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The patent/innovation races have been studied extensively. A usual assump-
tion of the literature is that once discovery or invention is made, then the
market is monopolized, and the race terminates. However, in real life, the
other firms do not give up differentiation and innovation even if there is a
patent-awarded leader. In addition, consumers’ tastes may vary over time,
and firms keep improving their products and innovating to defend their cus-
tomers. Recall that when big screen cell phones such as Galaxy note 2 were
launched, they were popular but could not monopolize the smartphone mar-
ket. Apple developed iPhone 6s to keep their old customers from leaving for
“a cell phone with a larger screen”. So I use the Bayesian stochastic game
with periodic revelation to generalize the structure of an innovation race us-
ing the notion of ‘loyal consumer’. The pharmaceutical industry exemplifies
this model, but it can be applied to any industry where firms are dependent
on its loyal consumer base.

The notable literature that used a discrete time stochastic game is Judd,
Schmedders, and Yeltekin (2012). They showed an innovation race using a
discounted stochastic game in complete information. Heterogeneous firms
compete for a patent while they know their competitors’ current states.
They assumed that the one which obtains the patent monopolizes the mar-
ket, and the race ends. They investigated optimal patent policy balancing
overinvestment and quicker innovation by a discounted stochastic game with
finite states. In contrast, this paper deals with a continuum of states. Also,
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it is assumed that the type of competitor is not observed during the innova-
tion process, and there is no winner who monopolizes the market after the
race. Instead, every period, both firms stochastically draw non-empty new
consumer bases depending on the results of innovation. Moreover, I focus
on the stochastic evolution of market share, while Judd, Schmedders, and
Yeltekin (2012) explored the dynamic nature of innovation process.

Suppose there are two pharmaceutical companies 1 and 2 that produce
a certain category of medication for a particular use. For example, firm
1 is Bayer, producing Aspirin, and firm 2 is Johnson & Johnson McNeil,
producing Tylenol. Hereafter, i ∈ {1, 2}. Each firm uses special ingredients
for its own medication, for example, aspirin and acetaminophen. Each med-
ication is contraindicated in a certain set of patients because of potential
side effects. I assume that a potential patient-consumer is represented by a
vector of positive real numbers according to their biological characteristics
and denote the set of patients for whom the medication i is non-allergic and
efficacious as Ei ⊂ Rn. Technically, I assume that Ei belongs to σ-algebra of
m-measurable set in Rn which is the space of patient-consumers (character-
istics). I implicitly construct a measure m on the set of patient-consumers
and obtain the type space Si of firm i. Among Ei, there are some patients
who cannot use the other medication because of the ingredients. That is,
Ei\E−i ∈ Rn is nonempty. I define the measure of this group of patients
si = m(Ei\E−i) as the type of the firm i. For simplicity, assume that
si ∈ [0, 1]. These patients are perfectly inelastic to the price of the their
medication such that ∂ log si

∂ log pi
= 0. In contrast, the rest of patients in Ei can

use either medication such that Ei ∩ E−i is nonempty and those patients’
price elasticity is nonzero. For simplicity, I normalize the measure of this
group of patients as m(E1 ∩ E2) = 1 for every period. This normalization
works as an adjustment for market growth rate. And by doing so, I restrict
the measure of Ei\E−i not to exceed the measure of E1 ∩ E2.

At each period, firms launch a new product line of their medication. As
ingredients of each medication change, I assume that E1, E2 both stochas-
tically evolve according to these new medications. As a firm launches its
new product, the firm learns that for how many patients, i.e., m(Ei\E−i),
its medication will exclusively work for. But they do not know what kind
of chemical compound the competitor has developed. So, each firm knows
its own type si but does not know the type of competitor. However, they
observe the previous market performances of their own product and that of
competitors, so each firm has beliefs about the competitor’s type. Given
their realized type, firms choose their prices for the their currently available
products at p1, p2 ∈ [c, P ], respectively, where 0 < c < P < ∞. Firms also
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decide how many researchers they hire for the new development for next
period (R & D investment).

I normalize the absolute size of investment such that h1, h2 ∈ [0, 1] Here,
the action space and the admissible action correspondence for each type are
equivalent. Depending on the size of the investment and the previous type,
the current type is realized stochastically. The law of motion for the next
period type of firm i is given by

s+i = (1− ρi) · si + ρi · hi. (A.1)

That is, the current type si is depreciated by ρi, but it is compensated
proportionally to the investment size. The parameter for next period ρi will
be drawn at the beginning of the next period. It is expected to be Eρi =

1
2 .

Therefore ∂Eρi
∂hi

= 0. Then
∂Es+i
∂hi

= 1 − Eρi =
1
2 > 0. Thus assuming that

h−i is given, as the size of the current investment hi increases, the next
period type s+i is more likely to be larger (‘monotone likelihood transition’).
This means that the larger the investment size hi, the higher the chances
that “today’s underdog to be tomorrow’s champion (leapfrog).” However, I
assume that the depreciation rate ρi is a random variable, which follows a
uniform distribution ρ−2 ∼ u[0, 1], and it is unobservable by the competitor.
The effectiveness of investment is also random, and for simplicity, it is set
equal to the depreciation rate. This random effectiveness rate of investment
is assumed reflecting the stochastic process of innovation in real life. In the
model, an increase in hi has a random effect on s+i . Even if there were a
lot of investments for innovation, the result might be meager so that the
consumer base does not increase. In contrast, it can be the case that the
result becomes a huge success despite little investment, and the firm takes
a big market share at once.

The law of motion is common knowledge, so the belief of firm 1 about
the current type of firm 2, η1(· | s−, (p−, h−), s1), is as follows:

s2 = (1− ρ−2 ) · s
−
2 + ρ−2 · h−2 , (A.2)

where ρ−2 ∼ u[0, 1]. The stochastic parameter ρ−2 is realized at the beginning
of the current period, but it is unknown to firm 1 until periodic revelation
at the end of current period. The belief of firm 1 about the current type of
firm 2 η1(· | s−, (p−, h−), s1) is given by

s2 ∼ u

[
min{s−2 , h

−
2 }, max{s−2 , h

−
2 }

]
. (A.3)
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Notice that in any case, if s−2 = h−2 , beliefs degenerate to s2 = s−2 . Since I
want to illustrate a Bayesian stochastic game, I will focus on non-degenerate
cases. The belief of firm 2 about the current type of firm 1 η2(· | s−, (p−, h−), s2)
is defined symmetrically.

The period profit function of firm 1 is given by

π1(E1, E2, p, h) (A.4)

= [m(E1\E2) +m(E1 ∩ E2)L1(p1(s1), p2(s2))] · (p1(s1)− c)− f(h1(s1), h2(s2)).(A.5)

Replacing m(E1\E2) with s1 and m(E1 ∩ E2) = 1, I have

π1(s, p, h) = [s1 + L1(p1(s1), p2(s2))] · (p1(s1)− c)− f(h1(s1), h2(s2)).(A.6)

I assume that period payoff function π(·) is differentiable in p1, p2, h1, h2. As
I mentioned before, the exclusive users of medication 1, elements of E1\E2,
are perfectly price-inelastic. I assume that firm 1 knows only the size of
E1\E2. The firm cannot implement price discrimination against individual
consumers. Recall that m(E1 ∩ E2) is normalized to 1. L1(p1, p2) is the
demand function for the product of firm 1 among the patients who can
use both medications, and it reflects the price elasticity of these patients. I
assume that for patients who can choose from both medications, the demand
of a medication is more elastic with respect to its price conditional that its
price is higher than the other medication: ∂ logL1(p1,p2)

∂ log p1
< −1 when p1 > p2,

and if p1 ≤ p2, −1 < ∂ logL1(p1,p2)
∂ log p1

< 0. The production cost c is assumed as
a constant. f1(h1, h2) is the cost of R & D investment for firm 1. Since R &
D investment involves hiring researchers and buying equipment, given the
investment of firm 1 h1, as the competitor invests more, the factor market
prices will rise. This pecuniary externality causes the costs of investment
f1(h1, h2) for firm 1 to depend on not only the investment level of firm 1 h1

but also that of firm 2 h2. Moreover, it is a convex function: ∂2f1
∂h2

1
> 0 and

∂2f1
∂h1∂h2

> 0. All assumptions are symmetrically applied to firm 2.
I refer to this model as an incomplete information version of an inno-

vation race with periodic revelation in the pharmaceutical duopoly. Even
though I assume the pharmaceutical industry, this particular model can be
applied to any industry involved in continuous innovation that is based on
a group of loyal customers. In the innovation race with periodic revelation,
there exists a stationary Bayesian-Markov equilibrium.

Proposition 1. In an incomplete information version of the innovation
race with periodic revelation in the pharmaceutical duopoly, there exists a
stationary Bayesian-Markov equilibrium.
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Proof. The type space for each player [0, 1] is clearly complete separable
metric space. Equipped with the uniform probability measure, denoted
by ϕi, it is a complete measure space. The action space for price [c, P ]
and the action space for investment [0, 1] are compact metric space. The
action correspondence is equivalent to the action space for each realized type:
Nonempty, compact and lower measurable. The period profit function is
continuous in price and investment. It is measurable in type. The transition
probability is given by the uniform distribution generated from the law of
motion s+i = (1− ρi)si + ρihi where ρi ∼ u[0, 1] for each i ∈ {1, 2}. Then it
is clearly absolutely continuous with respect to ϕi and norm-continuous in
(p, h). Since the law of motion is common knowledge, the beliefs are given
by the corresponding law of motion for the competitor and the information
from periodic revelation. Notice that for each i ∈ {1, 2}, s−i is independent
from the realization of si. These then satisfy the conditions for the existence
of stationary Bayesian-Markov equilibria.

To be more concrete, I can construct a symmetric equilibrium. Let
i ∈ {1, 2}. Assume that Li(pi, p−i) satisfies that

1

1 + Li(c, c) (1 +
∂ logLi(pi, c)

∂ log pi
)

∣∣∣∣
pi=c

− c · ∂Li(pi, c)

∂pi

∣∣∣∣
pi=c

≤ 0, (A.7)

and that ∂f1(h1,h2)
∂h1

= ∂f2(h2,h1)
∂h2

. In an incomplete version of an innovation
race with periodic revelation in pharmaceutical duopoly, there is a symmet-
ric stationary Bayesian-Markov equilibrium such that pi(s

−, h−, si) = P for
si ≥ θi(s

−, h−) and pi(s
−, h−, si) = c for si < θi(s

−, h−) . The change in
cutoff θi has perfect positive correlation with the previous state s−i and the
previous investment decision h−i . Meanwhile, in this equilibrium, each firm
increases their investment hi(s

−, h−, si) as its type si rises if their type is
less than or equal to their own threshold of investment si ≤ ξi(s

−, h−). Firm
i decreases the investment as its type si rises if the type of firm i is greater
than the threshold, si > ξi(s

−, h−). The threshold ξi(s
−, h−) shows perfect

positive correlation with the previous type s−i and the previous investment
level h−i .

1If

∣∣∣∣ ∂ logLi(pi,c)
∂ log pi

∣∣∣
pi=c

∣∣∣∣ is sufficiently large, this assumption is easily satisfied. For

example, the demand function of typical Bertrand price competition model gives us∣∣∣∣ ∂ logLi(pi,c)
∂ log pi

∣∣∣
pi=c

∣∣∣∣ = ∞.
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B K-period Lagged Revelation

The basic model assume that player i’s type remains as private information
for one period. As an extension, I investigate the case where the information
about player i’s types and actions remains private for k periods (k ≥ 2,
hereafter, “blackout period”). Instead, each player receives their realized
payoff as a real number at the end of period. Players can form their beliefs
by the history of their payoffs and their own types during the blackout
period.

This extension of k-period lagged revelation shares the rest of the eco-
nomic environment with the basic model. As each player’s type evolves
stochastically according to a first-order Markov process, if the previous type
and action profiles were revealed, the common prior for the current type
profile would be given by the information from the previous period (t− 1).
However, the information from the period (t − 1) is not accessible until
the blackout period passes. So players’ beliefs are formed by the informa-
tion available which includes k-period lagged information and the history of
player i’s own types and payoffs during the blackout period. Notice that the
past actions are not monitored. So, players use information from the history
of player i’s periodic payoffs, where each periodic payoff is a function of the
then-current type profile and the then-current action profile.

The difficulties of the extension stem from the aspects that player i’s
beliefs about the other players’ types are built on the player i’s information
set of the current period, and that each player can make their own inferences
the likely histories of type profiles and action profiles from the history of
payoffs. It contrasts to the case of periodic revelation where the only source
of differences in beliefs is differences in each player’s current type. Given the
possibility of multiple stationary Bayesian-Markov equilibria under periodic
revelation (the basic model), in the most general case, players will have
inconsistent beliefs. This is because players will consider all the possible
histories of equilibria that could have been realized during the blackout
period to form their beliefs about the other players’ current types.

To maintain tractability of the framework, I assume that players’ beliefs
are consistent in the sense that the only source of differences in beliefs is
the difference in each player’s history of types during the blackout period.
Nature plays a role in keeping the track of the history of type profiles and
action profiles

{
(sτ , aτ )

}t−1

τ=t−k
during the blackout period. Nature draws

the type profile for the current period t using the information of period
(t − 1) and also informs a transition function that enables player i to form
consistent beliefs conditional on the revealed information ((st−k, at−k)) of
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period (t−k) and the history of one’s own types and received payoffs during

the blackout period
{
u(sτ , aτ ), si,τ

}t−1

τ=t−k
.

B.1 The Primitives

I use subscript −k to denote the relevant timing of the symbol (k is a natural
number). Subscript −k indicates that the relevant information is produced
k periods prior to the current period. I also use subscript i for an individual
player. Hence, si,−1 indicates player i’s type in the previous period. As

usual, I use superscript for the product, that is, Sk =
∏k

z=1 S. A discounted
Bayesian stochastic game with k-period lagged revelation is a tuple,(

I,
(
(Si,Si), (Hi,Hi), Xi, Ai, ui, δi, µ, η

)
i∈I

, ξ
)
. (B.8)

The notations are the same as in Sections 2 and 2 except for (Hi,Hi) and
ξ:

• For each player i ∈ I, (Hi,Hi) is a measurable space of player i’s
exclusive information except for one’s type, i.e., Hi = Rk−1 × Sk−1

i

regardless of the calendar time,

• ξ : S ×X ×S → [0, 1] is a transition function.

The roles of Ai, µ, η are similar as in Sections 2 and 3, but the correspon-
dence and functions include additional arguments related to hi ∈ Hi:

for each player i ∈ I,

• Ai : Hi × Si ⇒ Xi is the feasible action correspondence,

• µ : S ×X ×Hi × Hi ×Si → [0, 1] is a transition function for player
i’s next period type2,

• η : S × X × Hi × Si × ×H−i × S−i → [0, 1] is a transition function
which is used to form player i’s beliefs on the other players’ history of
types and realized payoffs during the blackout period.

On top of the assumptions that are made in Section 2, I add the following
assumptions regarding (Hi,Hi) and ξ(·). Also, I replace assumptions for η(·)
and µ(·) as follows.

2For the formal definition of a transition function, see Stokey and Lucas with Prescott
(1989, p.212)
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(B1) For each i ∈ I, Hi is a Borel subset of a complete separable metric
space, and Hi is its Borel σ-algebra. Endowed with the product topol-
ogy, the Cartesian product H is a Borel subset of a complete separable
metric space. A product of σ-algebras H = H1 × · · · ×Hn is its Borel
σ-algebra.

(B2) For each i ∈ I, there is an atomless probability measure ζi such that
(Hi,Hi, ζi) is a complete measure space of player i’s types. ζ is a
product probability measure such that ζ = ζ1 × · · · × ζn.

(B3) For each i, define Ti ≡ S ×X ×Hi × Si. A typical element is denoted
by (s−k, a−k, hi, si). Notice that Ti is a complete separable metric
space. Let Ti be its Borel-σ algebra. There is an atomless probability
measure λi such that (Ti,Ti, λi) is complete measure space. Endowed
with the product topology, the Cartesian product T is also a complete
separable metric space and a product of σ-algebras T is its Borel-σ
algebra. λ is a product probability measure such that λ = λ1× · · ·λn.

(B4) For each i ∈ I, Ai is nonempty, compact valued, and lower measurable.

(B5) For each (s−1, a−1), there is common prior ξ(· | s−1, a−1) ∈ ∆(S) about
the current type. For each Z ∈ S, ξ(Z | ·, ·) is jointly measurable.
ξ(· | s−1, a−1) is absolutely continuous with respect to the atomless
measure ϕ.

(B6) For each (s−k, a−k, hi, si) tuple, there are beliefs about of player i’s on
the other players’ current private information, η (· | s−k, a−k, hi, si) ∈
∆(H−i × S−i).

3

3First of all, only the realized value of ui(s, a) is revealed to player i. That is, the real-
ized type profile and action profile (s, a) are not revealed until k periods pass from then.
Player i can conceive beliefs using η(·) based on player i’s own information. Second, since
the tuple of (hi, si) remains private whereas the lagged information (s−k, a−k) is known to

all the players, the private tuple can be redefined as a new “type” , i.e., ŝi
def
= (hi, si), in

the sense that it gives player i a specific belief over the current type profile. This idea relies
on the universality of a belief space (Mertens and Zamir, ?; Zamir, 2009, p.433). Then,

η (· | s−k, a−k, ŝi) ∈ ∆
(
Ŝ−i

)
is equivalent to η (· | s−k, a−k, hi, si) ∈ ∆(H−i × S−i).

Third, observe that by contrast to the case of one-period lagged revelation in Sections
2 and 3, the beliefs are allowed to be different from the si-section of ξ(· | s−1, a−1).
Finally, as the information revelation proceeds, in the next period, each player will be
informed about (s−k+1, a−k+1). Beliefs remain stationary, because η(·) is established to
reflect the stationarity of equilibrium strategy and the ergodicity of the evolution of types.
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(B7) Given (s−k, a−k) and for each ŝi
def
= (hi, si), the mapping (s−k, a−k, ŝi) 7→

η(· | s−k, a−k, ŝi) is a regular conditional probability on Ŝ−i = H−i ×
S−i. For each subset Z−i ⊂ Ŝ−i, η(Z−i | ·) is jointly measurable in
(s−k, a−k, ŝi). η(· | s−k, a−k, ŝi) is absolutely continuous with respect
to the atomless product measure

∏
j∈I\i ϕj ×

∏
j∈I\i ζj .

(B8) For each (s−k+1, a−k+1), for each player i, there is another belief
µ̂ (· | s−k+1, a−k+1, hi,+1) ∈ ∆(Ŝi) about the evolution of private in-
formation of player i for time (t+ 1). For each Gi ∈ Hi and Zi ∈ Si,
µ̂ (Gi × Zi· | s−k+1, a−k+1, hi,+1) is jointly measurable in (s−k+1, a−k+1, hi,+1).
µ̂ (· | s−k+1, a−k+1, hi,+1) is absolutely continuous with respect to the
complete, atomless measure ϕi × ζi. For ϕ -almost all s, the mapping
a−k+1 7→ µ(· | s−k+1, a−k+1, hi,+1) is norm-continuous.4

(B9) For each player i, I assume that the following probability is well de-
fined: for any (s−k+1, a−k+1) ∈ S ×X, and any Ẑ ∈ Ŝ,

Prob
(
Ẑ | s−k+1, a−k+1

)
(B.9)

=

∫
ŝi,+1

∫
ŝ−i,+1

1[(ŝi,+1,ŝ−i,+1) ∈ Ẑ] η( dŝ−i,+1 | s−k+1, a−k+1, ŝi,+1)

×µ̂ (dŝi,+1 | s−k+1, a−k+1, hi,+1) .

The above probability measure can be regarded as common prior con-
ditional on k-periods lagged information, in the sense that the proba-
bility measure induces consistent beliefs.

4Observe that ŝi,+1 = (hi,+1, si,+1), hence I can replace ŝi,+1 with si,+1 if hi,+1 is
conditioned. That is, µ̂ (ŝi,+1 | s−k+1, a−k+1, hi,+1) = µ̂ (si,+1 | s−k+1, a−k+1, hi,+1).
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B.2 Timing

ui(st−k, at−k) is realized,
but (st−k, at−k) is revealed in period t

(st−k, a−k) is observed by all players
Nature draws s based on ξ(· | s−1, a−1)
si is privately informed to player i

with η(· | s−k, a−k, ŝi)
i chooses action σi(s−k, a−k, ŝi)

ui(s, a) is realized,
but (s, a) is revealed in +k period

Figure 1: Timeline

1. At the end of the previous period, the realized payoffs ui(s−1, a−1) of
the stage game are allocated to player i for all i ∈ I . However, the
realized type profile and action profile (s−1, a−1) remain concealed to
players until (k − 1) period. Only Nature observes the realized type
and action profiles.

2. Before the current period stage game begins, its k-period prior type
profile and action profile (s−k, a−k) are revealed.

3. Nature moves to draw each player’s type based on the Markov process
ξ(· | s−1, a−1) for all i.

4. For each i, player i whose type is ŝi chooses actions based on their
beliefs η(· | s−k, a−k, ŝi), with maximizing their discounted sum of
expected payoffs.

5. At the end of the current period, the realized payoffs ui(s, a) of the
stage game are allocated to player i for all i. However, the realized
type profile and action profile (s, a) remain concealed to players until
(k) period. Only Nature observes the realized type and action profiles.

6. Before the next period stage game begins, its k-period prior type profile
and action profile (s−k+1, a−k+1) are revealed.
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B.3 Stationary Bayesian Markov Equilibrium

A stationary Bayesian-Markov strategy for player i in a k-periodic revela-
tion game is a measurable mapping σi : S × X × Ŝi → ∆(Xi). For each
(s−k, a−k, ŝi), a probability measure σi(s−k, a−k, ŝi) assigns probability one
to Ai(hi, si) ≡ Ai( ŝi ). Let Σi denote the set of stationary Bayesian-Markov
strategies:

Σi = {σi | σi ∈ M(S ×X × Ŝi,∆(Xi)), σi(s−k, a−k, ŝi)(Ai( ŝi )) = 1}.(B.10)

For each s ∈ S, let σ(s−k, a−k, ŝ) denote the product probability measure
σ1(s−k, a−k, ŝ1) × · · · × σn(s−k, a−k, ŝn). I let σ also denote a profile of
mappings (σ1, · · · , σn) and Σ denote the set of stationary Bayesian-Markov
strategy profiles σ.

For each σ, player i’s interim expected continuation value function vi(· |
σ) : S ×X × Ŝi → R is a measurable function defined as follows:

for each (sτ−k, aτ−k, ŝi,τ ),

vi(sτ−k, aτ−k, ŝi,τ | σ) (B.11)

= (1− δi)
∞∑
t=τ

δt−τ
i

∫
ŝ−i,t

∫
at

ui(st, at) σ(st−k, at−k, ŝi,t)(da) η(dŝ−i,t | st−k, at−k, ŝi,t)

= (1− δi)
∞∑
t=τ

δt−τ
i

∫
s−i,t

∫
at

ui(st, at) σ(st−k, at−k, ŝi,t)(da)

×
∫
h−i,t

η (d (s−i,t, h−i,t) | st−k, at−k, ŝi,t)

The second line is to show that η(·) gives more detailed information than
it is required to compute the interim expected present discounted payoffs.
By recursion, the above payoffs can be exhibited, for each (sτ−k, aτ−k, ŝi,τ ),

vi(sτ−k, aτ−k, ŝi,τ | σ) (B.12)

=

∫
ŝ−i

∫
a

 (1− δi)ui(s, a)

+δi

∫
si,τ+1

∫
hi,τ+1

[
vi(sτ−k+1, aτ−k+1, ŝi,τ+1 | σ)

× µ̂ (dŝi,τ+1 | sτ−k+1, aτ−k+1, hi,τ+1)

] 
×σ(sτ−k, aτ−k, ŝτ )(da) η(dŝ−i | sτ−k, aτ−k, ŝi,τ ).

A profile of stationary Bayesian-Markov strategies in k-periodic reve-
lation σ is a stationary Bayesian-Markov equilibrium in k-periodic reve-
lation if for each (s−k, a−k, ŝi), each player i’s strategy σi maximizes i’s
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interim expected continuation values. That is, given (s−k, a−k), for each ŝi,
σ(s−k, a−k, ŝi) puts probability one on the set of solution to

max
ai∈Ai(ŝi)

∫
s−i

∫
h−i

∫
a

 (1− δi)ui(s, a)

+δi

∫
ŝi,τ+1

[
vi(sτ−k+1, aτ−k+1, ŝi,τ+1 | σ)

× µ̂ (dŝi,τ+1 | sτ−k+1, aτ−k+1, hi,τ+1)

] 
× σ(sτ−k, aτ−k, ŝτ )(da) η(d(s−i, h−i) | sτ−k, aτ−k, ŝi,τ ). (B.13)

By the one-shot deviation principle, every stationary Bayesian-Markov equi-
librium in k-periodic revelation is subgame perfect.

B.4 Existence Theorem in K-Periodic Revelation

Observe that players share common prior and consistent beliefs conditional
on (s−k, a−k). I can reformulate the player i’s current type by ŝi = (hi, si)
and index with (s−k, a−k) the set of equilibria, the set of ex post payoffs,
and the set of interim expected payoffs. Then the same logic of the proof in
Section 3 establishes existence of stationary Bayesian-Markov equilibrium
in k-periodic revelation.

To proceed, it is required to confirm that Ŝi = Hi × Si is a complete
separable metric space. Any n-dimensional Euclidean space is a complete
separable metric space. AsHi ⊂ Rk−1, and Si is a Borel subset of a complete
separable metric space, the product Hi × Si ≡ Ŝi is also a Borel subset of a
complete separable metric space.

Corollary (Existence inK-Periodic Revelation). For every Bayesian stochas-
tic game with k-periodic revelation, there exists a stationary Bayesian-Markov
equilibrium.

Proof of Corollary. Hereafter, I use (hi, si) explicitly, instead of ŝi for

clearer exposition. For each fixed (s−k, a−k), redefine Û
(s−k,a−k)
i (· | v) :

Hi × Si × Σ → R for each interim expected continuation value function
profile v as follows:

Û
(s−k,a−k)
i (hi, si, σ | v) (B.14)

=

∫
h−i

∫
s−i

∫
a

 (1− δi) · ui(s, a)

+δi

∫
si,+1

∫
hi,+1

[
vi(s−k+1, a−k+1, hi,+1, si,+1 | σ)

× µ̂ (dsi,+1 | s−k+1, a−k+1, hi,+1)

] 
× σ(s−k, a−k, h, s)(da) η (d(h−i, s−i) | s−k, a−k, hi, si)

Since ŝi,+1 = (hi,+1, si,+1), it holds that µ̂ (dsi,+1 | s−k+1, a−k+1, hi,+1) = µ̂ (dŝi,+1 |
s−k+1, a−k+1, hi,+1). Therefore, Û

(s−k,a−k)
i (hi, si, σ | v) is player i’s interim
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expected continuation value given an interim expected continuation value
function profile v for the next period fixed. Then it can be viewed as an in-
terim stage of a static Bayesian game indexed by (s−k, a−k), where player i’s
type is realized as (hi, si) and behavioral strategy profile of σ is played. As

in Section 3, let Γ
(s−k,a−k)
v denote the induced static Bayesian game where

the type profile is realized as (h, s):

Γ
(s−k,a−k)
v (h, s) (B.15)

=
(
I,

(
(Si,Si), (Hi,Hi), Xi, Ai, Û

(s−k,a−k)
i (hi, si, · | v), δi, µ, η(· | s−k, a−k, hi, si)

)
i∈I

, ξ
)
.

Observe that a behavioral strategy profile σ is unknown in the above game

Γ
(s−k,a−k)
v (h, s). Now let B

(s−k,a−k)
v (h, s) denote the set of mixed action

profiles induced by Bayesian Nash equilibria of Γ
(s−k,a−k)
v . That is,

B
(s−k,a−k)
v (h, s) (B.16)

=


σ(s−k, a−k, h, s)

∈ ∆
(
A1(h1, s1)

)
× · · · ×∆

(
An(hn, sn)

)
∣∣∣∣∣∣∣∣∣∣∣∣

σ ∈ Σ; for each j,
and for each i ∈ I\{j},
σj satisfies

Û
(s−k,a−k)
i (hi, si, σ | v)

= max
∀ai∈Ai(si)

Û
(s−k,a−k)
i (hi, si, ai, σ−i | v)


.

Then, similarly to Lemma 7 in Section 3, for each v, (s−k, a−k, h, s) 7→
B

(s−k,a−k)
v (h, s) is nonempty, compact valued, and lower measurable. Define

the set of ex post payoffs for player i from B
(s−k,a−k)
v (h, s) as P

(s−k,a−k)
v,i (h, s).

Then, (s−k, a−k, h, s) 7→ P
(s−k,a−k)
v,i (h, s) is nonempty, compact valued and

lower measurable. The set of interim expected payoffs for player i is denoted

by E
(s−k,a−k)
v,i (hi, si), where

E
(s−k,a−k)
v,i (hi, si) ≡

∫
s−i

∫
h−i

P
(s−k,a−k)
v,i (h, s) η

(
d(h−i, s−i) | s−k, a−k, hi, si

)
.

Let E
(s−k,a−k)
v (h, s) denote the Cartesian product E

(s−k,a−k)
v,1 (h1, s1)× · · · ×

E
(s−k,a−k)
v,n (hn, sn). Then similarly to Lemma 8, for each v and each (s−k, a−k, h, s),

E
(s−k,a−k)
v (h, s) is convex, i.e., E

(s−k,a−k)
v (h, s) = coE

(s−k,a−k)
v (h, s). Simi-

larly to Lemma 9, for each v, (s−k, a−k, h, s) 7→ E
(s−k,a−k)
v (h, s) is lower mea-

surable, nonempty, compact and convex valued. Fix v and let Mv denote the
set of all λ−equivalence classes of measurable selectors of (s−k, a−k, h, s) 7→

13



E
(s−k,a−k)
v (h, s). Similarly to Lemma 10, the mapping v 7→ Mv is nonempty,

closed-graph and convex-valued.
Let V be constructed similarly to Section 3. That is, Vi is set of interim

expected continuation value functions vi where | vi(s−k, a−k, hi, si) |≤ Ci for
the real number Ci ∈ R that is defined in (A6). The Cartesian product of∏

i∈I Vi is denoted by V . Obviously Mv ⊂ V . By Kakutani-Fan-Glicksberg
theorem (see Theorem 17.55, AB, p.583), I have a fixed point of v 7→ Mv.
From this step, I repeat the same process to extract a measurable map-
ping f(·) such that given (s−k, a−k), for each (h, s), f(s−k, a−k, h, s) ∈
B

(s−k,a−k)
v (h, s) and for all i, almost all si, the following holds:

wi(s−k, a−k, hi, si) (B.17)

=

∫
h−i

∫
s−i

[
(1− δi) · ui(s, f(s−k, a−k, h, s))

+δi
∫
si,+1

wi

(
s−k+1, a−k+1, hi,+1, si,+1

)
µ
(
dsi,+1 | s−k+1, f(s−k, a−k, h, s), hi,+1

) ]
× η (d(h−i, s−i) | s−k, a−k, hi, si) .

Such f(·) can be obtained using Filippov’s implicit function theorem. Then
I have a stationary Bayesian-Markov equilibrium strategy profile f(·) in a
Bayesian Stochastic game with k−periodic revelation.
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