
Citation: Fields, C.; Glazebrook, J.F.

Nash Equilibria and Undecidability in

Generic Physical Interactions—A Free

Energy Perspective. Games 2024, 15,

30. https://doi.org/10.3390/

g15050030

Academic Editor: Ulrich Berger

Received: 31 May 2024

Revised: 21 August 2024

Accepted: 22 August 2024

Published: 26 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

games

Article

Nash Equilibria and Undecidability in Generic Physical
Interactions—A Free Energy Perspective
Chris Fields 1,* and James F. Glazebrook 2,3

1 Allen Discovery Center, Tufts University, Medford, MA 02155, USA
2 Department of Mathematics and Computer Science, Eastern Illinois University,

Charleston, IL 61920, USA; jfglazebrook@eiu.edu
3 Adjunct Faculty, Department of Mathematics, University of Illinois at Urbana–Champaign,

Urbana, IL 61801, USA
* Correspondence: fieldsres@gmail.com

Abstract: We start from the fundamental premise that any physical interaction can be interpreted as
a game. To demonstrate this, we draw upon the free energy principle and the theory of quantum
reference frames. In this way, we place the game-theoretic Nash Equilibrium in a new light in so
far as the incompleteness and undecidability of the concept, as well as the nature of strategies in
general, can be seen as the consequences of certain no-go theorems. We show that games of the
generic imitation type follow a circularity of idealization that includes the good regulator theorem,
generalized synchrony, and undecidability of the Turing test. We discuss Bayesian games in the light
of Bell non-locality and establish the basics of quantum games, which we relate to local operations and
classical communication protocols. In this light, we also review the rationality of gaming strategies
from the players’ point of view.

Keywords: free energy principle; Gödel’s theorem; Markov blanket; measurement; Nash equilibrium;
quantum reference frame; Turing test; undecidability

1. Introduction

Since its inception by von Neumann and Morgenstern [1], game theory (GT) has
provided a fertile ground for formal studies of algorithmic decidability and undecidability.
The definition of equilibrium for non-cooperative games in [1] was restricted to two-person,
zero-sum games. J. F. Nash in [2,3] introduced a concept of equilibrium applicable to a much
more general class of games, based on best-response strategies, regardless of the number of
players and any bounds on the eventual payoff. Specifically, the Nash equilibrium (NE)
comprises a set of strategies, one for each of the n game players, with the property that
each player’s choice of strategy is their best response to the choices of the n − 1 other
players [4]. This principle, as applied to an array of gaming strategies (mixed and pure) of
‘best response’ determined by probability distributions, profoundly influenced the world
of economic game theory, and in recognition of this irreducibly original idea, Nash was
awarded the Nobel Prize in 1994 (for the foundations and various interpretations and
applications of the theory; see, e.g., [4–6]).

To illustrate the notion of an NE, consider a simple two-player game, the prisoner’s
dilemma (PD). Each round is defined by a payoff matrix in which the best payoff is obtained
by defecting (D) when offered cooperation (C), e.g.,

Bob sB

C D

Alice sA
C (3, 3) (0, 5)
D (5, 0) (1, 1)
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In such a setting, D is the dominant strategy and (D, D) is the Nash equilibrium. The
optimal joint strategy is (C, C), in which both players cooperate, but this is clearly unstable.

While the NE in the PD as defined above is the single point (D, D), redefining the
space of possible strategies can render the structure of the NE as an attractor in strategy
space arbitrarily complex. We could, for example, allow Bob a continuous distribution of
strategies, each labeled with a complex number, and replace the ‘C’ and ‘D’ column labels
in the table above with ‘{c|c /∈ M}’ and ‘{c|c ∈ M}’, respectively, with M the Mandelbrot
set, or with M the pullback attractor of some random dynamical system D on C for which
such an attractor is defined. While such formal moves are somewhat contrived, the latter
may realistically reflect the situation in evolutionary game-theoretic settings [7], where
the numbers of distinct actions, and hence, “strategies” available to both an organism or
population and its environment (comprising other organisms or populations) are very large,
but only difficult-to-define sets of such actions have discernibly distinct short-term payoffs.

A fundamental question is posed by the existence, in all games, of NEs: for a given
game g and the dynamics ϕ on g, can it be shown whether ϕ converges to an NE for
g? Various results have been proved, many demonstrating nonconvergence for games
with particular structures. Three notable examples from this literature are proofs that
(i) game dynamics that are uncoupled, in the sense that each player’s choice of strategy
depends only on their own payoff function, are generically not Nash-convergent, even for
point attractors [8]; (ii) games exist for which all dynamics fail to converge to an NE [9];
and (iii) sufficiently high-dimensional multi-player games can have chaotic attractors, and
hence, dynamics that never converge [10], though in some cases, simple heuristics can
predict long-term outcomes [11]. The second of these results was proved for degenerate
games, i.e., games in which multiple moves have the same payoff; however, the problem
of deciding whether a game is degenerate is known to be NP-complete except in special
cases [12]. In fact, for finite games the computational complexity of NE has be shown
to be that of polynomial parity arguments on directed graphs (PPAD) problems [13]. As
informally explained in [14], PPAD is a class of all search problems for which a solution is
guaranteed to exist for the same combinatorial reason that every game has at least one NE.

Results such as these are generally obtained by representing games as dynamical
systems—hence, the idea of game dynamics—but as might be expected from Gödel’s the-
orem [15], any self-consistent axiomatic system sufficient to represent game dynamics is
provably incomplete, in the specific sense that whether a given combination of strategies
constitutes an NE is generically unprovable, even for finite games [16]. Gödel undecidabil-
ity extends beyond the question of NE: the question of strategy convergence in a spatialized
prisoner’s dilemma (SPD)—effectively, a question of whether a finite, heterogeneous cel-
lular automaton (CA) will evolve into a homogeneous CA given a generic distribution of
rules/strategies—has also been shown explicitly to be undecidable [17], as discussed in
detail in Section 4.3 below.

While the above kinds of questions arise when games are analyzed as abstract structures,
players of games also face decidability questions on each round of play. Is, for example,
one’s currently cooperative opponent in an iterated PD (IPD) playing tit-for-tat, or is their
strategy to defect after n rounds? This question is clearly undecidable at round k for any k < n.
Indeed if the opponent is modeled as a black box, the undecidability of any question about
future strategy is undecidable by Moore’s theorem [18], which shows that no finite sample of
I/O behavior is sufficient to characterize a generic black box. Turing’s imitation game [19],
otherwise known as the Turing test, provides a case in point: with the assumption that the
interrogator is a Turing machine (TM), the undecidability of whether the respondent is human
or machine after any n rounds of questions has been proved explicitly [20].

Here, we study these questions of decidability and convergence to an equilibrium in a
setting in which the “game” is a generic physical interaction. This effectively generalizes
Milnor’s idea of a “game against Nature” [21] to situations in which the payoff to Nature
bears no particular relationship to the “player’s” payoff. To effect this generalization, we
first describe generic physical interactions in terms of “strategies” and the “moves” that
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they generate. We then follow Feynman [22], and later Friston and colleagues [23–27], in
employing the variational free energy (VFE) computed by each of the interacting systems,
which treats each system’s internal dynamics as a model of the other and measures its
prediction error, as an inverse payoff measure. When “computation” is treated simply
as a functional interpretation of a physical process [28], this representation is completely
generic in both classical [25–27] and quantum [29,30] settings. Having described games in
this generic setting, we can appeal to undecidability results or “no-go” theorems provable
for generic physical systems to understand why, given that NEs generically exist, failure to
converge to an NE can be expected for generic games.

We review the formalism needed to represent generic physical interactions as games
in Section 2, and show how normal-form games constitute a special case of such generic
games. We then review a number of undecidability results provable in this generic setting
in Section 3, and discuss how particular classes of games can be seen as providing a priori
answers to otherwise undecidable questions. We interpret Nash’s theorem in terms of
generic physical equilibria in Section 4, showing that the NE can be identified with instances
of generalized predictive synchrony in the classical case and with entangled states in the
quantum case. We consider the differences between classical and quantum strategies in
Section 5, and also discuss the case in which the players manipulate a shared quantum
resource as part of the game. We discuss some remaining issues in Section 6 and conclude
with some open questions in Section 7.

2. Representing Generic Interactions as Games
2.1. Physical Interaction Is Information Exchange

Let U be an isolated, finite, physical system. We can, without loss of generality, regard
U as comprising m binary degrees of freedom. If we consider these degrees of freedom to be
classical bits, the possible states of U are simply the m-bit strings with, e.g., the Hamming
distance as a metric; if we consider the degrees of freedom to be quantum bits (qubits),
we can represent U by a complex Hilbert space HU with dimension dim(HU) = 2m. Here,
we employ the quantum formalism for its greater generality. Following the development
in [31–33], we select a Hilbert space decomposition HU = HS ⊗HE into a “system” S of
interest—which we will regard as the “player”—and its “environment” E which plays
the role of “Nature” (E can also be interpreted as a collection of resources, e.g., thermo-
dynamic free energy, stigmergic memory, etc., with some degree of stochasticity). We can
then write the interaction between S and E as a Hamiltonian (i.e., total energy) operator
HSE = HU − (HS + HE), where HU , HS, and HE are the internal or self-interactions of U,
S, and E, respectively. We are interested in the case in which HSE is weak enough that
the joint state |SE⟩ (using Dirac’s notation) is separable, i.e., not entangled, over the time
interval of interest. This allows us to write HSE as

HSE = βkkB Tk

N

∑
i

Mk
i , (1)

where k = S or E, kB is Boltzmann’s constant, Tk is temperature, Mk
i are N Hermitian

operators with eigenvalues in {−1, 1}, and βk ≥ ln 2 is an inverse measure of k’s thermody-
namic efficiency that depends on the internal dynamics Hk. This interaction HSE provides
a formal description of “playing” the game.

We now assume the holographic principle (HP), the claim that no more informa-
tion can be obtained about a physical system than can be encoded on that system’s
boundary [34–36]; see [37] for details of how the HP applies in this setting. The HP
gives Equation (1) a straightforward topological interpretation. Let B denote the decompo-
sitional boundary given implicitly by the Hilbert space factorization HU = HS ⊗HE. Given
separability, i.e., |SE⟩ = |S⟩|E⟩, the entanglement entropy S(|SE⟩) across B is zero. We
can, therefore, regard B as a holographic screen, i.e., an ancillary N-qubit array, separating
S from E, and depict HSE as in Figure 1.
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Figure 1. A holographic screen B separating systems S and E with an interaction HSE given by
Equation (1) can be realized by an ancillary array of noninteracting qubits that are alternately
prepared by S (E), and then, measured by E (S). Qubits are depicted as Bloch spheres [38]. There
is no requirement that S and E share preparation and measurement bases, i.e., quantum reference
frames, as described below. Adapted from [33] Figure 1, CC-BY license.

Figure 1 makes explicit a fundamental observation of Wheeler [39]: quantum theory
allows any interaction between separable systems to be treated as communication. This
communication is bidirectional and indeed informationally symmetric by definition; S and
E interact by exchanging N-bit strings. It thus renders the idea of “passive observation”
unphysical, as reflected in Wheeler’s famous aphorism, “No question? No Answer!”.

2.2. Actions Require Quantum Reference Frames

The boundary B is the “board” (or “media”, or “channel”) on or through which the
game is played. This channel can be any information-encoding space, e.g., the internet in
the case of video games, or a private channel in a quantum cryptography setting where an
eavesdropper effectively plays a game with a subject who has assumed total privacy [40].
Given B, we can describe the moves and the strategies that drive them. Each move has
two components: first S (E) prepares each qubit on B in some state, after which E (S)
measures each qubit. Preparation and measurement, i.e., observation, of qubit qi are dual
processes [41] carried out with the operator Mk

i . This operator is, effectively, an instance
of the z-spin operator sz; it acts on a qubit to prepare it in either the ↑ (+1) or ↓ (−1) state.
Rendering this action well-defined requires specifying a physical direction that counts as
“up” (or +z); the opposite direction is then “down” (−z). This specification is achieved
by employing a quantum reference frame (QRF), a physical system that provides a fixed,
re-usable standard for measurements [42,43]. In a typical laboratory, “up” is defined by
the Earth’s gravitational field. The QRF is used to “make” the move; choosing a QRF to
employ corresponds, in this setting, to choosing a strategy.

When S encodes a bit string on B by preparing each of the qi in some particular state,
it must select a local +zS

i QRF for each of the MS
i , and hence, for each of the qi. When E

then reads a bit string from B, it must also select a local +zE
i QRF for each of the qi. If S

and E are to remain separable, these choices of local QRFs, which correspond to choices
of basis |i⟩ in Equation (1), must be made independently or “freely” [37]; if S’s choice of
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basis depends on E’s or vice-versa, they are entangled. If we view B as a communication
channel, independent choice of basis by both S and E can be viewed as introducing noise
into the communication; in the extreme case of S choosing +zS

i = −(+zE
i ) for qi, S will

observe E’s encoded bit as being flipped. As U is isolated, there is no classical source of
noise in the system; the “noise” due to differences in QRF/basis choice between S and
E is purely quantum. The “noise” caused by distinct QRF choices generates statistical
surprise, as discussed below; this is the surprise induced when one’s opponent chooses a
different strategy.

Moves in a game can involve more than one bit; in such cases, a multi-bit strategy is
needed. Single-qubit QRFs can be combined to create QRFs that read or write particular
bit strings encoded by subsets of qubits on B. We can represent these composite QRFs by
hierarchies of maps that form category-theoretic limits and colimits over the relevant single-
qubit QRFs [33]; Figure 2 shows such a composite QRF “attached” to B. These cone–cocone
diagrams (CCCDs) [44,45] are logically regulated, causally and context-sensitive, distributed
systems of information flow, as based on the theory of [46]. They are provably general
representations of composite QRFs, and are provably equivalent to topological quantum
field theories (TQFTs) over the relevant subsets of qubits [47,48]. As with single-qubit QRFs,
S and E have independent, free choice of composite QRFs to deploy on B.

Figure 2. “Attaching” a CCCD to an intersystem boundary B depicted as an ancillary array of qubits.
The operators Mk

i , k = S or E, are single-bit components of the interaction Hamiltonian HSE. The
node C is both the limit and the colimit of the nodes Ai; only leftward-going (cocone-implementing)
arrows are shown for simplicity. See [29–31,47] for details. Adapted from [31], CC-BY license.

We can now fully describe a move in a generic S-E game. Assuming S has the first
move, S deploys some QRF/strategy QS

i to encode a particular bit string on the subset
dom(QS

i ) of qubits on B, after which E deploys some QRF/strategy QE
j to read a bit string
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from the subset dom(QE
j ) of qubits. The turn then reverses, with E encoding and S reading.

Note that nothing requires that dom(QS
i ) = dom(QE

j ), and nothing requires that either S
or E deploys the same QRF/strategy on each move. In a generic game, both players can be
expected to deploy multiple QRFs/strategies, up to some limit imposed by their available
computational resources.

2.3. VFE Provides a Generic Payoff Function

From a global perspective, the alternating moves of the S-E game are driven by the
global self-interaction HU ; interposing B between S and E does not affect this global
interaction in any way. From the perspective of S or E, the moves are driven by the
data that the other party encodes on B. We can also say: they are driven by how the
internal dynamics HS and HE respond to the perturbations of the system states |S⟩ and |E⟩,
respectively, by the interaction HSE.

The free energy principle (FEP), introduced by Friston and colleagues [23–27], provides
a statistical physics representation of the above facts. Informally, the FEP states that S
and E will remain distinct only if they remain sufficiently sparsely or weakly coupled
that the boundary between them remains well-defined[25]. If U is treated as a classical
causal network, the boundary becomes a Markov blanket (MB), as originally defined by
Pearl [49]. In this setting, the FEP can be formulated as the requirement that states of S and
E each remain in the vicinity of some respective non-equilibrium steady state (NESS) [25],
or that almost all paths through the joint space that begin in S(E) remain in S(E) [27]. We
can, clearly, re-interpret these classical statements simply as requiring that S and E remain
unentangled, i.e., that both have “internal states” that contribute only negligibly to HSE.

The utility of the FEP as a guiding principle is that it shifts the focus from characteriz-
ing the internal dynamics HS or HE, to characterizing the function that each must perform
to maintain the long-term integrity of its MB, i.e., of B. Again speaking informally, S’s
ability to maintain a well-defined boundary—if S is an organism, to stay alive—depends on
keeping environmental perturbations of its state relatively small. This can be formulated
in terms of prediction and surprise: whatever HS does, it needs to minimize the surprise
−lnp(b), where b is an MB or boundary state (in the notation of Section 2.1, of the holo-
graphic screen B) relative to a prediction η of E’s behavior. The variational free energy (VFE)
measured at B is an upper bound on surprise ([25] Equation (2.3)):

F = DKL[qµ(η)|p(η)]−Eq[lnp(b|η)],
= DKL[qµ(η)|p(η|b)]− lnp(b),

(2)

where qµ(η) is a variational density over predicted external states η parameterized by
internal states µ, and Eq is an expectation value operator parameterized by the variational
density q. Note that the Kullback–Leibler (KL) divergence in the second equality scores the
(non-negative) prediction error as a divergence between the variational prediction and the
true distribution over external states, given observable MB/boundary states. Because this
prediction error is non-negative, the VFE furnishes a bound on surprise, which becomes
exact when the prediction error is zero.

The first equality in Equation (2) expresses VFE in terms of complexity minus accuracy
(first and second terms, respectively), where there is an intimate relationship between the
complexity (i.e., divergence between the variational posterior and prior) and the algorith-
mic complexity of the generative model as a description of E. Heuristically, this means
that minimizing VFE provides the simplest accurate account of an environment that can
never be observed directly. In turn, minimizing complexity speaks to a description of
the environment in terms of minimum message or description lengths, i.e., that speaks to
universal computation [50–53].

We can now state the FEP as the claim that S and E will remain distinct systems to the
extent that their respective dynamics HS and HE are able to each minimize the VFE F measured



Games 2024, 15, 30 7 of 22

at their side of B, i.e., for their own inputs and predictions. Note that as they are described by
Equation (2), S and E are equally “in the game” of maintaining their mutual distinction.

In the Bayesian sense, µ can be seen as encoding a posterior over the external state η.
Minimizing the VFE leads to minimizing a prediction error, a process encompassed by a
generative model (GM) implemented by the agent’s internal dynamics. Here, it is apt to see
VFE minimization, from an informational perspective, as a thermodynamically driven pro-
cess, assimilating the dynamics of an environment whose thermodynamic agency becomes
minimized while driving internal self-organization. Declining VFE is then self-evidencing
in the literal sense of providing evidence for the implementing system’s continuing exis-
tence [25]. From a dynamical systems perspective, this mechanism maintains the inter-
nal state µ in the neighborhood of an NESS solution to the system’s density dynamics
as given above.

Nothing in the above assumes anything particular about HS or HE beyond the function
of maintaining their distinctness, or in quantum language, the separability of S and E. The
FEP therefore describes generic interactions as a simple game with VFE minimization as the payoff
function. The objective of the game is maintaining a distinct existence with self-evidencing.
It is the most basic game any system plays, and all systems play it all the time.

2.4. Normal-Form Games Are Special Cases

It is implicit in game theory that the players exist and are distinct from one another;
normal-form games are, therefore, special cases constructed on top of the generic “game of
maintaining existence” described above. Most games are not, moreover, games against all
of Nature, i.e., all of E, but games against some components of E, with the other components
being neutral, providing infrastructure, or simply being neglected altogether.

The QRF formalism illustrated in Figure 2 allows us to say precisely what is meant by
S identifying and interacting specifically with some “system” X embedded in E. To remain
identifiable by S over time, X must have some component XR with a state |XR⟩ (or state
density ρXR ) that is invariant under the interaction HSE. To accomplish the identification
of X over time, S must implement some QRF XR specific for XR, i.e., that produces an
outcome ‘+1’ when |XR⟩ is detected and ‘−1’ otherwise. To be seen by S as making “moves”
of interest, X must have some component XP (a “pointer” component) with a state |XP⟩
that varies under the interaction HSE, and S must implement a QRF XP that specifically
detects this variable “pointer state” [29,31,33]. The sector dom(XR) ∪ dom(XP) of B is,
effectively, the “image” of, or in the terminology of [54] the “icon” of, X for S.

Playing a multi-move game with X requires that S has some memory for previous
moves. We could consider S to have a purely procedural memory, e.g., to implement some
learning algorithm that updated its decision algorithms on every cycle, as is standard for
artificial neural networks [55]. More interesting from the present perspective is the case
in which S has declarative memories of particular events, and so can trace X’s behavior
explicitly through time. Writing and then reading a declarative memory Y requires a
dedicated QRF Y, as shown in Figure 3. The process of irreversibly writing a declarative
memory requires both thermodynamic energy from the environment and an internally
counted time, which we can represent by a counter, or time QRF, Gij [31,33].

In order to participate in a two-player game with X, therefore, S needs a QRF X; two
memories YS and YX of self- and X-actions, respectively, both of some temporal depth
∆tS ≥ 1; a VFE measure FX over the sector dom(X); and a decision function D that computes
what to do in the next timestep. Generalizing to k players is formally straightforward. We
can see in this a generalization of normal form, which replaces the k2 − k interplayer QRFs
with k “objective” players, the decision functions Di with sets of discrete strategies, and the
VFE measures Fij with maps from selected actions to R. We can, in other words, see normal
form as an assumption of both classical realism—the players are assumed to perceive and
act within an observer-independent “game world”—and discreteness—sets of strategies
and associated payoffs are assumed to be finite, or even tractably small. These conditions
formalize, as they were intended to, our intuitive notions of what a “game” is.
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Figure 3. Cartoon representation of a system A that deploys a QRF X (red triangle) to measure the
state of an external system X in its informational environment (i.e., a sector X of its boundary B),
and then, deploys a second QRF Y (green triangle) to write the outcome to a memory sector Y. This
process induces one “tick” of an internal clock Gij that defines an internal elapsed time tS. The process
is powered by a thermodynamic loop from (thermodynamic free energy in) and back to (waste heat
out) the physical environment E. Adapted with permission from [37], CC-BY license.

2.5. Example: The IPD as a Prediction Game

The IPD again provides a simple example that illustrates how normal form abstracts
from the physical description. The players—Alice and Bob—are embedded to some overall
shared environment that provides them with resources, particularly thermodynamic free
energy, that allow them to play the game iteratively. They are assumed to have identified
each other as players, and to each be able to focus their attention exclusively on the other.
The VFE for each player, in other words, is assumed to be a function only of what the other
player does; sources of uncertainty in the general environment are viewed as negligible or
irrelevant. Clearly this is an abstraction of any real setting, e.g., the real situation of any
pair of organisms. The players are also each restricted to one or the other of the same two
possible moves on each cycle, again a considerable idealization of most real settings.

Each player in the IPD has a model of the other, or more specifically, a move-to-move
updated probability distribution over the other’s next moves. The IPD is a dilemma
because these probability distributions are typically not unimodal, and even if they are
unimodal—corresponding to a “certain” prediction—they may not be predictively accurate.
Decoupling between subjective probabilities and actual outcomes is, of course, typical in
real situations.

The moves in the IPD can be viewed as predictions: a C move predicts a C on the
opponent’s part, while D predicts D or, more hopefully, C. Observing D after C or C after
D are both surprising, but in opposite directions: D after C is disappointing and decre-
ments the model probability that the opponent is a cooperator, while C after D increases
that probability. Predicting good results from risky moves is a key component of active
exploration of the environment driven by the FEP, often called “epistemic foraging” [25].
While in the abstracted context the IPD it can appear deceitful, in other situations such
high-risk/high-reward behavior is a key indicator—and result—of intrinsic motivation [56].
It is, for example, a central driver of science [57].

The IPD converges to (D,D) when the players can, effectively, no longer learn any more
about each other. This is an example of generalized synchrony, the generic equilibrium state
for systems interacting via the FEP discussed in Section 4 below. While this NE exists, when
it will be reached is unpredictable in real time by the players, as further discussed below.



Games 2024, 15, 30 9 of 22

The largest abstraction from reality made in the PD, and hence, in the IPD, is the
assumption that the game is not uncoupled, i.e., that the players each know the entire
payoff matrix. This information is provided a priori; there is no “bidding phase” in a PD
where the players optionally reveal information about their payoffs and bluffing is allowed,
so that any resulting “knowledge” of other players’ payoffs, even if subjectively certain,
may be highly inaccurate. As shown in [8], uncoupling generically disrupts convergence,
even to unique point NEs. The next section discusses this relationship between access to
information and convergence to equilibrium in generic physical terms.

3. Generic Limits on Observation

The generic description of physical interactions as information exchange sketched
above allows us to prove a number of no-go results that place generic limits on what can
be deduced from, or decided on the basis of, finite observations. These results apply to
all players of all games. They can be viewed as extensions or generalizations of Moore’s
theorem for observations of classical black boxes [18]. Defining the dimension dim(Q) of a
QRF Q as 2j, where j is the number of binary degrees of freedom required to implement Q,
we proved in [58] that:

Theorem 1 ([58] Theorem 1). Let S be a finite system and Q be a QRF implemented by HS. The
following statements hold:

1. S cannot determine, by means of Q, either Q’s dimension dim(Q), Q’s associated sector
dimension dim(dom(Q)), or Q’s complete I/O function.

2. S cannot determine, by means of Q, the dimension, associated sector dimension, or I/O
function of any other QRF Q′ implemented by S.

3. S cannot determine, by means of Q, the I/O function or dimension of any QRF Q′ implemented
by any other system S′, regardless of the relation of S to S′, from S′ = S to S′ = E, inclusive.

4. Let S = SiSj, in which case Ei = ESj. Then, Si cannot determine, by means of a QRF Qi, the
I/O function or dimension of any QRF Qj implemented by Sj.

Proof. See [58]. All clauses follow from the inability to specify HS or HE given only HSE,
or in particular, the finite set of bits encoded on some observable sector of B.

A corollary of Theorem 1 is that GMs implemented by physical systems are inevitably
incomplete, in the sense that there are inputs that can be received but not predicted,
and adding more or different QRFs or hierarchical (i.e., meta-) layers cannot make them
complete ([58], Corollary 3). This sense of incompleteness is obviously reminiscent of
Gödel’s theorem, and follows from Gödel’s theorem immediately if the GMs in question
are treated as axiomatic systems with at least the power of arithmetic.

A further result that will be relevant to Section 5 below is that no system can determine
the entanglement entropy across its own boundary ([59], Corollary 3.1). This restricts any
system from determining, by observation, that it is not entangled with its environment,
and hence, that it has no “back channel” of communication with its environment that
is not mediated by classical information. The result follows from the undecidability of
the problem of determining whether an action alters the entanglement entropy of the
environment [59]. This is a quantum version of the classical frame problem, the problem of
deciding what remains invariant after an action [60].

Theorem 1 implies that a system cannot determine its own decision function D, and
hence, that it cannot report its decision function to any other system. It moreover implies
that no system can reliably infer the decision function of any other system by observation.
Hence, no player of a generic game can report its own strategy to other players, or reliably
infer the strategies of other players from their behavior. Theorem 1 likewise restricts any
system from reliably inferring the VFE measurements, and hence, the payoff function,
of other systems. Generic games are, therefore, all uncoupled in the sense of [8], and
hence, are incomplete-information, or Bayesian, games as defined by Harsanyi [61]. This
uncoupling extends to the temporal depth or reliability of other systems’ memories for



Games 2024, 15, 30 10 of 22

previous moves. Theorem 1 thus shows that games with well-defined rules that are known
by all players effectively postulate shared a priori knowledge that cannot be obtained
empirically. In practice, we can think of this as an assumption of a shared language, or
a shared semantics. Such assumptions are known to be problematic on classical, logical
grounds [62]; we will see this more deeply when considering communication protocols
explicitly in Section 5 below.

4. Convergence and Equilibria in Generic Interactions
4.1. Convergence Driven by the FEP

Let us now consider what happens when two agents, both driven by the FEP, each
strive to reduce the VFE they measure on their respective sides of their mutual boundary.
For each agent, reducing VFE is increasing the accuracy of their GM for predicting the
other agent’s behavior. Each can, therefore, be expected to engage in a combination of
learning any patterns in their opponent’s behavior and acting on their opponent in order to
either alter their behavior or induce new learnable patterns. The combination of these VFE-
reduction strategies is active inference in the language of Friston and colleagues [24,63–65].
As active inference minimizes VFE, not surprise per se, it can be viewed as approximate
Bayesian inference.

Players of games against Nature frequently lose; Nature has many possible moves
and is notorious for radically and capriciously changing the rules [66]. For the present
purposes, however, we are mainly interested in active-inference games in which HSE, and
hence, the “rules” remain fixed, allowing the players to decrease their VFE by improving
their predictions for a finite, but unbounded, number of rounds. This scenario naturally
raises three questions:

• Does an equilibrium that minimizes VFE—maximizes predictive accuracy—for both S
and E exist?

• Can S or E determine by finite observation that they have reached such an equilibrium?
• Can S or E determine that they are on a trajectory toward such an equilibrium?

Nash’s theorem [3] gives a positive answer to the first of these questions. Such equilibria
have also been characterized in the classical FEP literature, where it has been shown how
mutual predictability induces generalized synchrony [67,68]; see, e.g., [69–72] for relevant
earlier work and [73,74] for applications. A simple and limiting example of generalized
synchrony is convergence to thermodynamic equilibrium, in which prediction ceases
at “stasis” because there is no longer available thermodynamic free energy to support
computation. Unlike the classical formulation, the quantum formulation of the FEP does
not employ an embedding space to enforce separability between S and E; here, the limit
of perfect mutual predictability corresponds to entanglement [29], as discussed further in
Section 5 below.

As could be expected from the work of Hart and Mas-Colell on uncoupled games [8],
the answers to the second and third questions above are negative. As noted earlier, this is
evident even in as simple a game as an IPD: no sequence of cooperate (C) moves is sufficient
to rule out the next move being defect (D). Even well-supported predictions, in other words,
can fail. One reason for this follows immediately from the opacity of MBs discussed in
Section 3 above: S and E cannot determine by observation how much internal memory
their opponent has, so cannot predict with reliability their opponent’s planning horizon.

A deeper reason for the inability of players to determine whether they are on a path to
convergence is provided by Rice’s theorem [75]. No restrictions have been placed on the
internal dynamics HS or HE; hence, they can implement arbitrarily complex programs. Rice
showed that no TM can determine the function computed by any arbitrary program. Hence,
S and E could not determine each other’s strategies, in the general case, even if they had
full access to a program describing their dynamics. Indeed, they cannot determine whether
such a program—and hence, the represented dynamics—halt on a given input [76,77].

Yet another perspective on convergence is provided by the undecidability of the
classical frame problem [78]. This prevents S or E from reliably predicting the result of
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a perturbative action, and hence, from reliably predicting what a given move will reveal
about their opponent’s strategy. A final perspective is provided by Gödel’s theorem itself:
there are attractors that cannot be proven to either be or not be NEs [8,16].

4.2. Example: IPDs and Generalized Imitation Games

Turing’s imitation game [19] is introduced via the question ‘can machines think?’ and is
typically regarded in this context. It can, however, also be seen as an exemplar of a particular
kind of active-inference game, one in which the “opponent’s” objective is to cause the “player” to
build a GM of the opponent’s behavior that is false. In Turing’s original version, the interrogator
must decide which of a computer and a human is which, while both attempt to deceive them.
We will refer to all games of this sort as generalized imitation games (GIGs).

Sato and Ikegami showed Turing’s imitation game is Turing-undecidable after any
finite number of rounds. As noted earlier, we can see this result as a special case of
Moore’s theorem [18]: finite observations are, in general, insufficient to reveal the dynamics
unfolding inside an MB. Moore’s theorem applies to any GIG in which the players are
separable; hence GIGs in general are undecidable after any finite number of rounds.

Strategic deception is a central feature of human social behavior [79]; hence, many
social interactions are, at least in part, GIGs. Successful deception requires multi-timestep
memory, both in deceiver and deceived; all GIGs are, therefore, multi-round games. An
explicit, move-by-move record, in particular, serves as an additional testing resource for
GMs that are evolved on each timestep and encode prior behavior only implicitly. Hence,
skilled players of GIGs are “fast learners” who also have “good memory”.

As pointed out in [80] as a reflection on [1], “conscious choice” is not assumed in
GT, which treats games as formal structures and the agents that play them as, effectively,
algorithmic systems (see also a similar discussion in [81], and see [82] for a review of
empirical evidence that “conscious choice” is an illusion even in awake humans who
explicitly report it). Notions of learning, memory, strategy, and deception are interpreted
along these same lines. While it is commonplace to treat GT agents as TMs, a resource
theory perspective that places specific limitations on memory or processing capability can
yield useful insights (see also, e.g., [83] for the relationship of the logical studies of Gödel,
Turing, and Post to the question of how digital agents can innovate, and [84] for a survey
of ideas of the former).

Consider, once again, an IPD, which can be thought of as a GIG in which players
can surprise each other by shifting strategies. As pointed out earlier, away from the (D,D)
equilibrium, not even a complete, explicit record of all past moves is sufficient to reliably
predict one’s opponent’s next move. Taiji and Ikegami [85] have studied IPDs from a
resource theoretic perspective, implementing each player as a recurrent neural network
(RNN) to enforce a purely implicit memory of previous moves. If identical learning
algorithms are employed for each player, the “Bayesian prior” that distinguishes them
becomes the algorithm that employs the memory encoded by the RNN to choose a next
action. Taiji and Ikegami studied two such priors, “pure reductionist Bob”, that employs
the RNN as a model of Alice’s past moves; and “clever Alice”, that employs the RNN to
simulate pure reductionist Bob. Effectively, clever Alice builds a model of herself—the
RNN model that pure reductionist Bob would build—and treats this model as the GM
employed by her opponent. This attempted ‘mirroring’ of each player’s strategies and
predictions in the IPD has also been studied as a type of imitation game in [86] (see also the
discussion in [85]). As might be expected, IPDs that pit these players against each other, or
against copies of themselves, eventually converge to the (D, D) equilibrium. As pointed
out in [85], the (C, C) strategy is stable only if each player has an essentially unshakable
prior that the opponent plays tit-for-tat. This outcome can be overcome if the players adopt
a quantum strategy [80,87], the basic elements of which we will review in Section 5 below.

There are a number of slants on the IPD. Of these, consider the following example.
Suppose we take a large number N of rounds of play, whereby cooperation (C) is seen as
the best long-term payoff. The snag is, however, that a player might defect (D) at the final
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round with nothing to lose, in which case the opponent has no opportunity to react. But
if defection for both is known for round N, then the same scenario arises, without loss,
in round N − 1, and so on [14]. But [14] notes, following [88], that this apparent anomaly
can be resolved if the two players each have sufficiently small memories, which assumes
they are finite automata with k states, 2 ≤ k < N. Then, cooperation can be restored as an
equilibrium, in contrast to the previous scenarios, since given the lack of memory to count
up to N, as known to both players, any intermediate strategies as evoked in the previous
case will no longer apply.

We can view these as carefully contrived applications of the good regulator theorem
of [89]: any good regulator, i.e., one that is maximally successful and simple, must be an
isomorphic model of the system being regulated. The results of Section 3 show that no agent
can reliably infer that it is such a good regulator. The infeasibility of isomorphic regulators
in practical applications is well known; practical regulators are coarse-grained models, not
isomorphic models. The FEP builds this in by employing the variational approximation of
Equation (2); see [90] for a recent discussion.

4.3. Example: The SPD and Its Limit Sets

The spatialized prisoner’s dilemma (SPD) adds a spatial dimension to the time dimension
of the IPD. In the SPD, players compete against their eight nearest neighbors, replicating the
winning strategy after each full round if defeated by any neighbor. Players are, effectively,
cells of a finite CA embedded in some infinite background, each of which implements the
same updating rule but whose game strategies can differ. Grim [17] has shown that as
finite configurations of IPD strategies, SPDs are formally undecidable; specifically, that for
any chosen infinite background within an SPD, there is no algorithm which reveals in every case
whether or not an embedded finite array of strategies will result in a progressive conquest by a single
strategy. Stable patterns obtained after multiple SPD rounds, whether these are uniform,
and thus, correspond to “conquest by a single strategy” or not, are limit sets of the CA.
We can, therefore, see the undecidability of SPDs as a special case of Kari’s theorem [91],
which states that all nontrivial properties of such limit sets are undecidable. This result has
been extended to show that some properties of CA dynamics, including whether the time
evolution map is the identity map, are undecidable even when limited to evolution within
a limit set [92].

The SPD imposes, in effect, a non-local prediction problem on its players: an oppo-
nent’s changes in strategy in the SPD are not capricious, but are rather determined by
the behavior of neighbors that are near the opponent but distant to the predicting cell.
It can thus be considered a “motivated” GIG, where the motivation comes from outside
the immediate two-player setting. Undecidability at the level of the players—by analogy
to [20]—derives in this case not from indeterminism, but from lack of access to distantly
acting information.

4.4. Prediction, Regulation, and Generalized Synchronization—A Circularity of Idealizations

We see in the examples of IPDs and SPDs that the idea of “deception” employed
to define GIGs as a class is just a convenient shorthand for what time and space render
inevitable—the impossibility of reliably predicting what will happen next. Adopting a
GT perspective on generic physical interactions—or on behavior driven by the FEP—thus
emphasizes how apparent minima of VFE can become unstable, regulators that appeared
good can be thrown out of their operating windows, and states of generalized synchrony
can collapse back into chaos. In a game against Nature, in particular, the limit of identical
synchronization, in which both state spaces and GMs are isomorphic, is obtained only when
Nature is cut precisely into identical halves. We arrive, then, at an unfolding circularity of
idealized concepts:

Good Regulator =⇒ Identical Synchronization =⇒ Winnable Imitation Game
(or decidable Turing Test) =⇒ Good Regulator
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The source of undecidability in every case is clear: if two interacting systems are identi-
cal, self-reference and other-reference are indistinguishable, and Gödel’s theorem applies
equally to either.

As noted earlier, the “good regulator” limit in the quantum formulation of the FEP is
entanglement. We now turn to games that employ this non-classical resource.

5. Quantum Games
5.1. Definitions and Formalism

The formalism for generic interactions in Section 2 applies to quantum as well as
classical systems, and hence, can be applied to games involving quantum interactions.
Since the pioneering work of Meyer [93], specifying two-person zero-sum games in terms
of a notion of quantum strategy and (mixed) quantum equilibria, the interplay between
GT and quantum information has produced a quantum theory of games (see, e.g., the
review of [94]). This generalizes classical GT by involving, for instance, quantum (mixed)
strategies, non-locality, entanglement, and other quantum concepts, and entails far-reaching
consequences beyond the classical case. The most notable of these is that quantum strategies
are superior to classical strategies, and thus, the expected payoffs can be considerably
greater. In short, any quantum system which can be manipulated by two or more parties, in
which the utility of the moves can be suitably quantified, qualifies as a quantum game. In
terms familiar from quantum computing and quantum information, these include optimal
quantum cloning, eavesdropping in quantum cryptography (see listings in [80,87], and,
e.g., [40,95]), quantum entanglement and evolution of cellular automata [96], quantum
entanglement and secret sharing [97]. The most general form of the classical PD can,
moreover, be faithfully represented in the quantum PD [87]. All of these are, as we will see,
instances of local operations, classical communication (LOCC) protocols [98], in which two
or more agents manipulate some resource while also exchanging information about their
activities via some separate, classical communication channel.

To an extent, our preliminary account follows [80,87], which is broadly applicable
to the basics of the subject as developed by other authors (e.g., [93]), and for which the
classical version of the game is often faithfully represented in the quantum version. The
key differences exhibited by the latter involve linear superposition of actions/strategies,
entanglement between the players, and adoption of quantum probabilities. Let us proceed
with a formal description:

Definition 1. A two-player quantum game Γ = (H, ρ, SA, SB, PA, PB) consists of:

(a) The underlying Hilbert space H of the physical system;
(b) The initial state ν ∈ S(H), where S(H) is the associated game-state space;
(c) SA and SB are sets of permissible quantum operations of players A and B, respectively;
(d) PA are PB are the utility functions specifying the respective utility for each player.

A quantum strategy sA ∈ SA, sB ∈ SB is a quantum operation; in formal terms, a
completely positive trace-preserving self-map S(H) −→ S(H). Quantum games also
include various implicit rules depending on the nature of the game in question. A quantum
game is a zero-sum game if the expected payoffs sum to zero for all pairs of strategies; that is,
when PA(sA, sB) = −PB(sA, sB). Otherwise, it is anon-zero-sum game.

Next, we consider how equivalence between strategies is defined. Suppose Al-
ice has access to two quantum strategies sA and s′A. They are said to be equivalent if
PA(sA, sB) = PA(s′A, sB), and PB(sA, sB) = PB(s′A, sB), for all of Bob’s possible strategies sB.
In other words, sA and s′A yield the same expected payoff for both players, for all possible
sB. Likewise, equivalence of strategies for Bob is defined. There are several analogous
concepts in quantum GT extending those in classical GT which we will itemize below
(again referring to [80,87]):
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Definition 2. (a) A quantum strategy is called a dominant quantum strategy of Alice if
PA(sA, s′B) ≥ PA(s′A, s′B) for all s′A ∈ SA, sB ∈ SB. Likewise, a dominant strategy for
Bob is defined.

(b) A pair (sA, sB) is said to be an equilibrium in dominant strategies if sA and sB are the players’
respective dominant strategies.

(c) A combination of strategies (sA, sB) is called a Nash equilibrium if

PA(sa, sb) ≥ PA(s′a, sB)

PB(sA, sB) ≥ PB(sA, s′B)

for all s′A ∈ SA and s′B ∈ SB.
(d) A pair of strategies (sA, sB) is called Pareto optimal if it is not possible to increase one player’s

payoff without reducing the other’s payoff.

The single-shot PD provides an example. The quantum version of the game com-
mences by assigning to each player the classical strategies C and D, corresponding to two
basis vectors, |C⟩ and |D⟩, in the Hilbert space of a two-state system, a quantum bit or
qubit. At each instance of the game, the state of play is described by a vector in the tensor
product space spanned by the classical basis |CC⟩, |CD⟩, |DC⟩, |DD⟩ (according to the qubit
of Alice in the first place, and that of Bob second). More formally, the quantum version of
this classical binary choice game arises by the preparation of two qubits by some arbiter
who relays these to A and B, who have the necessary devices at hand to manipulate their
qubits effectively. Then, they eventually relay these back to the arbiter who implements
a measurement to determine the payoff. Note that “manipulation” here can, in principle,
result in any arbitrary superposition ψ = α|C⟩+ β|D⟩, with α, β ∈ C, and that Alice and
Bob must agree, via classical communication, to use the basis vectors |C⟩ and |D⟩, and
hence, must agree to deploy QRFs specifying those basis vectors.

This formal description entails a quantum system with underlying Hilbert space given
as a tensor product H = HA ⊗HB, where HA = HB ∼= C2, with associated state space
S(H). Quantum strategies sA ⊗ 1B and 1A ⊗ sB are identified with sA and sB, respectively,
while A and B are disposed to choosing any quantum strategy in the set S of these of which
they are aware, but are in principle unaware of whatever strategy each other will take.
Applying quantum strategies leads to a map:

sA ⊗ sB : S(H) −→ S(H) (3)

and from the initial state ν, the system moves to a final state:

σ = (sA ⊗ sB)(ν) (4)

When sA and sB are unitary operations, then they can be identified with unitary operators
UA and UB, and can be expressed by sA ∼ UA and sB ∼ UB, respectively. Hence, the final
state σ above can be written as

σ = (UA ⊗ UB)(ν)(UA ⊗ UB)
† (5)

The operations sA and sB do not, however, have to be unitary, but could involve measure-
ment, and hence, projection onto some basis vector. Additional technical details of how a
quantum game Γ = (C2 ⊗C2, ν, SA, SB, PA, PB) unfolds in terms of strategies and payoffs
are given in [80,87].

5.2. Example: The Decoherence Game

An isolated quantum system remains in a coherent or “pure” state, e.g., an isolated
qubit remains in a state describable as ψ = α| ↑⟩+ β| ↓⟩ in an arbitrary basis (↑, ↓). When
such a state is exposed to some environment E, it “decoheres” by losing coherence to
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E [99,100]; see [101] for a comprehensive review. We can represent this process as a game
similar to the quantum PD sketched above, in which quantum states of the qubit S of
interest are the “players” and its environment E is the “arbiter.” For simplicity, we will
just consider two players, which we can represent as the states | ↑⟩ and | →⟩, where
| →⟩ = (1/

√
2)(| ↑⟩+ | ↓⟩).

When the game begins, S is in a coherent state, so | ↑⟩ and | →⟩ have equal probabilities.
We then introduce interaction with E, which we can represent by Equation (1). Let this
interaction begin by being very weak and slowly increase in strength; we can think of
TE in Equation (1) increasing slowly, or of the frequency with which E interacts with S
increasing slowly. As required by Equation (1), E chooses a basis for the operator ME (we
need consider only one); we will assume E chooses (↑, ↓). This amounts to E choosing the
payoff matrix: with the choice (↑, ↓), | ↑⟩ receives one “outcome point” (i.e., the outcome
‘1’ is indicated by a “detector click”) while | →⟩ receives zero (no click). When the game
begins, | ↑⟩ and | →⟩ have equal scores, but as HSE gains strength, | ↑⟩’s score slowly
increases while | →⟩’s score does not; if we read probability as proportional to score and
normalize, | ↑⟩’s probability increases while | →⟩’s decreases. Asymptotically, | ↑⟩ has
probability one and | →⟩ has probability zero.

This process of measurement by E “rewarding” the state of S that is an eigenstate of
E’s chosen basis is called “einselection” [101], projective measurement, or the “collapse of
the wavefunction.” When E is taken to be large enough to interact with many independent
observers—e.g., when E is the ambient photon field—E can be regarded as “encoding”
the selected state of S with sufficient redundancy that all observers can detect it; this
competitive state encoding is called “quantum Darwinism” and is professed to explain
the emergence of a “public” quantum-to-classical transition [102,103]. Like other quantum
games, quantum Darwinism is an LOCC protocol: the multiple observers interact with E
as a quantum resource while agreeing classically to employ the same measurement basis,
e.g., to employ vision and a common conception of what counts as an “object” [48].

5.3. Example: The Bell/EPR Game

Bell/EPR experiments are the “gold standard” for detecting quantum entanglement,
and provide the conceptual basis for all other quantum communication protocols [104,105].
In the experiment’s canonical form, a centrally located source distributes an entangled
two-qubit state—e.g., an entangled photon pair—to two observers, Alice and Bob, who
are located at equal distances from the source, but in opposite directions. Each observer is
equipped with a spin-orientation detector—e.g., a polarizing filter—that can be set to any
direction. Alice and Bob know the frequency with which the source emits entangled states,
and independently set their detection directions during the time required for entangled
states to reach their locations from the detector; their mutual separation is chosen to both
allow this to happen and to prevent collusion between them. They each record their separate
observations of each state, and later exchange their results, via a classical channel, in order
to compute the statistics of their joint observations. A violation of Bell’s inequality [106,107]
indicates detection of entanglement; see, e.g., [108] for an informal discussion of both the
experiment and the statistical analysis.

A Bell/EPR experiment can be viewed as a two-player, limited-cooperation game
against Nature, which both supplies the entangled states and rewards detection of entan-
glement [109]. The players, Alice and Bob, must agree to make spin measurements on
every round, but are forbidden from sharing information about their chosen measurement
directions. The score is the cumulative value of a joint-measurement statistic, e.g., the
Clauser–Horne–Shimony–Holt (CHSH) statistic [110]. Alice and Bob can maximize their
score by making their measurements 45 deg apart, up to the limit of Tsirelson’s bound,
2
√

2 [111]. As shown in [48], this Bell/EPR game is also an LOCC protocol: Alice and Bob
manipulate a quantum resource—the sequence of entangled states—and also communicate
classically, both to set up the experiment and to analyze its results.
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5.4. QRFs, Contextuality, and Asymptotic Entanglement

If the players in a Bell/EPR game are allowed to communicate their detector settings,
they can employ their shared entangled state as a secure communication resource; this
is the basis for quantum communication and cryptography protocols (see [38] for an
extensive review). As entanglement is, effectively, supraclassical correlation, players of
games in which entanglement or other non-local resources can be employed can achieve
payoffs larger than those possible in classical versions of those same games. This leads
to the concept of a quantum (or no-signaling) Nash equilibrium [109] for games that allow
use of quantum resources. Note that as discussed in Section 3 above, systems cannot, in
general, determine by observation whether they are entangled with their environments [59];
hence, players cannot determine by observation whether the game they are playing is
quantum or classical. As the asymptotic state of the quantum FEP is entanglement [29],
this immediately implies that each player cannot determine whether they have reached a
quantum equilibrium with their environment, or have not.

While in classical uncoupled, or Bayesian, games the concept of “turn taking” can often
be elided, in quantum games this is generally not the case. The reason for this is clear in the
example of a Bell/EPR game: if Alice uses the basis (↑, ↓) while Bob uses (↗,↘), different
orders of measurement will result in different projections of the shared entangled state. This
is an example of operator non-commutativity: measurements along different spin directions
do not commute, just as measurements of position and momentum do not commute (both are
examples of Heisenberg’s uncertainty principle). Operator non-commutativity generically
induces quantum contextuality [45,59], defined as the non-causal dependence of one measure-
ment outcome on what others are performed simultaneously [107,112,113]. Contextuality is
generally recognized as a resource for both quantum information and complexity [114].

In the generic language employed in Section 2, contextuality can be expressed as non-
commutativity between QRFs [45,48,59]. If Qi and Qj are non-commuting QRFs with out-
come probability distributions Pi and Pj, respectively, when acting on some state ψ, then
contextuality manifests as the non-existence of the joint probability distribution PiPj (i.e., non-
commutativity implies violation of the Kolmogorov axioms; see [115] for a comprehensive
review). In the presence of contextuality, joint probabilities over classical strategies can fail to
be well defined, hence the shifts in corresponding NEs cannot be detected [116].

6. Discussion
6.1. Rationality

In areas where GT is applied extensively, such as throughout economics, logistics, and
the behavioral sciences, it is an overriding assumption that game players act rationally
towards optimizing their eventual payoffs given the influence of environmental factors,
be these local or global. It is a fundamental principle of GT that when prediction and
rationality are aptly combined, an NE is attained. But the question remains, however, in
out-of-equilibrium conditions, can rational players successfully predict their opponents’
behavior? We can reasonably think, and indeed it is hypothesized in [117], that there
is inherent tension between rationality and prediction when players are uncertain of
their opponents’ modus operandi towards payoff. In fact, Foster and Young [117] prove
the existence of games in which it is impossible for perfectly rational players to (even
approximately) predict the future behavior of their opponents, regardless of any learning
rules adopted. There are several slants on this, as investigated in GT and economics (and
likely applicable elsewhere too). In [118] (Theorem 1), rational agents in the sense of
economics are equivalent to suitably indexed TMs. This implies that decision processes,
as implemented by such rational agents, are equivalent to the computing behavior of a
suitably indexed TM, and indeed, rational choice, as understood as maximizing choice, is
undecidable [118] (Theorem 2). We could follow, e.g., Ewerhart [119] and consider rational
players as basing their decisions solely on the provable implications for their assumptions,
and the existence of undecidable statements in GT as causing undefinability of rational
concepts on the basis of distinctions in logical behavior, e.g., truth versus probability. So,
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this demands a definition for a rational strategy: a strategy is rational if it is equivalent to a
best reply to a Bayesian belief, or more generally, if it is a best reply to some lexicographical
probability system that satisfies certain consistency conditions, while noting that there are
games and strategies for which it is undecidable if they can arise from perfectly rational
behavior or from unique predictions, and given the irregularity of beliefs and assumptions
that players may have about each other’s motives [120].

Assumptions of rationality can in some cases be related to deep assumptions in mathe-
matical logic. There are, for example, statements about two-player, zero-sum games that are
undecidable; one such is analogous to the continuum hypothesis (CH) in Zermelo–Fraenkel
axiom of choice theory, established in [121]; we refer the reader to [15,122–124] for discus-
sion of this issue from the perspective of Gödel’s theorem. As another example, one could
take two-person games with pure strategies and for i = 1, 2, consider player i with belief
set ∆i(g), given a game g implementing an infinite-regress logic, denoted EIR2. Then, for
an unsolvable game g, the theory (EIR2, ∆i(G)) is incomplete [125]. As pointed out in [125],
we could think of this as a case of self-referentiality, but the actual source of incompleteness
is a discrepancy arising from the collective independence of payoffs, predictions, and
decision making.

There is also the question of to what extent (Hamiltonian) chaos influences players’
behavior towards whether they play rationally or not. In types of simple games (such as
rock-paper-scissor), no strategy is seen to be dominant, and in particular, no pure strategy
to NEs can exist [126]. The main point is that, in such simple games, it is often the case that
questionable psychological heuristics on behalf of the players inevitably suppress any attempt
at rational learning to the extent of nonconvergence to an NE. The viewpoint of [126] is simply
this: it can be summarized by saying that chaos is a necessary condition for intelligent players
to fail attaining to an NE, and the presence of chaos suggests that playing rationally is not
always a feasible assumption. Overall, our account reflects upon the prevalence of cognitive
bias in many shapes and forms, to the extent that, for the best part, humans are never really
close to being (Bayesian) rational game players [127]. On the more technical side, classical
economics asserts the existence of at least one NE engaged in strategies, but generally, multiple
equilibria are more likely to be the case. Capping this, it can be computationally intractable
for players to strictly conform to GT principles in economics [14].

6.2. Entropy of Quantum Games

Since information permeates through this whole circle of ideas, let us comment on how
the statistical physics of information/entropy accounts for rational choices of strategies (or
the sheer lack of them) in quantum games. The amount of information that a player can
obtain about their opponent depends on maximum/minimum entropy criteria, and the
rationality of the players in assimilating this information during the course of the game
is determined by the prevailing entropy. To see this, let us recall some basic concepts of
statistical physics. A (positively valued) density operator ρ specifies a mixed ensemble in
which each member has an assigned probability of being in a determined state. Its von
Neumann entropy,

S(ρ) = −Tr{ρ ln ρ} (6)

is a probability distribution function [128]. In [129], S(ρ) is maximized subject to δTr(ρ) = 0,
and the internal energy constraint δ(E) = 0, leading to

ρii =
exp(−βEi)

∑k exp(−βEk)
(7)

where β denotes a thermodynamic parameter (see below). Without the internal energy
constraint δ(E) = 0, we have ρii = N−1, where N > 0 is the ‘population size’. Effectively
β = T−1, an inverse temperature, and from this there are two cases [129]: (i) β −→ 0 is
the high temperature limit, in which a canonical ensemble becomes a completely random
ensemble; and (ii) β −→ ∞ is the low temperature limit, in which a canonical ensemble
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becomes a pure ensemble where only the ground state is populated. Seeing β as related to
the temperature of a statistical system, it can on this account be interpreted as a measure of
the rationality of the players in question. So, from this statistical physics point of view, we
have the expected consequence:

high entropy ⇐⇒ low rationality in the players’ behavior.

6.3. Alternative Equilibria

We have adopted the NE as a focal point of this paper, as the NE has been an idealized
central concept of GT that has provided long-standing analytic methods of paramount
importance. We acknowledge, however, that particular types of experimental data, as
this pertains to “noisy” games with possibly “irrational” players, can escape this analysis,
and hence, over the years alternative forms of equilibria have been introduced. One of
these is the quantal response equilibrium (QRE) of [130], which is more general than the
NE in that it relaxes the assumption of best response (to a ‘probabilistic’ response) and
allows noisy optimizing behavior while maintaining consistency of rational expectations.
Attaining a QRE entails elements of Bayesian and stochastic choice (e.g., in biological
systems and neuroscience) [131,132]. However, the QRE is seen to converge to an NE
as the quantal response functions steepen toward approximate best response functions,
and in a theoretical framework may not alter predictions as determined by NEs [133].
Further, there are experiments for which QRE solutions do not outperform those of NEs
(see, e.g., [134]). Other alternative GT equilibrium theories such as noisy belief and random
belief are reviewed in [131].

7. Conclusions

We have shown that the FEP describes generic interactions between physical systems
as games in which VFE minimization is the payoff function. Physical interactions are
Bayesian games in which powerful no-go theorems restrict what players can know about
their own strategies as well as those of their opponents in this context. We have investi-
gated convergence for generic games, and have shown that the classical notions of good
regulation, identical synchronization, and winning a GIG are all, in principle, idealizations.
We have reviewed quantum games and shown how they implement LOCC protocols.

Undecidability is pervasive in GT; indeed the results reviewed here suggest that all
decidable games involve the assumption of knowledge that cannot, as a matter of principle,
be obtained by finite observation. Both the undecidability of the frame problem [59,78]
and the undecidability of whether two agents are deploying the same QRFs [48] strongly
support this conjecture. Arguments to the effect that undecidability is ubiquitous in physics
have previously been advanced by Wolfram [135] and Hawking [136].

As all physical systems are, at bottom, quantum systems, generic physical interactions are
not just games, but quantum games. To the extent that they involve classical communication—and
they must, to be considered games at all—they are instances of LOCC protocols. Their dynamics
depend, therefore, on the extent to which quantum resources are manipulated in a coordinated
manner by the players. The extent to which such coordination can be either arranged via classical
communication or deduced by observation is undecidable [48].

We can conclude, therefore, that GT is much broader in scope than it is often regarded
as being: GT’s scope includes most, if not all, of physics. Physical systems can, therefore,
be regarded as game-playing agents. That this should be the case follows, indeed, from
Conway and Kochen’s famed “free will” theorem, which shows that no physical system, at
any scale, can be fully described by any locally deterministic theory [137].
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