, t) > lk(xk, t) is such that K ≤ m, then Pk(xk, t) = 1 for
each such player k. That is, if at a tie, one bidder prefers winning to losing, and another
prefers losing to winning, the player who prefers winning to losing must “win” that tie and
prizes must be allocated at least to players that prefer to win, unless more than m players
bid higher or tie and prefer to win.

To apply our existence result to a payoff selection in the class U (any u with a particular
tie-breaking rule), we need to add an additional payoff to the class and leverage the
invariance results. This is because we are unable to show that there is a u ∈ U that satisfies
RWE. Define the measurable function l′i such that l′i(x, t) = li(x, t) for all x ≤ ri(t), and
l′i(x, t) < wi(x, t) for all x > ri(t). Then, for all i,

u′
i(x, t) = Pi(x, t)wi(xi, ti) + (1 − Pi(x, t))l′i(xi, ti).

Then the class of games U ′ is defined by the payoffs u′ at all tie-breaking rules α. Notice for
the class V = U ∪ U ′, u′ = π.

Proposition 1. In the all-pay contest with incomplete information, π satisfies RUSPM and all
payoffs u satisfying the assumptions satisfy RWE.

Proof of Propositon 1. First, we argue that the game G(π) (this is the game with u′ and
for all i, αi(x, t) = 0 for all x and t) satisfies RUSPM. Note that the set of discontinuity
points for each player i’s payoff is the same for all tie-breaking rules. At any tie for
player i at a score x for every type ti such that ti ̸= x, the sequence xk = x + 1/k gives
limk πi(xk, x−i, t) = wi(x, t) = πi(x, x−i, t). Since there is a unique type ti = xi with the
violation and the measure λi is non-atomic, the same sequence can payoff match πi(x, x−i, t)
at x for all x−i ∈ X−i and λ-almost all types t.

Second, we show that the game G(u) satisfies RWE. Observe that ui(x, t) = πi(x, t)
except possibly when there is a relevant tie. Suppose that πi(x, x−i, t) < πi(x, x−i, t). Then
wi(xi, t) > li(xi, t), and there must be a relevant tie at xi = z, with xj > z for no more
than m − 1 other bidders j and xj < z for no more than n − m − 1 other bidders j. Let
K be the number of players k with either xk > z or xk = z and wk(xk, t) > lk(xk, t) and
let IK be the set of these players. We consider two cases corresponding to whether the
K > m or K ≤ m. If K > m, then (x, π(x, t)) /∈ clG0(t) since π(x, t) involves more than
m prizes being allocated. Else, if K ≤ m, then i ∈ IK, so by assumption, Pi(x, t) = 1, so
ui(x, x−i, t) = πi(x, x−i, t). It follows that further, since Pk(x, t) > Pj(x, t) for any tied
player k with wk(xk, t) > Ψ(t) = {x ∈ X : (x, π(x, t)) ∈ clG0(t)}Notice that for any player
i the fixed t type, πi(x, t) = πi(x, t) can only happen at a tie with player i involved at
xi = ri(t). This is because ∑n

i=1 Pi(x, t) ≤ m guarantees that at most m players can get the
full upper bound payoff of winning a prize, for sure. For player i, the payoff πi(x, t) at ri(t)
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is the same for winning or losing a prize only at ri(t). For any score xi, the set of t such
that ri(t) = xi is λ-measure zero, that is ri(t) ̸= x for λ-almost all types t. Therefore, for
any sequence sk → s, limk u′(sk(t), t) < π(s(t), t) for λ-almost all types t. This makes the if
statement in the definition of RWE never apply. Thus, G(u) satisfies RWE.

Based on the application of Theorem 4, G̃0(π) is better replay secure, and thus we know
G(π) has a behavioral strategy equilibrium. Theorem 2 makes this behavioral strategy
equilibrium an equilibrium for the entire class of games with all the payoff functions in V .
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Appendix A. Technical Lemmas

The proofs of the lemmas below are adapted from results shown as part of the proof
of Theorem 1 in [8].

Lemma A1. For all i, the functions ui, ui, πi, and πi are B(X)⊗ T -measurable.

Proof of Lemma A1. We only do the proof for the lower envelope since the proof for the
upper envelope follows the same lines. Since X is a compact metric space, it is second
countable (see [12] Proposition 25, p. 204) and we can find a countable base {Vm}m≥1 for X.
Let

um
i (x, t) =

{
infx′∈Vm ui(x′, ti, t−i) if x ∈ Vm

0 o.w.
.

Clearly, um
i (·, t) is lower semicontinuous on X for each fixed t ∈ T and m ≥ 1.

To show that um
i is jointly measurable we show that, for any c ≥ 0, the set

{(x, t) ∈ X × T : um
i (x−i, t) < c}

is B(X)⊗ T -measurable. Since ui is jointly measurable and gi is Ti-measurable, the set

{(x, t) ∈ Vm × T : ui(x, ti, t−i) < c}

is B(X)⊗T -measurable. By the Projection Theorem the projection of this set on T, denoted
as Tm, is T -measurable7. Notice that

{(x, t) ∈ X × T : um
i (x, t) < c} = (Vm × Tm) ∪ (V c

m × T),

which is B(X)⊗ T -measurable. Thus, hm
i is a jointly measurable function.

Since ui(x, t) = supm≥1 um
i (x, t), ui(x, t) is the pointwise supremum of a sequence of

lower semicontinuous functions, which is also lower semicontinuous (Theorem 3.1 in [3]).
In addition ui is the supremum of a sequence of B(X)⊗ T -measurable functions, which is
also B(X)⊗ T -measurable. The proof for πi is exactly the same as for ui since the fact that
U is countable is sufficient for infu∈U ui(x, t) to be B(X)⊗ T -measurable.

Lemma A2. For any δ ∈ M, player i ∈ I, and B(X)⊗ T -measurable u, there is a T -measurable
selection g′i such that∫

T

∫
X−i

ui(g′i(ti), x−i, ti, t−i)δ−i(dx−i|t−i)λ(dt) ≥
∫

T

∫
X

ui(x, t)δ(dx|t)λ(dt)
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Proof of Lemma A2. Fix a behavioral strategy profile δ ∈ M, player i, and ε > 0. Let Si
: Ti → Xi be a correspondence defined by

Si(ti) =

{
xi ∈ Xi :

∫
T−i

∫
X−i

ui(xi, x−i, ti, t−i)ψ(ti, t−i)δ−i(dx−i|t−i)⊗j ̸=i λi(dt−t)

≥
∫

T−i

∫
X ui(xi, x−i, ti, t−i)ψ(ti, t−i)δ(dx|tit−i)⊗j ̸=i λi(dt−t)

}
.

Clearly, for each ti, Si(ti) ̸= ∅. Since ui is jointly measurable, and δ and ψ are
measurable, the correspondence Si has a B(Xi) ⊗ Ti-measurable graph. By Aumann’s
Measurable Selection Theorem8, Si has a Ti-measurable selection g′i such that∫

T

∫
X−i

ui(g′i(ti), x−i, ti, t−i)δ−i(dx−i|t−i)λ(dt) ≥
∫

T

∫
X

ui(x, t)δ(dx|t)λ(dt).

Lemma A3. Let f , g : X × T → R be such that f (g) is upper (lower) semicontinuous in
x. Then

∫
T

∫
X f (x, t)δ(dx|t)λ(dt) is upper semicontinuous in δ and

∫
T

∫
X g(x, t)δ(dx|t)λ(dt)

is lower semicontinuous in δ. In particular, this implies that for each player i, the functions∫
T

∫
X ui(x, t)δ(dx|t)λ(dt) and

∫
T

∫
X πi(x, t)δ(dx|t)λ(dt) are upper semicontinuous in δ, while

the payoffs
∫

T

∫
X ui(x, t)δ(dx|t)λ(dt) and

∫
T

∫
X πi(x, t)δ(dx|t)λ(dt) are lower semicontinuous

in δ.

Proof of Lemma A3. Define a function Hl
i : M 7→ R as follows: for any δ ∈ M,

Hl
i (δ) =

∫
T

∫
X

ui(x, t)ψ(t)⊗j∈I δj(dxj|tj)⊗i∈I λi(dt).

Let ϕ(x, t) =
∫

Ti
ui(x, t)ψ(t)λi(dti). Since ui(x, t)ψ(t) is lower semicontinuous in x, jointly

measurable, and integrably bounded, ϕ is also lower semicontinuous in x, jointly measur-
able, and integrably bounded. By Lemma 3 in [8], the functional δ → ⊗j∈Iδj from M to M̃
is continuous. Then by Lemma 2 in [8], the functional

v →
∫

T−i

∫
X

ϕ(x, t−i)v(dx|t−i)λ−i(dt−i).

is lower semicontinuous on M̃. Since Hl
i is a composition of these two functionals, it is

lower semicontinuous. As a result for any ε > 0, there is an open neighborhood N (δ) ⊆ M
of δ such that for any δ′ ∈ N (δ),∫

T

∫
X

ui(x, t)ψ(t)δ(dx|t)⊗i∈I λi(dt) ≥
∫

T

∫
X

ui(x, t)ψ(t)δ′(dx|t)⊗i∈I λi(dt)− ε.

That is, ∫
T

∫
X

ui(x, t)δ(dx|t)λ(dt) ≥
∫

T

∫
X

ui(x, t)δ′(dx|t)λ(dt)− ε.

Notes
1 There is important previous literature focused on the existence of equilibrium in Bayesian games with continuous payoffs that

includes the two seminal contributions of [1,2].
2 A game is better-reply secure if for every nonequilibrium strategy profile x∗ and every limiting payoff vector u∗ at x∗, there is a

player i that has a strategy that gives a payoff that is strictly higher than u∗
i even when other players deviate slightly from x∗.

3 Introduced by [3] as one of two sufficient conditions for better reply security, a game satisfies reciprocal upper semicontinuity if
whenever a strategy-payoff pair (x∗, u∗) is in the closure of the game and u(x∗) ≤ u∗, then u(x∗) = u∗.

4 Since A is a compact metric space, by [12] Proposition 25 p. 204, it is second countable.
5 The literature addressing related contests includes [17–23].
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6 Ref. [24] show that asymmetric bid caps create an existence problem for most tie-breaking rules in all-pay contests with complete
information. Two other recent papers, [25,26], include symmetric bidding constraints in all-pay auctions with incomplete
information.

7 Projection Theorem: Let X be a Polish space and (S, S, µ) a complete finite measure space. If a set E belongs to S ⊗ B(X), then the
projection of E on S belongs to S.

8 Aumann’s Measurable Selection Theorem: Let X be a Polish space and (S, S, µ) a complete finite measure space. Suppose that F
is a nonempty valued correspondence from S to X having an S ⊗ B(X)−measurable graph. Then F admits a measurable selection;
that is, there is a measurable function f from S to X such that f (s) ∈ F(s) for µ-almost all s ∈ S.
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