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Abstract: Weapon target assignment is a critical challenge in military contexts. Traditionally, com-
manding officers manually decide weapon assignments, but the problem’s complexity has grown
over time. To address this, automated systems have been introduced. These systems fall into two
categories, which are static (time-independent) and dynamic (considering changes over time). Static
systems solve the problem for a single time step without considering temporal changes. Dynamic
systems incorporate time as a variable, adapting to evolving scenarios. Two main approaches exist,
which are asset-based and target-based. Asset-based approach maximizes the survival probability of
assets, which is our focus in this study. We propose a solution using game theory that spans the entire
area and all time frames. We employ game theory, treating continuous functions of time as utility
functions for vessels. Continuous probability-to-kill values for weapons are defined across the area.
Threat trajectories yield continuous kill probabilities for the weapons, translating to vessel utility.
To avoid inefficiencies, we align individual vessel utility with global utility. The Nash Equilibrium
provides the optimal weapon assignment strategy. Our study uses a naval environment for analysis.
In summary, our research leverages game theory to dynamically assign weapons to naval vessels,
aiming to maximize asset survival.

Keywords: dynamic; weapon; assignment; game; theory; optimization

1. Introduction

Weapon target assignment has been a crucial and complex problem in military ap-
plications. Previously, it was under the control of commanding officers. However, due to
increasing complexity, automated systems have been introduced to assist officers in their
decision making.

Paradis et al. describe weapon assignment in [1]. According to their definition, weapon
allocation is a reactive assignment made to address threats. Roux and Vuuren [2] point out
that these systems operate within their specific objectives and limitations, including terrain
conditions and rules of engagement.

In [3], Löter and Vuuren categorize weapon assignment systems into four types.

1. Static Single-Objective Systems: Single-objective static systems are solved in a single
time step. These systems deploy m weapons against n targets, aiming to minimize the
target’s probability of survival.

2. Static Multi-Objective Systems: they optimize additional tasks beyond reducing the
survival probability of the target, such as reducing ammunition cost.

3. Dynamic Single-Objective Systems: they are similar to static systems but incorporate
time as an additional parameter, solving the problem in multiple time steps.

4. Dynamic Multi-Objective Systems: they aim to reduce ammunition consumption
while acting within specific time periods. A variant, known as shoot–look–shoot
systems, is used where failure to eliminate a threat is unacceptable.

It is also possible to categorize the weapon assignment system by its objectives. If
the objective is to reduce the threat’s probability of survival, then, the system is called a
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threat-based system, and if the objective is to increase the asset’s probability of survival,
then, the system is called an asset-based system.

The main challenge with dynamic systems lies in the fact that their solution is not
truly dynamic. In the literature [4–6], the solution still relies on a static approach, which
is used for multiple time steps. In other words, to solve dynamic systems, multiple static
time frames must be introduced. Once these static time frames are solved, a solution for a
dynamic system can be derived from them. In this study, we tried to find an asset-based
solution for a system that is truly dynamic, which is not solved with some static time steps.
We believed that this was a huge gap in the weapon assignment literature. We introduced
game theory to the system that can work with continuous utility functions. Game theory
has been used for solving optimization problems before, such as in the research conducted
by [7].

In [7], researchers demonstrated that game theory can be applied to optimization in
continuous environments. They compared the results with the First Fit Decreasing and
Best Fit algorithms for the bin packing problem. These algorithms aim to find the optimum
packing for different input sizes. Interestingly, in [7], all the algorithms seemed to yield
similar results. Game theory is also used for weapon assignment problems like the research
of [8]. Although the authors of [8] never tried to solve dynamic assignment problems, they
inspire a game theoretic approach to solve weapon assignment problems.

Arslan et al. [8] discuss the use of game theory in weapon assignment systems. Their
study explores how co-operative games can be applied to weapon allocation systems. It
covers alignment functions and negotiation mechanisms necessary to maintain player
cooperation. In this context, potential games, specific types of games, were employed to
align players’ expected utility with the overall utility. Monderer et al. introduced potential
games in [9].

According to [9], a potential function can be defined as when there is a change in a
vessel’s strategy resulting in an increase in its utility value, this change also leads to an
increase in global utility. Potential games are valuable for aligning vessels’ utility with
global utility. In such cases, the function is referred to as a potential function, and the
associated game is called a potential game. As one can see from the definition, potential
games can be used to align the vessels’ utility to global utility. The alignment is crucial
for a co-operative game, because, without alignment, the results can only be efficient for
individual utilities for the vessel, and on the other hand, they might be inefficient globally.

As stated by Arslan et al. [8], the most important advantage of game theory over other
methods is that vehicles can operate and make decisions independently in an uncertain
environment, despite limited information, communication, and computational load. Other
optimization algorithms described in the literature lack the ability to design vehicles as
separate logical units, even in distributed scenarios. Additionally, algorithms such as
those defined in [5,10,11] require a constant flow of information to be distributed among
vehicles, which introduces communication and computation burdens. Our work uses a
game theoretic approach for a weapon assignment problem. Arslan et al., in [8], provides
a guideline to deal with weapon assignment problems using game theory. In this study,
we used their insights about solving weapon assignment with game theory, aligning the
utilities of vessels, so that they can have a co-operative game with each other. In addition
to their research, we use continuous utility functions, and we work with a dynamic system.
We worked in a naval environment for our simulations. Karasakal, in [10], solves a weapon
assignment problem for a naval combat environment.

Karasakal, in [10], discusses systems that can be optimally designed for weapon
assignment in naval environments. His research focuses on a naval fleet composed of
vehicles, each equipped with multiple types of weapons. Simultaneously, Taghavi and
Ranjbar [12] conducted a study on the timing of air defense missiles positioned on naval
vessels, which is one method used against attacks. Karasakal’s problem definition, as we
will explore in the following sections, aims to minimize the survival probability of the
target while maximizing the survival probability of the assets. Furthermore, it seeks to



Games 2024, 15, 33 3 of 16

minimize the ammunition budget used. Furthermore, Yang et al. [13] provide insights
into budget-constrained optimization algorithms. On the other hand, none of the research
in [10,12,13] solves a dynamic weapon assignment problem without using static time steps.

In this study, we propose a solution for the dynamic weapon assignment problem
within a naval context. As previously discussed in [1], weapon assignment systems have
been defined, but there is currently no explicit solution for dynamic weapon assignment
systems in the existing literature. In [14], Hosein solves dynamic resource allocation
problems using multiple stages in time. Although, in [15], Galati uses game theoretical
strategies and, in [6], Leboucher et al. use an algorithm that is a mixture of game theory
and evolutionary algorithms, they still use time steps to solve the dynamic problem. The
closest approximation to a dynamic system is the shoot–look–shoot method, as defined
in [4]. In this approach, systems check whether a threat is still active before firing another
round. Although time is used as an additional parameter, the essence of this method relies
on multiple static sub-problems (or time frames). Each frame can be treated as a static
sub-problem and solved accordingly.

However, for a true dynamic system, we transcend static time frames. Instead, we
consider the entire area across all time stages. Our approach leverages game theory to
maximize the system’s global utility. We define continuous probability-to-kill values for the
weapons on naval vessels, resulting in continuous utility functions for the entire operational
area. To align individual vehicle utilities with global utility, we employ potential games
mentioned in [9] and the combination of Wonderful Life Utility Function and Range Limited
Utility Function discussed in [8]. Additionally, we assign a dynamic weapon range for
each vehicle based on the threat level. Threats are not considered within a range until the
probability of a threat destroying an asset exceeds the probability of a vehicle eliminating the
threat. Incorporating budget constraints, we determine the optimum weapon assignment
for each threat. Once the optimum weapons are defined, vehicles engage in a co-operative
game, especially when their ranges overlap.

Our simulations focus on the naval environment, where vessels can carry multiple
weapons. Consequently, we address an optimization problem involving multiple weapons,
ensuring that each weapon either assigns a target or remains unassigned. The vessels
operate using an asset-based algorithm, striving to maximize their own survival probability
as well as that of other vessels.

This paper has been organized as follows. System model is given in Section 2. Section 3
explains the proposed approach in this study. Section 4 shows the limitations of the
proposed approach. The simulation parameters are given in Section 5. The results are given
in Section 6. In Section 7, the conclusions are given. And finally, the future research is given
in Section 8.

2. System Definition

In this study, our primary objective is to develop an algorithm that effectively safe-
guards a naval fleet from aerial threats. Figure 1 illustrates an example of an aerial attack on
a naval fleet. The circles in this Figure represent the vessels’ operational ranges. Defining
these ranges is essential to manage computational complexity. The algorithm for the vessels
need not consider threats beyond its specified range.

During our experiments, we explored various scenarios, including different weapon
types, varying weapon counts, threats approaching from different directions, and assets
with diverse values. Additionally, we compared our results with a discrete dynamic
weapon assignment approach.



Games 2024, 15, 33 4 of 16Games 2024, 15, 33 4 of 16 
 

 

 
Figure 1. An example for an aerial attack on a naval fleet. 

Equation (1) is defined as a problem definition for asset-based systems. In Equation 
(1), 𝑝௜௝ is the probability that the weapon number 𝑖 kills the threat number 𝑗. 𝜋௝௞ rep-
resents the probability of threat 𝑗 destroying the asset 𝑘. ω୩ represents the value of the 
asset since every asset may have a different importance level. Maximizing Equation (1) 
will maximize the survivability of the assets. The threats that want to destroy the asset 𝑘 
are represented by 𝐺௞ . The assignment of weapon 𝑖 to target 𝑗 is represented with a 
binary value which is 𝑥௜௝ . 𝑝௦௨௥௩௜௩௘ = ∑ 𝜔௞௄௞ୀଵ ∏ ൣ1 − 𝜋௝௞ ∏ ൫1 − 𝑝௜௝൯௫೔ೕெ௜ୀଵ ൧௝∈ீೖ   (1)

Using Equation (1), we derived a utility function as follows. 

𝑈௜ = ෍𝜔௞௄
௞ୀଵ ෑ ൥1 − 𝜋௝௞.Ω௝ෑ൫1 − 𝑝௜௝൯௫೔ೕ − log𝜑௜ெ

௜ୀଵ ൩௝∈ீೖ                     (2)

In Equation (2), there are additional parameters such as Ω௝ that represent the value 
of the threat 𝑗 and 𝜑௜ , which represents the value of the cost of weapon 𝑖. As one can see 
from Equation (2), as the probability of survival of the asset increases, the utility value also 
increases. On the other hand, the utility value decreases with the cost of the weapon. 

We mentioned that we worked with a limited range for each vessel. We adapted a 
type of game from game theory called the dualist game [16]. Dualist game is described in 
[16] and modeled by a classic scene of two gunmen approaching each other. Here, the 
problem is which gunman shots first. The solution of this problem is that the gunman 
should fire his gun when the probability of the opponent of killing him will be higher than 
probability of him killing the opponent at the next step. Inequality in Equation (3) shows 
the adaptation of the dualist game for our application, and it is where our range is. ∏ 𝜋௝௞௄௞ୀଵ > ∏ 𝑝௜௝ெ௜ୀଵ   (3)

By the nature of the game theory, all units will try to maximize their utility. For a 
proper weapon assignment system, one needs an alignment with the vessels’ utility and 
the global utility. Potential games are introduced in [9] to align individuals’ utility to 
global utility. Consider 𝑁 > 2  vessels and 𝑁 + 1  targets 𝑇ଵ, … ,𝑇ேାଵ , if 𝑉 ≔ሼ𝑉ଵ,𝑉ଶ, … ,𝑉ேሽ is the set of vessels, 𝐴௜ ≔ ሼ𝑇௜ ,𝑇ேାଵሽ and 𝑎 ≔ ሼ𝑎ଵ,𝑎ଶ, … ,𝑎ேሽ is the set of as-
signments, 𝑉௜  is the 𝑖 -th vessel, 𝑎௜  is the assignment of 𝑖 -th vessel, and 𝑎ି௜  is the 

Figure 1. An example for an aerial attack on a naval fleet.

Equation (1) is defined as a problem definition for asset-based systems. In Equation (1),
pij is the probability that the weapon number i kills the threat number j. πjk represents
the probability of threat j destroying the asset k. ωk represents the value of the asset since
every asset may have a different importance level. Maximizing Equation (1) will maximize
the survivability of the assets. The threats that want to destroy the asset k are represented
by Gk. The assignment of weapon i to target j is represented with a binary value which
is xij.

psurvive = ∑K
k=1 ωk ∏

j∈Gk

[
1 − πjk

M

∏
i=1

(
1 − pij

)xij

]
(1)

Using Equation (1), we derived a utility function as follows.

Ui =
K

∑
k=1

ωk ∏
j∈Gk

[
1 − πjk.Ωj

M

∏
i=1

(
1 − pij

)xij − log φi

]
(2)

In Equation (2), there are additional parameters such as Ωj that represent the value
of the threat j and φi, which represents the value of the cost of weapon i. As one can see
from Equation (2), as the probability of survival of the asset increases, the utility value also
increases. On the other hand, the utility value decreases with the cost of the weapon.

We mentioned that we worked with a limited range for each vessel. We adapted a type
of game from game theory called the dualist game [16]. Dualist game is described in [16]
and modeled by a classic scene of two gunmen approaching each other. Here, the problem
is which gunman shots first. The solution of this problem is that the gunman should fire his
gun when the probability of the opponent of killing him will be higher than probability of
him killing the opponent at the next step. Inequality in Equation (3) shows the adaptation
of the dualist game for our application, and it is where our range is.

∏K
k=1 πjk > ∏M

i=1 pij (3)

By the nature of the game theory, all units will try to maximize their utility. For a
proper weapon assignment system, one needs an alignment with the vessels’ utility and
the global utility. Potential games are introduced in [9] to align individuals’ utility to global
utility. Consider N > 2 vessels and N + 1 targets T1, . . . , TN+1, if V
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the adaptation of the dualist game for our application, and it is where our range is. ∏ 𝜋௝௞௄௞ୀଵ > ∏ 𝑝௜௝ெ௜ୀଵ   (3)

By the nature of the game theory, all units will try to maximize their utility. For a 
proper weapon assignment system, one needs an alignment with the vessels’ utility and 
the global utility. Potential games are introduced in [9] to align individuals’ utility to 
global utility. Consider 𝑁 > 2  vessels and 𝑁 + 1  targets 𝑇ଵ, … , 𝑇ேାଵ , if 𝑉 ≔ሼ𝑉ଵ, 𝑉ଶ, … , 𝑉ேሽ is the set of vessels, 𝐴௜ ≔ ሼ𝑇௜, 𝑇ேାଵሽ and 𝑎 ≔ ሼ𝑎ଵ, 𝑎ଶ, … , 𝑎ேሽ is the set of as-
signments, 𝑉௜  is the 𝑖 -th vessel, 𝑎௜  is the assignment of 𝑖 -th vessel, and 𝑎ି௜  is the 
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{a1, a2, . . . , aN} is the set of assignments, Vi is the i-th
vessel, ai is the assignment of i-th vessel, and a−i is the assignment for all vessels except
the i-th vessel; then, the existence of Equation (4) means the existence of a potential game.

UVi (ai, a−i)− UVi

(
a′′

i , a−i
)
= Θ

(
a′i, a−i

)
− Θ

(
a′′

i , a−i
)

(4)

Equation (4) shows that any change in the strategy in function Θ directly affects the
vessels utility.

In [8], Arslan et al. introduces alignment functions. We combined Range Restricted
Utility Function and Wonderful Life Utility Function, which is mentioned in [8]. According
to Arslan in [8], Range Restricted Utility Function can be described as follows.

UVi (a) = ∑Tj∈Ai
UTj(a) (5)

The main problem with Range Restricted Utility Function is that the defined area that
defines a player’s range may overlap with that of another player. For overlapping areas,
another alignment function must be defined. Therefore, we used Wonderful Life Utility
Function with Range Restricted Utility Function for our simulations.

We use Wonderful Life Utility function. For Wonderful Life Utility Function, the
vessels’ utility basically depends on its contribution to the global utility. Therefore, the
vessels are forced to contribute to the global utility. In [8], Wonderful Life Utility is defined
as follows.

UVi (ai, a−i) = UTj(ai, a−i)− UTj(T0, a−i),if ai = Tj (6)

Equation (6) shows that any change in the global utility will affect the vehicle’s utility
in any change in assignments. Therefore, the function can be defined as a potential function.
In other words, the vehicles must try to increase the global utility when they try to increase
their own.

To obtain a continuous environment, we observed how the hit probabilities of ammu-
nition changed over time depending on their range and the impact on the utility functions
accordingly. For this purpose, we produced values for the time-varying hit probabilities
of ammunition. To do this, we used the examples of real missiles given in [17] and the hit
probability equations shown in [18], which are mentioned in detail below.

In the examples mentioned in [17], it was observed that the error rates of anti-tank
missiles increased depending on the distance. Although these error rates are at their lowest
when they are within the maximal and minimal ranges, they will increase as they approach
these ranges and will reach their maximum as they begin to go outside these ranges.

When defining the error probability in firing and target hitting operations, Circular
Error Probability (CEP) should be defined instead of defining the error probability in x
and y axes in Cartesian coordinates. The probability of hitting a single shot should also
be calculated by considering this error probability. In [18], the calculation of CEP values,
Cookie Cutter Equations, and the probability of hitting a single shot are mentioned.

In [18], the damage function D(r) was defined to make these calculations. Here, if
the distance between the weapon and the target is less than r, the target will be hit. The
probability of hitting the target, PK, can be found by averaging the distance between the
target and the weapon at the weapon’s final position. If f (x, y) is a two-variable function
of the distance of the weapon relative to the target, it will be r =

√
x2 + y2.

PK =
x

D
(√

x2 + y2
)

f (x, y)dxdy (7)

If the target is uniformly distributed over a large area A, f (x, y) will be replaced by
1/A [18].

PK =
1
A

x

A

D
(√

x2 + y2
)

dxdy (8)
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Since A is defined as a large area, the definition PK = a/A will be approximately
correct [18].

a =
x

D
(√

x2 + y2
)

dxdy (9)

a = 2π
∫ ∞

0
rD(r)dr (10)

a is the lethal area of the weapon in these equations [18]. At the same time, as seen here,
the damage function is a function that does not increase. From here, it can be said that the
weapons have a lethal area of diameter R and the targets within this area will be hit. In this
case, we can use the following equation to explain the meaning of the damage function.

D(r) = P(R > r) (11)

The damage function is also differentiable. In this case, the probability distribution
function can be obtained by differentiating [18].

fR(r) = − d
dr

D(r) (12)

For Cookie Cutter weapons, the lethal area is expressed as R and is a constant. The
lethal field is given by πR2. If firing errors have the same standard deviation in all directions,
the two-dimensional representation of the error density function is as follows [18].

f (x, y) = exp
(
−1/2

(
x2 + y2

)
/σ2

)
/
(

2πσ2
)

(13)

In circular normal distribution, there is a relationship between CEP and σ as CEP =
σ
√

2ln2 = 1.774σ [18].
Analysis was made by considering the Cookie Cutter Equations in [19]. Equations (14)

and (15) are obtained where θ is the angle of attack, H is the height of the target, X1 = W is
the width of the target, and X2 = L is the length of the target.

Y1 = Hcosθ + X2sinθ (frontal view) (14)

Y2 = Hcosθ + X1sinθ (side view) (15)

The assumption was made that a frontal or side approach would be equally likely.
When the MATLAB erf function is set as follows, the possibility of hitting the target with a
single shot of the ammunition emerges [19].

The erf function is defined as erf(x) = 2√
π

∫ x
0 e−t2

dt in MATLAB.

PHi

(
±Xi

2
,±Yi

2

)
= erf

(
Xi
2

1√
2σ

)
· erf

(
Yi
2

1√
2σ

)
(16)

Here, i changes to 1 and 2. Thus, it evaluates front and side views with an equal
probability. σ is taken as CEP/1.774. In this study, the probability of ammunition hitting
the target was examined with this approach.

We give the pseudo code for the dynamic approach in Algorithm 1.



Games 2024, 15, 33 7 of 16

Algorithm 1. Pseudo code for dynamic approach (ver. 1.4.2)

1: for (Each Asset)
2: Define Utility Values of Weapons;

Find Highest Value of Utility Function;
Define Range;

3: end
4: if (Any Threat in Any Range)
5: Any Sharing Areas Defined Range
6: if (Single Asset Single Threat)
7: Fire Weapon;
8: else if (Multiple Asset Single Threat OR Multiple Asset Multiple Threat)
9: for (Each Asset Sharing Threat in Range)
10: Prepare Game Matrix;
11: Apply Alignment Function;
12: Find Nash Equilibrium;
13: Assign Weapon;
14 Fire Weapon;
15: else if (Single Asset Multiple Threats)
16: if (Any Threat in Any Range)
17: Fire Weapon;
18 end
19: end
20: end

3. Proposed Approach

In the preceding sections, we introduced a naval system as the context for our weapon
assignment problem. We also discussed the distinction between dynamic and static weapon
systems. Notably, there is currently no truly dynamic approach for solving the dynamic
weapon assignment problem, based on our best knowledge.

As previously mentioned, game theory offers a promising avenue for solving opti-
mization problems in continuous environments. When game theory is employed, vehicles
can operate independently, reducing both computation and communication burdens.

In co-operative games, aligning the utilities of players (in our case, the vehicles) is
crucial. To achieve this alignment, we combined potential games with the Wonderful Life
Utility Function and the Range Restricted Utility Function.

To address range limitations, we leveraged a concept from game theory known as the
dualist game. In this approach, a vehicle should fire its weapon only when the probability
of the threat killing it exceeds the probability of the vehicle eliminating the threat in the next
step. Each vehicle’s weapon range is defined by inequality in Equation (3). If a threat lies
outside a vehicle’s range, then, the vehicle is not considered a part of the game or solution,
thus saving computational resources.

We further calculated Circular Error Probable (CEP) and Single Shot Hit Probability
for the proposed weapons. These yielded continuous functions representing the relation-
ship between distance and the probability of a hit for each weapon on the vehicles. By
incorporating these functions into our utility calculations, we obtained continuous utility
functions for each weapon.

The game theoretical solution aims to maximize the global utility function, which
aggregates the utilities acquired from each target. Consequently, when a target reaches the
point where the utility function peaks, the corresponding vehicle’s weapon shall fire.

4. Limitations of the Proposed Approach

Game theoretic approach for a dynamic weapon assignment system is a novel concept.
Although we discussed some advantages of this approach, it also has some setbacks. First
of all, any game theoretical approach heavily relies on personal choices and their reflection
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on a numerical plane. For example, in Equation (2), ωk, which represents the value of the
asset, and Ωj, which represents the value of the threat, may not be objective values and
may vary with the past experiences of the person who evaluates the situation.

This system is designed to be a part of a more complex system which is called Threat
Evaluation and Weapon Assignment or TEWA. This study focuses solely on the weapon
assignment problem. However, threats should have been evaluated and fed to the weapon
assignment part of the system. Therefore, this study assumes the existence of an imaginary
threat evaluation system, and the data that have been used by the weapon assignment
system are provided by it. Additionally, this study does not take into account protective
systems like electronic warfare equipment, as the threat evaluation system should handle
them, and they are outside the scope of this study.

In a real-world combat zone, the information flow may not be perfect. The game
theory can work with an environment with imperfect information. In fact, we studied
the subject to extend our work here. However, our work on imperfect information is
not yet ready to be presented. This study aims to present a new approach for dynamic
weapon assignment systems, but we plan to conduct future research on systems with
imperfect information.

The accuracy level of the weapons may change with the environmental conditions of
the naval vessels. pij value in Equation (2) may vary with the conditions like wind and
sea state.

5. Simulation Parameters

In this section, we discussed the simulation parameters. The simulation has been
performed in the MATLAB environment. In the simulation, every vessel is also an asset.
The vessels need to protect themselves as well as the other vessels.

In the classical solution of the dynamic system, time frames are used, and the opti-
mization problem is solved in a similar way to the static system for the frames. We stated
that one of our aims in this study was to change this method and find a solution to a
truly dynamic situation. We also stated that weapon performance may vary depending
on distance. The probability of error increases as the target approaches the minimum and
maximum range limits. In the previous section, error probability was defined and the
connection between error probability and hit probability was explained. In the previous
sections, CEP and Single Shot Probability to Kill (SSPK) values were explained and how
they were calculated was shown. This scenario will proceed through three weapon exam-
ples. It was assumed that one of these was a close-defense weapon. Therefore, the range of
this weapon is quite short. At the same time, the SSPK value is lower than the others. The
second weapon is considered as a medium range defense weapon. The SSPK value is at
the medium level. The weapon with the highest SSPK value is considered a long-range
weapon. For the three weapon examples, the three weapons have been chosen by these
rules. Figure 2 shows the value of SSPK to CEP for the three weapon examples.

Figure 2 shows that, if CEP of all three weapons increases, then after a certain point
(approximately 1 m for this example), the SSPK values will start to drop.

In this scenario, three threat examples were used. Threat #1 is the strongest and
hardest to kill threat. Threat #2 is the medium-strength threat, and finally, Threat #3 is the
weakest threat.

As can be predicted, when threats approach the weapons’ range limits, the CEP values
of the weapons will increase. Therefore, the probability to kill decreases. For our scenario,
we will show the kill probability for three threats and three weapons that vary depending
on the distance of the threats.

Figure 3 shows the kill probability by distance of the three weapons for Threat #1.
Figures 4 and 5 show the probabilities of Threat #2 and Threat #3 being killed by the
three mentioned weapons, respectively.
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Figure 5. Probability of killing Threat #3 of three weapons based on distance.

Figure 3 shows the probability to kill Threat #1 for all weapons. All weapons have a
higher probability to kill within their range, and beyond their range, the probability to kill
drops quickly. Weapon #1 has a higher probability to kill for all threats and has the highest
range in terms of distance as can be seen in Figures 3–5.

Figure 4 shows the probability to kill Threat #2 for all weapons. The probabilities are a
little bit higher than those for Threat #1, because, as we mentioned, Threat #1 is the hardest
to kill.

Figure 5 shows the probability to kill Threat #3 for all weapons. As one can see, the
probabilities are the highest because, as we mentioned, Threat #3 is the easiest to kill.

Parameters used in Equation (2) are also needed when calculating the utility value.
Tables 1–4 show these values.

Table 1. Probability of threat k destroying asset j, πjk.

Threat #1 Threat #2 Threat #3

1 0.5 0.3

Table 2. Ammunition budget for weapon i, φi.

Weapon #1 Weapon #2 Weapon #3

0.95 0.6 0.2

Table 3. Asset values, ωk.

Asset #1 Asset #2 Asset #3

1 0.5 0.3

Table 4. Threat values, Ωj.

Threat #1 Threat #2 Threat #3

1 0.5 0.3

Equation (2) was used to calculate utility values. Since only the probability of killing
the threat from the weapons on the vehicles can be defined as a vector depending on
distance and the other values are scalar, the probability of killing can be put into this
equation as a vector. Thus, continuous utility functions are obtained depending on distance.

Figure 6 shows that the best weapon for Threat #1 is Weapon #1. Therefore, if this
weapon fires against this threat, Weapon #1 should be fired, and it should be fired in the
range of the minimum and maximum range limit of the weapon.
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Figure 7 shows that all three weapons are almost as effective as each other against
Threat #2.
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Figure 8 shows that Weapon #3 has the best utility value against Threat #3. The system
should wait until the threat comes as near as the range of Weapon #3.
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It is clear that, by defining the utility function of the vessels as continuous functions,
we can achieve a real dynamic system rather than a dynamic system defined by time frames.
Using continuous utility values for individuals also perpetuates the global utility that is
their combination. The maximum point of the global utility function will give the Nash
Equilibrium. As can be seen in Figures 6–8, each weapon defines its own range as a natural
result of game theory. This creates the dynamic range limitation that we mentioned at the
beginning. At the same time, by this way, we can easily see which threats these weapons
are effective against. In this case, it becomes clear which threat which weapon should
respond to and at what range. The difference between this and a time frame is that it not
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only shows the situation at that time step but also gives us an idea of the entire field. For
example, in Figure 8, Threat #3 at 60,000 m can be engaged with Weapon #1 only when
viewed at that time step. However, considering the entire field, waiting for this target to
come to a closer range and engaging with Weapon #3 will have a larger utility.

To be perfectly clear, we will show an example for Threat #3 and Threat #1 incoming
from 60,000 m, and they are at the range of two assets. Let us assume that the assets have
the weapon sets of Weapon #1, Weapon #2, and Weapon #3. Following Algorithm 1, we
need to prepare the game matrix. From Figures 6 and 8, since they produce the highest
utility value for Threat #3 and Threat #1, we already know that the best weapons for Threat
#3 and Threat #1 are Weapon #3 and Weapon #1, respectively. Table 5 shows an example of
the game matrix.

Table 5. Example of game matrix.

Asset #1

Asset #2

Threat #1 Threat #3

Threat #1 5.5,5.5 5.5,1.8

Threat #3 1.8,5.5 1.8,1.8

From Table 5, one can see that the Nash Equilibrium is at [Threat #1, Threat #1] point.
This is an unwanted result for us, since there is a better value for global utility. Following
Algorithm 1, if we apply Wonderful Life Utility Function mentioned by Arslan et al. in [8],
an asset can obtain as much as utility that they contribute to the global utility. Therefore, if
both assets try to lock on Threat #1, only one of them can obtain the utility contribution.
Hence, the game matrix changes as seen in Table 6.

Table 6. Changed game matrix due to Wonderful Life Utility Function.

Asset #1

Asset #2

Threat #1 Threat #3

Threat #1 5.5,0 5.5,1.8

Threat #3 1.8,5.5 0,1.8

Table 6 shows that now the Nash Equilibrium is changed to [Threat #1,Threat #3] point.
Now, the result is globally effective, and Asset #1 will shoot its Weapon #1 onto Threat #1
at 60,000 m, and Asset #2 will wait until Threat #3 gets closer, i.e., 15,000 m, to shoot its
Weapon #3 onto Threat #3. More elaborated trials and results are given in the Section 6.

6. Results

The utility values of weapons that vary depending on distance are given in the
previous sections. It is also mentioned that Range Restricted Utility Function and Wonderful
Life Utility Function are used simultaneously to align the vessels’ utility value with the
global utility.

Since distance is a value that affects the utility in the dynamic situation, weapons wait
until the range where they provide the maximum utility. Therefore, the range at which the
weapons were fired was also taken as a parameter in the simulations. Table 7 shows various
dynamic case scenarios. All the scenarios use the three threats and the three weapons that
we defined in previous chapters. On the other hand, some scenarios use more than one
identical copy of Threat #1, Threat #2, or Threat #3. For example, the second scenario uses
two identical threats like Threat #1.
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Table 7. Results of various scenarios.

Scenario Result Maximum Utility Value

1 1 Threat #1 and 1 Threat #3 against
2 identical vessels

Vessel #1 fires Weapon #1 against Threat
#1 at 60,000 m; Vessel #2 fires Weapon #3

at 13,000 m against Threat #3
7.3

2 2 Threat #1 against 2 identical vessels Both vessels fire Weapon #1 at 60,000 m 11

3 2 Threat #1 against 3 identical vessels Two of the vessels fire their Weapon #1 at
60,000 m 11

4 2 Threat #1 and 1 Threat #3 against
2 identical vessels

Both vessels fire their Weapon #1 against
Threat #1 at 60,000 m; one of the vessels

fires Weapon #3 against Threat #3 at
13,000 m

12.8

5
3 Threat #1 and 1 Threat #3 against
2 identical vessels approaching at a

distance of 25,000 m

Both vessels fire Weapon #1 against two
Threat #1 at 25,000 m On the next round,

the threats moved out of the range of
Weapon #1. Therefore, one of the vessels
fires Weapon #2 against the last Threat #1.

The other vessel fires Weapon #3 to
Threat #3 at 13,000 m

28.8

The Section 6 shows how the trials ended. The vessel that has been chosen to fire its
weapons against the threats may fire its weapons at different times. As it can be seen from
Figure 6, if the chosen weapon is Weapon #1, then the vessel will fire its weapon when
the threat is between 20,000 and 60,000 m away from the vessel. Similarly, if Weapon #2
is chosen, then the vessel should fire the weapon when the threat is between 5000 and
25,000 m away from the vessel, because, as it can be seen from Figures 6–8, these are the
optimum points for these vessels.

The maximum utility value is the sum of all utility values that have been gained from
all threats for the scenario. Table 7 shows the results for various scenarios.

In Scenario #1, the vehicles have locked two weapons against two different threats.
The first vehicle used Weapon #1 against Threat #1, and as shown in Figure 6, Weapon #1 is
the optimum weapon for Threat #1. Weapon #1 has a range between 20,000 and 60,000 m;
therefore, the vehicle fired Weapon #1 when the threat reached 60,000 m away from the
vehicle. The other vehicle locked Weapon #3 to Threat #3. Weapon #3 has a range between
5000 and 10,000 m. Therefore, the vehicle waited to fire Weapon #3 until the threat was at
an optimum distance for achieving the maximum utility. In cases where it is convenient to
fire from the farthest distance, as in Scenario #2, the weapons choose 60,000 m. Since the
number of defenders in Scenario #3 was greater than the number of threats, the maximum
utility output was the same as in Scenario #2 because one of the defenders did not use any
weapons or created any utility value. In Scenario #4, although both vehicles were initially
loaded with two copies of Threat #1, and when Threat #3 came within the range of Weapon
#3, one of the vehicles fired its Weapon #3. In Scenario #5, there are three Threat #1 and two
vehicles, and since the threats are at a close range, the vehicles initially dealt with two of
the threats. In this case, since they were still within range of Weapon #1, the most effective
weapon, Weapon #1, was used. The last threat then moved out of Weapon #1’s range and
one of the vehicles responded to the approaching threat with the second-best weapon, i.e.,
Weapon #2.

We compared our proposed method with the shoot–look–shoot (SLS) method for the
dynamic case. As predicted, we saw differences in the solutions between the dynamic
case and the proposed method depending on time frames. The applied scenario and the
differences between the two methods are shown in Table 8.
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Table 8. Comparison between time frames and dynamic solution.

Scenario
The Distance

Where the Frame
Is Put

Result SLS Maximum
Utility Value

Dynamic Solution
Maximum Utility

Value

1
1 Threat #1 and 1

Threat #3 against 2
identical vessels

60,000 m Both vessels fire Weapon
#1 at 60,000 m 7 7.3

2
1 Threat #1 and 1

Threat #3 against 2
identical vessels

13,000 m Both vessels fire Weapon
#3 at 13,000 m 3 7.3

3 2 Threat #1 against 2
identical vessels 60,000 m Both vessels fire Weapon

#1 at 60,000 m 11 11

4 2 Threat #1 against 3
identical vessels 60,000 m Both vessels fire Weapon

#1 at 60,000 m 11 11

5
2 Threat #1 and 1

Threat #3 against 2
identical vessels

60,000 m

Both vessels fire Weapon
#1 at 60,000 m; Threat #3

may be killed in the
next round

11 12.8

6

3 Threat #1 and 1
Threat #3 against 2

identical vessels
approaching at a

distance of 25,000 m

60,000 m

Both vessels fire Weapon
#1 at 60,000 m; the

remaining Threat #1 and
Threat #3 may be killed

in the next round

11 28.8

It can be seen that the scenarios that were used to test the algorithms in Tables 7 and 8
are the same, making the comparison easier. In Table 8, Scenario #1 of Table 7 was repeated
twice in the 1st and 2nd rows because different time frames gave different results. In the
first case, the time frame was taken when the vehicles were at 60,000 m. Here, the most
useful action for this time step is for both vehicles to fire their Weapon #1 towards two
separate targets. However, it can be seen that the weapon that will actually bring the most
utility for the second target is Weapon #3. However, it remains out of range at this time
step. This results in a lower utility value obtained at this moment compared to that of
the dynamic situation. In the second case, although the weapon that provides the highest
utility is Weapon #3, the utility function decreases visibly in comparison with the dynamic
situation. Scenarios #3 and #4 in Table 8 are the same as Scenarios #2 and #3 in Table 7. In
these scenarios, it is seen that the maximum utility value in the dynamic and the time frame
solution is the same. The frames taken are the points that already give the best results in
the dynamic situation. Scenario # 5 in Table 8 is the same as Scenario #4 in Table 7. Here,
two Threat #1 can be killed in the shown frame. However, one Threat #3 cannot be locked
in the shown window. Therefore, there is a decrease in the total benefit value. The last
scenario in Table 8 is the same as Scenario #5 in Table 7. In this scenario, although two
Threat #1 can be destroyed in the shown frame, some targets cannot be destroyed in that
frame because they are out of range. This causes a decrease in the utility value.

It can be seen from the examples that, since the entire field is considered in the dynamic
case, the occurrence of a situation that will increase the utility values in the next steps
cannot be observed in the statictime frames. This causes utility values to increase for
Scenarios #1, #2, #5, and #6 for the dynamic weapon assignment systems.

7. Conclusions

In simulations conducted in a dynamic environment, the operation of different
weapons at various ranges was analyzed. Each weapon is effective against different
threats within its range. During the trials, it was observed that firing occurred at ranges that
should be effective against each threat. Additionally, it was noted that, if the best weapon
was occupied at that moment, the second-best weapon was also fired. If the threat moved
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out of the range of the best weapon, the second-best weapon was activated. In scenarios
where the dynamic situation was compared with the time frame solution, it was observed
that time frames had issues in seeing the whole picture, leading to a decrease in total utility
for the static situation in some scenarios.

8. Future Research

It is known that, in a real-world combat zone, weapon assignment systems may deal
with environments of imperfect information. Game theory is designed to handle such
imperfect information. The system must assign types to threats based on beliefs and
intelligence about the threats. Bayesian Nash Equilibrium will be the point of no regret for
a system with imperfect information. However, this study focuses on a novel approach for
dynamic weapon assignment systems. Although we have worked on imperfect information
systems to expand our study, the study is still preliminary and not ready to be presented.
Therefore, we consider it as future research.
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