
Citation: Garcia-Perez, L.;

Grau-Climent, J.; Losada, J.C.;

Alonso-Sanz, R. Simulation of the

Stackelberg–Hotelling Game. Games

2024, 15, 34. https://doi.org/

10.3390/g15050034

Academic Editor: Ulrich Berger

Received: 8 August 2024

Revised: 30 September 2024

Accepted: 7 October 2024

Published: 11 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

games

Article

Simulation of the Stackelberg–Hotelling Game
Luis Garcia-Perez , Juan Grau-Climent , Juan C. Losada and Ramon Alonso-Sanz *

Complex Systems Group, Universidad Politécnica de Madrid, C. Universitaria, 28040 Madrid, Spain;
luis.gperez@alumnos.upm.es (L.G.-P.); juan.grau.climent@alumnos.upm.es (J.G.-C.);
juancarlos.losada@upm.es (J.C.L.)
* Correspondence: ramon.alonso@upm.es

Abstract: This work studies the Hotelling game with sequential choice of prices, that is, the Stackel-
berg–Hotelling (SHOT) game. The game is studied through numerical simulation, which provides
the subgame perfect equilibrium solution not only in the unrestricted game but also in the game with
reservation cost and with elastic demand. The simulation technique is tested first in the unconstrained
game, where the analytical subgame perfect equilibrium solution was already known. Then, the
numerical procedure is generalized to cope with the SHOT game with reservation cost and with
elastic demand. These enriched formulations of the SHOT game have not been studied so far, so this
article provides an exploratory study of them.

Keywords: game theory; simulation; Hotelling; Stackelberg; equilibrium

1. Introduction

In 1929, Harold Hotelling published its article [1], where a very influential spatial
competition model was defined. It involves two vendors located on a line, selling an
identical product with customers spread equally along this line. These firms compete
on location and price in the proposed homogeneous market, so that a customer decides
to buy the product of a firm depending on the price and the transportation cost to the
point of sale, assumed to be linear with the distance in the initial model. The sum of the
price of the product and the transportation cost associated with a customer represents the
expenses of buying the product by this customer. He established what is known as the
principle of minimum differentiation, which means that firms make products that tend
to be more equal, or, as Hotelling said in his article, “an undue tendency for competitors
to imitate each other in quality of goods, in location, and in other essential ways”. In
the concrete case of Hotelling’s initial model, it implies that companies tend to select
similar locations for their stores. Thereafter, a large literature on spatial competition and
product differentiation emerged, inspiring the development of spatial models of political
competition and becoming an indispensable part of Economics teaching [2]. Although
it caused great criticism due to its limitations, it cannot be proved that the principle of
minimum differentiation is invalid until fifty years later in [3], where it is stated that Nash
Equilibrium (NE) only exists under certain conditions in contrast to the seminal analysis
by Hotelling.

The first relevant extension of Hotelling’s game was introduced by Lerner and Singer
in [4]. In Hotelling’s pioneer model, each consumer takes one unit of the product from one
of the players, no matter how high the expenses of buying the product are. Lerner and
Singer, in an attempt to make the model more realistic, imposed an upper threshold, called
reservation cost, above which customers do not buy the product and the demand falls from
one to zero.

The demand in the seminal article was assumed to be inelastic. A. Smithies in [5]
contributed to the evolution of the model by including the concept of elastic demand in

Games 2024, 15, 34. https://doi.org/10.3390/g15050034 https://www.mdpi.com/journal/games

https://doi.org/10.3390/g15050034
https://doi.org/10.3390/g15050034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/games
https://www.mdpi.com
https://orcid.org/0000-0003-0087-881X
https://orcid.org/0000-0002-1018-7265
https://orcid.org/0000-0002-4373-603X
https://orcid.org/0000-0002-4668-2858
https://doi.org/10.3390/g15050034
https://www.mdpi.com/journal/games
https://www.mdpi.com/article/10.3390/g15050034?type=check_update&version=1


Games 2024, 15, 34 2 of 25

addition to the reservation cost. According to that, the demand varies as a function of the
price and the distance from the customer to the vendor’s location.

In the usual approach to the Hotelling game, both players decide simultaneously. In
contrast to this, the aim of this article is the study of the behavior of the game when the
players decide in a leader–follower sequential manner.

Section 2 introduces the conventional Hotelling game with simultaneous price choices.
Section 3 introduces the Hotelling game with sequential choices, i.e., the Stackelberg–Hotelling
(SHOT) game. The numerical simulation technique implemented in this article is introduced
in Section 4. The conventional SHOT game is simulated in Section 5. The SHOT game
with reservation cost is simulated in Section 6, and the SHOT game with elastic demand is
simulated in Section 7.

The main finding of this paper is that, unlike in most games, in the sequential Hotelling
game, the follower has an advantage over the leader (obtains a higher payoff) in the
equilibrium solution (SPE) of the game. Quantifying this advantage and scrutinizing how
it is achieved makes up the core of this paper.

2. The Hotelling Game (HOT)

In the Hotelling game (HOT), two players (1 and 2) are located in a line of length L at
locations x1 = a ≤ L/2 and x2 = L − b ≥ L/2. They sell a homogeneous product at prices
p1 and p2 to consumers uniformly distributed across the line [1]. If the transportation cost
is linear with respect to the distance to the player, the expenses (or full prices) of a generic
consumer located at s are ei(s) = pi + t|s− xi|, i = 1, 2 As a result, the indifferent consumer,

where e1(s) = e2(s), is located at s = 1
2

(
sx +

p2−p1
t

)
, sx = x1 + x2 = L + k; k = a − b, so

that the demands to both players are d1 = s, d2 = L − s. Consequently, the payoff functions
(u) in the HOT game are given in Equation (1), which also take into account the capture of
the entire market by a player that charges a very low price.

u1 =


Lp1 if p1 < p2−tdx
d1 p1 if |p1−p2| ≤ tdx

0 if p1 > p2+tdx

, u2 =


Lp2 if p2 < p1−tdx
d2 p2 if |p1−p2| ≤ tdx

0 if p2 > p1+tdx

dx = x2 − x1 (1)

The Nash equilibrium (NE) in the Hotelling (HOT) game found in the seminal Refer-
ence [1] is given in Equation (2a)1. Because u∗

1 increases with a and u∗
2 with b, both players

would tend to coincide in their location, a phenomenon that in [1] is referred to as the
minimum differentiation principle. However, much later than the seminal article by Hotelling,
it was proved that NE only exists under the constraints given in Equation (2b) that impede
such an approach in the player locations in NE [3,6–8].

(p⋆1 , p⋆2) = t
1
3
(3L + k, 3L − k), (d⋆1 , d⋆2) =

1
6
(3L + k, 3L − k), (u⋆

1 , u⋆
2) =

1
2t
((

p⋆1)
2,
(

p⋆2)
2) (2a)

(3L + k)2 ≥ 12L(a + 2b), (3L − k)2 ≥ 12L(b + 2a) (2b)

In the a = b location-symmetric case, k = 0, sx = L, and dx = L − 2a, so that p∗1,2 = tL,
u∗

1,2 = p⋆1,2L/2, and the constraints regarding the existence of NE reduce to a = b ≤ L/4.
In the example of Figure 1, t = 1, a = b = 0.4 < L/4 = 0.75, p1 = p2 = 3.0, so that the

game shown in Figure 1a is in NE. That is checked in Figure 1b, where it becomes apparent
that the best response to p1 = 3.0 is p2 = 3.0. The kind of best response achieved in Figure 1
is denoted M in [9], i.e., βM

2 (p1) =
1
2 (p1 + t(L − k)).
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a=b=0.4
p1=3.000, p2=3.000
d1=1.500, d2=1.500
u1=4.500, u2=4.500

p1 p2

x1 x20.0 1.500 3.0

(a)

u(p1=3.000, p2)
a=b=0.4

p23.000

4.500

9.0

3.000

p1+dx

5.200

p1−dx

0.800

d2
d1

u2
u1

(b)

Figure 1. The Hotelling game with a = b = 0.4 and p1 = 3.0. L = 3, t = 1. (a) The game with p2 = 3.0.
(b) p2-response to p1 = 3.0.

In the example of Figure 2, t = 1, L = 3, p1 = p2 = 3.0 as in Figure 1. But now it is
a = b = 0.8 < L/4 = 0.75, so that the game shown in Figure 2a is not in NE. This becomes
apparent in Figure 2b: the best response to p1 = 3.0 is not p2 = 3.0. The best response to
p1 = 3.0 turns out to be β2(p1 = 3.0) = 3.0− 1.400− 0.001 = 1.599. In a game in the scenario
of Figure 2, but with p2 = 1.599, player 2 would undercut player 1 and would obtain the
full L = 3.0 market and as a result it would be u2 = 1.599 · 3.0 = 4.797, u1 = 0 · 3.0 = 0.
The kind of best response in Figure 2 is denoted U in [9], i.e., βU

2 (p1) = p1 − dx − ϵ, ϵ > 0,
ϵ → 02.

a=b=0.6
p1=3.000, p2=3.000
d1=1.500, d2=1.500
u1=4.500, u2=4.500

p1 p2

x1 x20.0 1.500 3.0

(a)

p2

u(p1=3.000, p2)

a=b=0.8

3.000

9.0

1.5

p1+dx

4.400

p1−dx

1.600

4.797

1.599

3.000

u1

u2

d1
d2

(b)

Figure 2. The Hotelling game with a = b = 0.8 and p1 = 4.184. L = 3, t = 1. (a) The game with
β2(p1 = 4.184) = 2.783. (b) p2-response to p1 = 4.184.

In Figure 3, a = b = 1.0 and p1 = 0.5, p2 = 1.5. The snapshot in Figure 3b proves that
p2 = 1.5 is the best response to p2 = 0.5. Incidentally, the game in Figure 3a is not in NE:
the best response to p2 = 1.5 is not p1 = 0.5 but p1 = 2.26, as it is proven in Figure 3c. The
kind of best response in Figure 3b is denoted N in [9], i.e., βN

2 (p1) = p1 + dx.

a=b=1.0
p1=0.500, p2=1.500
d1=2.000, d2=1.000
u1=1.000, u2=1.500

p1

p2

x1 x20.0
2.0

3.0

(a)

u(p1=0.500, p2)
a=b=1.0

p2

u1
u2

d1
d2

1.500

p1+dx

1.500
(b)

a=b=1.0

p1

u(p1, p2=1.500)

1.500

p2+dx
2.500

p2−dx
0.500

2.533

2.260

u2
u1

d2
d1

(c)

Figure 3. The Hotelling game with a = b = 1.0 and p1 = 0.5, p2 = 1.5. L = 3, t = 1. (a) The game.
(b) p2-response to p1 = 0.5. (c) p1-response to p2 = 1.5.



Games 2024, 15, 34 4 of 25

3. The Stackelberg–Hotelling Game (SHOT)

In this article, the players do not decide simultaneously but sequentially, as pioneered
by H. von Stackelberg [10]. Thus, one of the players, the leader (or first mover), decides
first his p1 price. Then the other player, the follower (or second mover), adopts the best re-
sponse to the known p1. According to the backwards induction principle, in the Sequential
Hotelling (SHOT) game, the leader assumes that the follower (player 2) would react opti-
mally to a given p1 and would adopt β2(p1) = arg maxp2

(
u2(p1, p2)

)
. Thus, the leader will

optimize his payoff assuming such a β2(p1) by means of p⋆1 = arg maxp1

(
u1(p1, β2(p1)

)
.

Finally, the follower will optimize his payoff given such a choice of the leader by means of
p⋆2 = arg maxp2

(
u2(p⋆1 , p2)

)
.

The mathematical analysis of the SHOT game turns out to be highly cumbersome in
general due to the discontinuities in the response functions. That is why we will resort to
simulation as explained in the next section.

The value of the price of the leader in the subgame perfect equilibrium solution (SPE)
of the SHOT game is given in Equation (3). The solution in Equation (3a) is based in the
M-response of the follower3. Equation (3b) (based in the U-response) and (3c) (based in
the N-response) were proved in [9].

p⋆1 = t(3L + k)/2 if 3L + k > 8
√

La (3a)

p⋆1 = t(3L + k)− 4
√

La if 3L + k ≤ 8
√

La and L − b ≥
√

La (3b)

p⋆1 = t(L − a − b)(L + b)/(L − b) if L − b ≤
√

La (3c)

4. Numerical Simulation

In the numerical simulations in this article, a large number of players of type 1 and
type 2 are arranged in a two-dimensional N×N lattice. Each player occupies a site (i, j),
alternating in the site occupation in a chessboard form. Consequently, every player is
surrounded by four partners (1-2, 2-1) and four mates (1-1, 2-2), as Figure 4 illustrates. The
initial prices p are assigned at random in the lattice locations from a uniform distribution
in the [0, pmax] interval, where pmax denotes the maximum price available. Thus, initially it
is p ≃ pmax/2 and σp ≃

√
p2

max/12 for both players.

1 2 1 2 1

2 1 2 1 2

1 2 1 2 1

2 1 2 1 2

1 2 1 2 1

(a)

1 2 1 2 1

2 1 2 1 2

1 2 1 2 1

2 1 2 1 2

1 2 1 2 1

(b)

↔↔l
l

l↔ ↔
1 2 1 2 1

2 1 2 1 2

1 2 1 2 1

2 1 2 1 2

1 2 1 2 1

(c)

Figure 4. The layout of the interactions in the numerical simulations. (a) Leader updating. (b) Fol-
lower updating. (c) Game play.

The game is iterated in a cellular automata (CA) manner, i.e., with uniform, local,
and synchronous interactions. The arrows in the generic players in Figure 4 aim to make
clear that the interactions are local, i.e., they involve only nearest neighbors. Thus, in the
updating of prices steps (Figure 4a,b), both types of players scrutinize their NE–NW–SE–SW
mate neighbors, whereas playing concerns (Figure 4c) the N–S–E–W partner neighbors.

The following occurs at every time step:

• Every leader (player 1) in the lattice will act first and will locate which price among
that of himself and those of his mate neighbors would provide him the highest payoff
applying the backwards induction principle. Such a generic leader will adopt such a
best local price (Figure 4a).
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• After the updating of all the player 1 prices, each follower (player 2) in the lattice will
locate among that of himself and those of his mate neighbors the price that provides
the best payoff when playing with his partner neighbors: the generic follower will
adopt such a best local price (Figure 4b).

• Once the price moves are made, every player plays with his four adjacent partners, so

that the payoff u(T)
i,j of a given individual at time step T is the average over these four

games (Figure 4c).

The simulations performed in this article have been performed by means of a Fortran
code with double precision variables. Table 1 shows the Fortran code that implements the
updating of the price of the leader located at the (i,j) site4. The subroutine changes its pp1
price to p1p. The three potential best responses, U, M, and N, are scouted in the application
of the backward induction principle.

Table 1. Updating of the leader located at (i,j).

subroutine SUPERLEAD(BC,WPP,p1p,i,j,n)
double precision WPP(n,n);integer BC(0:N+1)
COMMON /HOT/diffx,sumx,rll
ux=0.d0;p1p=WPP(i,j)
DO jj=j-1,j+1;DO ii=i-1,i+1;ik=BC(ii);jh=BC(jj)

if(mod(ik+jh,2)==1)cycle;pp1=WPP(ik,jh)
p2x=0.d0;u2x=0.d0
p2=pp1-(diffx+0.001d0) !U
if(p2.ge.0.d0)then

call PLAYHOT(pp1,p2,d1,d2,u1,u2)
if(u2>u2x)then;p2x=p2;u2x=u2;endif

endif
p2=(pp1+(2.d0*rll-sumx))/2.d0 !M
if(p2.ge.0.d0)then

call PLAYHOT(pp1,p2,d1,d2,u1,u2)
if(u2>u2x)then;p2x=p2;u2x=u2;endif

endif
p2=pp1+diffx !N

call PLAYHOT(pp1,p2,d1,d2,u1,u2)
if(u2>u2x)then;p2x=p2;u2x=u2;endif

call PLAYHOT(pp1,p2x,d1,d2,u1,u2)
if(u1>ux)then;ux=u1;p1p=pp1;endif

ENDDO;ENDDO
end

Table 2 shows the Fortran code that implements the updating of the price of the
follower located at the (i,j) site up to the p2p price.

Table 2. Updating of the follower located at (i,j).

subroutine FOLLOW(BC,WPP,p2p,i,j,n)
double precision WPP(n,n);integer BC(0:N+1)
ux=0.d0;p2p=0.d0
DO jj=j-1,j+1;DO ii=i-1,i+1;ik=BC(ii);jh=BC(jj)

if(mod(ik+jh,2)==0)cycle;p2=WPP(ik,jh);uux=0.d0
DO jjj=j-1,j+1;DO iii=i-1,i+1;ik=BC(iii);jh=BC(jjj)

if(mod(ik+jh,2)==1)cycle;pp1=WPP(ik,jh)
call PLAYHOT(pp1,p2,d1,d2,u1,u2)
uux=uux+u2

ENDDO;ENDDO
if(uux>ux)then;ux=uux;p2p=p2;endif

ENDDO;ENDDO
end
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In the simulations of this work, it is N = 200 and pmax = 10. Only the model
with will t = 1 will be considered, and the length of the market will be fixed to L = 3.
The information regarding the leader player 1 will be red-coded, and that regarding the
follower player 2 will be blue-coded in the forthcoming figures as in the previous ones. A
toy example of the simulation protocol is given in Figure A1 in Appendix A.

Incidentally, this kind of numerical simulation technique has also been applied to the
study of the sequential/Stackelberg formulation of a game of Cournot-type in [11].

5. Simulation of the Stackelberg–Hotelling Game
5.1. Simulation Dynamics

Figure 5 deals with the simulation of the SHOT game with a = b = 0.4; therefore,
k = 0. In such a game, it is 9 > 8

√
1.2 = 6.197, so that in the dynamics shown in Figure 5a,

the average price of the leader quickly converges nearly to the price given in Equation (3a);
thus, p⋆1 = 1

2 3L = 9/2 = 4.5. In turn, the average price of the follower converges to
p⋆2 = 1

4 5L = 15
4 = 3.750. As a result, s⋆ = d⋆1 = 1

2 (3.0 + 3.75 − 4.5) = 1.125, d⋆2 = 1.875, so
that u⋆

1 = 1.125 · 4.5 = 5.062, u⋆
2 = 1.875 · 3.75 = 7.031. Thus, the payoff of the follower

exceeds that of the leader. The actual average values reached in the simulation at T = 20
are shown in Figure 5b. The response function of the follower player to p1 = 4.500 is shown
in Figure 5c, where β2(p1 = 4.500) = 3.750. That turns out to be a M-response, which
provides the maximum payoff u2 = 7.032. Incidentally, this payoff is not far from the one
provided with the U-response: u2(p2 = p1 − dx = 2.300) = 6.901. The patterns of p, d, and
u in the simulation of Figure 5 at T = 4 are given in Figure A2 in Appendix A.

p, d,u L=3.0, t=1, a=b=0.4

4 8 12 16 20 T
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

p1
p2

u1

u2

d2

d1

(a)

L=3.0, t=1, a=b=0.4
p1=4.500, p2=3.750
d1=1.125, d2=1.875
u1=5.063, u2=7.032

p1

p2

x1 x20.0 1.125 3.0

(b)

u(p1=4.500, p2)
a=b=0.4

p2

13.502

3.0

p1+dx

6.700

6.901

p1−dx

2.300

1.875

7.032

3.750

u1

u2

d1
d2

(c)

Figure 5. Simulation of the SHOT game with a = b = 0.4. L = 3.0, t = 1.0. (a) Dynamics up to T = 10.
(b) The game at T = 100. (c) Response function of the follower player to p1 = 4.500.

In the a = b = 0.6 SHOT game of Figure 6a, it is 9 < 8
√

1.8 = 10.733, so that the
average price of the leader converges to the price given in Equation (3b), i.e., p⋆1 = 9 −
4
√

1.8 = 3.633, and that of the follower to p⋆2 = 1
2 (p⋆1 + t(L− k)) = 1

2 (3.633+ 3) = 3.316. As
a result, s⋆ = d⋆1 = 1

2 (3.0 + 3.316 − 3.633) = 1.341, d⋆2 = 1.659, so that u⋆
1 = 1.341 · 3.633 =

4.872, u⋆
2 = 1.659 · 3.316 = 5.501. Thus, both players obtain lower payoffs in Figure 6a

compared with those in Figure 5a, and the payoff of the follower exceeds to that of the
leader in a lower extent in such a comparison.

In the a = b = 1.15 simulation of Figure 6b, it is 3 − 1.15 = 1.850 <
√

3.45 = 1.857,
so that the average price of the leader converges to the price given in Equation (3c), i.e.,
p⋆1 = (3− 2.30)4.15/2.85 = 1.570, and that of the follower converges to p⋆2 = p⋆1 + L − 2a =
1.570 + 0.70 = 2.227. As a result, d⋆1 = 1

2 (3.0 + 2.227 − 1.570) = 1.850, d⋆2 = 1.150, so that
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u⋆
1 = 1.570 · 1.850 = 2.904, u⋆

2 = 2.227 · 1.150 = 2.561. Thus, the payoff of the leader exceeds
that of follower player, albeit in a low extent.

p,d,u L=3.0, t=1, a=b=0.6

4 8 12 16 20 T
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

u1

u2

p1
p2

d2
d1

(a)

10 20 30 40 T

p, d,u
L=3.0, t=1, a=b=1.15

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

u1 u2

p1

p2
d1

d2

(b)

Figure 6. Dynamics in the simulation of the SHOT game. L = 3.0, t = 1.0. (a) a = b = 0.6.
(b) a = b = 1.15.

5.2. Variable (a,b)

Figure 7 deals with the simulation of the SHOT game with variable (a, b). In Figure 7a,
it is 0 ≤ a = b ≤ L/2 = 1.5. The average prices remain unaltered up to a = a0 = 0.4225,
that of the leader at value given in Equation (3a), i.e., p⋆1 = 3L/2 = 4.5, and that of the
follower at p⋆2 = (p⋆1 + L)/2 = 5L/4 = 3.75. As a result, d1 = (L + 5L/4 − 3L/2)/2 =
3L/8 = 1.125, d2 = 5L/8 = 1.875, so that u1 = (3L/2)(3L/8) = 9L2/16 = 81/16 = 5.062,
u2 = (5L/4)(5L/8) = 25L2/32 = 225/32 = 7.031. Thus, the follower exceeds the leader in
the [0, a0] interval of a = b6. In the [a0, a1] interval with a1 = 1.1467, the average price of
the leader fits the price given in Equation (3b), i.e., p⋆1 = 3L − 4

√
La, to which the follower

responds with p⋆2 = (3L − 4
√

La + L)/2 = 2(L −
√

La). The average prices of both players
equalize at a = L/4 = 0.758 in Figure 7a, where p1 = p2 = 3L − 4

√
LL/4 = 3L − 2L = L =

3.0, d1 = d2 = L/2 = 1.5, u1 = u2 = LL/2 = 4.5. Remarkably, in the [L/4, a1] interval the
leader exceeds the follower. In the [a1, L/2] interval, the average price of the leader fits the
price given in Equation (3c), i.e., p⋆1 = (L − 2a)(L + a)/(L − a), and the follower responds
with p⋆2 = p⋆1 + (L − 2a), the N-response. These two prices become zero at a = L/2, but
the simulation fails to fit so monotonous decreasing when a approaches L/2 and shows a
kind of helter-skelter behaviour when the players are too close.

In Figure 7b, it is b = 0.4, 0 ≤ a ≤ 1.5, where a0 = 0.4239, almost equal to the a0 in
Figure 7a. At a = 0, it is p1 = (9 − 0.4)/2 = 4.3, p2 = (15 + 0.4)/4 = 3.85, and at a = 1.5,
it is p1 = 9 + 1.5 − 0.4 − 4

√
4.5 = 1.615.

In Figure 7c, it is a = 0.4, 0 ≤ b ≤ 1.5. The p1 price evolves according to Equation (3a)
up to b0 = 0.63610 and according to Equation (3b) in the [b0, 1.5] in the b-interval. At
b = 0, it is p1 = (9 + 0.4)/2 = 4.7, p2 = (15 − 0.4)/4 = 3.85; at b = b0, it is p1 =
(3L + a − 3L − a + 8

√
La)/2 = t4

√
La = 1 · 4

√
1.2 = 4.382; and at b = L/2 = 1.5, it is

p1 = (3L + a − L/2)− 4
√

La = (9 + 0.4 − 1.5)− 4
√

1.2 = 3.518. At variance with what
happens in Figure 7a,b, in Figure 7c, the average demand and payoffs of player 2 exceed
those of player 1 for every value of b.
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Figure 7. Simulation of the SHOT game with variable a and b. T = 100. L = 3.0, t = 1.0. (a) a = b,
(b) b = 0.4, (c) a = 0.4.

Figure A3 in Appendix A deals with the generalization of the SHOT game with players
who are not restricted to not crossing the center of the market line at their site location.
Therefore, a kind of extension of the simulations in Figure 7b,c when a and b can reach
L = 3.0 instead of just L/2 = 1.5. Moreover, in Figure A3, the fixed values are b = 0.0 and
a = 0.0 (instead of b = 0.4 and a = 0.4), that is, the players fixed in the simulations are
located in the extreme of the market line. Therefore, dx > 0.

5.3. Quadratic Transportation Cost

In place of considering linear transportation cost, this cost may be assumed to be
quadratic with respect to the distance, so that ei = p + t(s − xi)

2 , i = 1, 2 [3]. In the
conventional Hotelling game with quadratic transportation cost (HOT2), the indifferent
consumer is located at the s given by Equation (4), and the payoff functions (u) are given in
Equation (5). In the Hotelling game with quadratic transportation cost (HOT2), it turns out

that in the NE, it is
∂u∗

1
∂a

< 0 and
∂u∗

2
∂b

< 0, opposite to what happens in the conventional
game with linear transportation costs.

s =
1
2

(
sx +

p2 − p1

tdx

)
, dx = x2 − x1 (4)

u1 =


0 if s < 0

sp1 if 0 ≤ s ≤ L
Lp1 if s > L

, u2 =


Lp2 if s < 0

(L − s)p2 if 0 ≤ s ≤ L
0 if s > L

(5)

Figure 8 shows an example of the HOT2 game with a = b = 0.4; L = 3, t = 1. In
Figure 8a, it is p1 = 9.900, p2 = 8.250, i.e., the prices in Figure 5b multiplied by dx = 2.2.
Figure 8b shows the p2-response to p1 = 9.900. Player 2 undercuts player 1 in Figure 8b
when p2 ≤ 3.3, that is, when s ≤ 011, whereas the player 1 undercuts player 2 when
p2 ≥ 16.5, that is, when s ≥ L = 3.012.
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L=3, t=1, a=b=0.4
p1=9.900, p2=8.250
d1=1.125, d2=1.875

u1=11.138, u2=15.469

p1

p2

x1 x20.0 1.125 3.0

(a)

29.70

8.250

15.469

3.3 16.5

u2
u1

d2
d1

u(p1=9.900, p2)

3.0

9.9

0.0
p2

a=b=0.4

(b)

Figure 8. The HOT2 game with a = b = 0.4. L = 3, t = 1. (a) The game with p1 = 9.900, p2 = 8.250.
(b) p2-response to p1 = 9.900.

The prices in the SPE solution of the SHOT game with quadratic transportation cost
(SHOT2) are given in Equation (6)13. In location-symmetric games, these formulas reduce

to p⋆1 = 3
2 Ltdx > p⋆2 = 5

4 Ltdx. As a result, d1 = s = 1
2

(
L + 5

4 L − 3
3 L

)
= 3

8 L < L/2;

therefore, u1 = 3
8 L 3

2 Ltdx = 9
16 L2tdx < u2 = 5

8 L 5
4 Ltdx = 25

32 L2tdx.

p⋆1 =
1
2

(
3L + k

)
tdx, p⋆2 =

1
4

(
5L − k

)
tdx (6)

Figure 9 is the analog to Figure 7 with quadratic transportation cost. In the location-
symmetric case of Figure 9a, it is p⋆1 = 3

2 3(3 − 2a) = 27
2 − 9a, and p⋆2 = 5

4 3(3 − 2a) =
45
4 − 15

2 a, so that d1 = 9
8 , d2 = 15

8 . Thus, both players have maximum payoffs with
a = b = 0.0, where, (p⋆1 , p⋆2) = (13.500, 11.250) → (u⋆

1 , u⋆
2) = (15.185, 21.094).

p,d,u

a=b,L=3, t=1
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1
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Figure 9. Simulation of the SHOT2 game. T = 100. L = 3.0, t = 1.0. (a) Variable a = b, (b) Variable a,
b = 0.4, (c) Variable b, a = 0.4.

In the b = 0.4 scenario of Figure 9b, it is p⋆1 = 1
2
(
8.6 + a

)
(2.6 − a), and p⋆2 = 1

4
(
15.4 −

a
)
(2.6 − a), where p⋆1(a = 0) = 1

2 8.6 · 2.6 = 11.180, p⋆2(a = 0) = 1
4 15.4 · 2.6 = 10.010.

The average payoff of the follower exceeds that of the leader in Figure 9b except when a
approaches L/2 = 1.5. In the a = 0.4 scenario of Figure 9c, it is p⋆1 = 1

2
(
9.4 − b

)
(2.6 − b),

p⋆2 = 1
4
(
14.6+ b

)
(2.6− b), where p⋆1(b = 0) = 1

2 9.4 · 2.6 = 12.220, p⋆2(b = 0) = 1
4 14.6 · 2.6 =

9.940.
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Location Responses for Given Prices

Figure 10 shows the features of the location responses in the HOT2 game given the
prices p1 = 9.900, p2 = 8.250 In Figure 10a, it is b = 0.400, and the best a-location turns
out to be a = 1.31614. In Figure 10b, it is a = 0.400, and the best b-location turns out to be
b = 1.500, that is, the maximum feasible in our model15.

p1=9.900, p2=8.250

a

u(a, b=0.400)

13.027

1.316

u1
11.140

u215.473

d1
d2

0.400 1.5

(a)

b

u(a=0.400, b)
p1=9.900, p2=8.250

23.104

1.5

u2

u1
11.140

15.473

d2
d1

0.400

(b)

Figure 10. Location responses in the HOT2 game given p1 = 9.900, p2 = 8.250. L = 3, t = 1. (a) Variable
a given b = 0.400. (b) Variable b given a = 0.400.

6. The Stackelberg–Hotelling Game with Reservation Cost

In the basic Hotelling model, each consumer takes one unit of the product from the
player with a lower expense, no matter how high it is. Thus, if both players collude, they
may charge prices as high as they agree, with no upper limit. Lerner and Singer [4] imposed
an upper threshold α on the expenses, above which the demand falls from one to zero.

(
xi

1 = max(li
1, 0), xs

1 = min(ls
1, s)

)
,

(
xi

2 = max(li
2, s), xs

2 = min(ls
2, L)

)
(7)

Let us exemplify the α-HOT game by means of Figure 11, where departing from the
game of Figure 5b, four values of α are imposed. If α is sufficiently high as to induce
all the consumers to buy one unit of the product, the conventional Hotelling game is
recovered; this is the case of Figure 11d, where α = 5.5 > 5.225 = 4.50 + (1.125 − 0.4).
Opposite to this, with very small α, not any consumer would buy from any seller; this
is the case of Figure 11a, where α = 3.0 < 3.75 = min(p1, p2). Intermediate values of α
may induce the emergence of local monopolies whose endpoints are computed according
to Equation (7), departing from the locations li where α = pi + t|li − xi| [12]. Thus, for
example, in the game of Figure 11c with α = 5.0, it is xi

1 = 0.0, x2
1 = 5.0 − 4.5 + 0.4 = 0.90,

and xi
2 = 1.125, x2

2 = 3.75+ 2.6− 5.0 = 1.35; that is, the consumers in the (0.00,0.90) interval
buy from player 1, those in the (1.35,3.00) interval buy from player 2, and those in the
(1.125 ± 0.225) interval do not buy from any player. In the game of Figure 11b with α = 4.0,
no consumer buys from player 1, whereas the consumers in the (2.6 ± ∆ = 0.25) interval
buy from player 2 (3.75 + ∆ = 4.0).

Finding the best response to a given price in the α-SHOT game is not an easy task
due to the varied casuistry inherent to the introduction of the α-threshold. Thus, we will
resort to unsupervised simulation by calculating the response of the follower to a given
p1 in the [0, p1 + dx] interval across 1000 equidistant points in order to locate the best one.
Table 3 shows the Fortran code that implements the updating of the price of the leader
located at the (i,j) site in such a raw way, where PLAYLERNER implements the α-HOT
game. This kind of brute-force simulation demands very high computer resources, much
higher than those demanded by the code in Table 1. Incidentally, the simulations in Figure 7
with unsupervised leader updating are shown in Figure A4 in Appendix A.
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5.0

0.0 0.90 1.35 3.0

a=b=0.4, α=5.0
p1=4.50, p2=3.75
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u1=4.051, u2=6.189

(c)
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x1 x2
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0.0 1.1251.1251.125 3.0

a=b=0.4, α=5.5
p1=4.50, p2=3.75

d1=1.125, d2=1.875
u1=5.063, u2=7.032

(d)

Figure 11. The α-HOT game with a = b = 0.4. L = 3.0,t = 1.0. (a) α = 5.5. (b) α = 5.0 (c) α = 4.0.
(d) α = 3.0.

Table 3. Unsupervised updating of the leader located at (i,j).

subroutine RAWLEAD(BC,WPP,p1p,i,j,n)
double precision WPP(n,n);integer BC(0:N+1)
common/HOT/diffx
ux=0.d0;p1p=WPP(i,j)
DO jj=j-1,j+1;DO ii=i-1,i+1;ik=BC(ii);jh=BC(jj)

if(mod(ik+jh,2)==1)cycle;pp1=WPP(ik,jh)
p2x=0.d0;u2x=0.d0;rip2=(pp1+diffx)/1000.d0
DO ipo=1,1001

p2=(ipo-1)*rip2
call PLAYLERNER(pp1,p2,d1,d2,u1,u2)
if(u2>u2x)then;u2x=u2;p2x=p2;endif

ENDDO
call PLAYLERNER(pp1,p2x,d1,d2,u1,u2)
if(u1>ux)then;ux=u1;p1p=pp1;endif

ENDDO;ENDDO
end

Figure 12 shows the outcomes in the unsupervised simulation of the α-SHOT game
with a = b = 0.4. Only in the case of very low α in Figure 12a do the customers of a segment
in the middle of the market line fail to buy products.

Figure 13 is the analog to Figure 7 in the α = 5.0-SHOT game produced through
unsupervised simulation. To facilitate the comparison between both figures, the prices
of both players in Figure 7 appear green-marked in Figure 13. Remarkably, in the three
snapshots of Figure 13, it is d1 + d2 = L = 3.0.

In the location-symmetric simulation of Figure 13a, at a = 0, it is p1 = 3.665, p2 = 3.331,
d1 = 1.333, d2 = 1.667, u1 = 4.886, u2 = 5.552.The graphs in Figure 13a coincide with
those in Figure 7a when a ≥ a0 = 0.480, where the values of the prices are so small that
the α threshold plays no role in the final outcome. Therefore, at a = 0.480, it is p1 ≃
9.0 − 4

√
3 · 0.480 = 4.20, p2 ≃ (4.20 + 3)/2 = 3.60, so that d1 ≃ (3.0 + 3.6 − 4.3)/2 = 1.20,

d2 = 3.0 − 1.2 = 1.8, u1 ≃ 4.2 · 1.2 = 5.04 > 4.886, u2 = 3.6 · 1.8 = 6.48 > 5.552. The
graphs in Figure 13b coincide with those in Figure 7b when a ≥ a0 = 0.460. In Figure 7c, it
is b0 = 0.700, b1 = 0.180.
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Figure 12. Simulation of the α-SHOT game with a = b = 0.4. L = 3.0, t = 1.0. (a) α = 2.0. (b) α = 3.0
(c) α = 4.0. (d) α = 5.0.
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Figure 13. Simulation of the 5.0-SHOT game with variable a and b at T = 50. L = 3.0, t = 1.0.
(a) a = b, (b) b = 0.4, (c) a = 0.4.

A solution of a game is said to be Pareto optimal (PO) if no other solution would
increase the payoffs of both players simultaneously. In the α-HOT game with high α
and separated players, the PO solution is achieved when the intersection of the expenses
occurs at level α. Therefore, p•1 + t(s − x1) = p•2 + t(x2 − s) = α, and as a result, the PO
solution verifies Equation (8a). In the particular case of the PO solution with equal prices,
Equation (8a) reduces to Equation (8b). If additionally the game is location-symmetric,
Equation (8b) reduces to Equation (8c). Thus, in the scenario of Figure 7a at a = 0.0, it
would be p•1,2 = 5.0 − ( 3

2 − 0) = 3.5 → d•1,2 = 1.5, u•
1,2 = 5.25.

p•1 + p•2 = 2α − t(x2 − x1) (8a)

p•1,2 = α − t(x2 − x1)/2 (8b)

p•1,2 = α − t(L/2 − x1) (8c)

It turns out that the SPE solution reached in Figure 13a at a = 0 is PO: p1 + p2 ≃
7.00 = 2 · 5.0 − (3.0 − 0.0). Figure A5 in Appendix A proves this result, showing that the
payoffs of both players are located on the border of the payoffs region. At a = 0.480, it is
p1 + p2 ≃ 7.80 = 2 · 5.0 − (3.0 − 2 · 0.48) = 7.96; thus, the SPE is almost PO. With higher
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values of a = b, the SPE ceases to be PO. Figures A6 and A7 in Appendix A prove this fact
in the particular cases of the a = 0.7 and a = 1.15 scenarios of Figure 13.

6.1. Variable α

Figure 14 deals with simulation of the location-symmetric α-SHOT game at T = 50. In
the three snapshots of the figure, the outcome of the game is affected by α before reaching a
threshold α0 from which the reached plateau corresponds to the outcome of the unrestricted
game, where the aggregate demand covers the whole market, i.e., d1 + d2 = L = 3.0.
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Figure 14. Simulation of the location-symmetric α-SHOT game at T = 50. L = 3.0, t = 1.0.
(a) a = b = 0.4, (b) a = b = 0.6, (c) a = b = 1.15 .

In Figure 14a, it is a = b = 0.4, and α0 turns out to be α0 = 5.22516. In Figure 14b, it is
a = b = 0.6 with α0 = 4.37517. In Figure 14c, it is a = b = 1.15 with α0 = 3.42018.

a=b=1.15, α = 4.0
p1=1.570, p2=2.270
d1=1.851, d2=1.150
u1=2.906, u2=2.611

p1

p2

x1 x2

4.0

0.0
1.850

3.0

(a)

u1

u2d1
d2

u(p1=1.570, p2)

a=b=1.15, α = 4.00

p22.270

2.611

p1+dxp1

1.570

2.610

p1−dx
0.870

(b)

Figure 15. A location-symmetric HOT game with a = b = 1.15. (a) The game in the SPE solution.
(b) N-response.

6.2. The α-SHOT Game with Quadratic Transportation Cost (α-SHOT2)

Figure 16 is the analog to Figure 5 with α = 5.0 reservation cost and quadratic trans-
portation cost. Figure 16a indicates that the simulation very quickly stabilized its outputs.
The intersection of the expenses at level α = 5.0 in Figure 16b indicates that the solution
reached is PO. As expected from the above study of the α-SHOT game, in the α-SHOT2
game with high values of a = b, the SPE solution is not PO. This is proved in the particular
case of a = b = 1.15 in Figure A8 in Appendix A.
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Figure 16. Simulation of the 5.0-SHOT2 game with a = b = 0.4. L = 3.0, t = 1.0. (a) Dynamics up to
T=10. (b) The game at T = 10.

Figure 17a is the analog to Figure 13a with quadratic transportation cost. The payoffs
of both players increase from a = 019 up to circa a = 0.75 = L/420. Both players obtain
the same payoff up to circa a = 0.4 (checked in Figure 16b). When a > 0.75, both payoffs
commence to decrease up to their cancellation (as customary in this work, very close to
a = b = L/2 = 1.5, the simulation fails to provide such a cancellation). The payoff of the
leader coincides with that of the follower with low values of a, exceeds it when approaching
a = 0.75, and becomes inferior when a > 0.75.

Figure 17b is the analog to Figure 14a with quadratic transportation cost. The threshold
α0 from which a plateau is reached is as high as α0 = 8.100. In the plateau it is p1 = 6.982,
p2 = 6.791, d1 = 1.457, d2 = 1.543, u1 = 10.170, u2 = 10.48121.
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Figure 17. Simulation of the α-SHOT2 game. T = 10. L = 3.0, t = 1.0. (a) Variable a = b, α = 5.0.
(b) Variable α, a = b = 0.4.

7. The Stackelberg–Hotelling-Smithies Game (α-SHS)

In the Hotelling-Smithies game (α-HS) [5,13–15], in addition to the reservation cost,
the consumer demand (q) is an (elastic) decreasing function of the expense (e), typically of
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the form qi(s) = max(α − ei(s), 0), i = 1, 2. Consequently, the demand to every player in

the α-HS game turns out to be d1 =
∫ xs

1
xi

1
qi(s)ds, d2 =

∫ xs
2

xi
2

qi(s)ds.

The example in Figure 18 deals with the analog to the game in Figure 11d with elastic
demand. In both scenarios, the location of the indifferent consumer coincides at s = 1.531.
But with elastic demand, the demands turn out to be d1 = 0.782 (<1.125), d2 = 2.114
(>1.875)22. Figure 18a proves that the best response to p1 = 4.500 is not p2 = 3.750 but
p2 = 2.172, very close to p2 = p−dx = 2.300, where the outcomes of the games show a
discontinuity featured by the start of the demand to player 1. Note that the layout of the
game in Figure 18 is notably altered compared with its analog in the conventional HOT
game in Figure 5b,c.

With α large enough so that the players interact, the NE solution is featured in
Equation (9), provided that a = b ≤ a▼, i.e., when the players are not very close (the
value of a▼ is calculated in [13] via simulation).

p⋆1,2 =
λ −

√
λ2 − 4t(αL − 2c)

2
, λ = α + t(a + 3

L
2
), c =

1
2
(
a2 + (

L
2
− a)2)t (9a)

d⋆1,2 = (α − p⋆)
L
2
− c, α≥α2 = t(L − 2a)− 2

c
L

(9b)

In turn, with α large enough, the symmetric PO solution is featured in Equation (10).(
p•1,2, Q•

1,2

)
=

(α

2
− c

L
, p•1,2

L
2

)
, c =

1
2
(a2 + (

L
2
−a)2)t if α ≥ α2 = L − 2a − 2

c
L

(10)

In a α = 5.0-HS game with a = b = 0.4 and L = 3, t = 1, it would be p⋆1,2 = 1.653;
therefore, d⋆1,2 = 4.336, u⋆

1,2 = 7.16623. In turn, the symmetric PO solution in such a game
would be p•1,2 = 2.305 → d•1,2 = 3.458, u•

1,2 = 7.970. Figure A9 in Appendix A locates these
solutions in the prices, demands, and payoffs regions.

p1

p2

x1 x2

5.5

0.0 1.125 3.0

a=b=0.40, α=5.50
p1=4.50, p2=3.75

d1=0.782, d2=2.114
u1=3.521, u2=7.927

d1
d2

(a)

a=b=0.400, α=5.50

p2

u(p1=4.500, p2)

3.75

p1+dx
6.700

p1
4.5002.300

14.173

2.172

6.527

u2

d2

u1

d1

(b)

Figure 18. The α = 5.50-SH game with a = b = 0.4. L = 3.0,t = 1.0. (a) The game with p1 = 4.500,
p2 = 3.750. (b) p2-response to p1 = 3.750.

7.1. Simulation of the α-SHS Game

Figure 19 is the analog to Figure 12 with elastic demand. At variance with what
happens in the case of very low α in Figure 12a, the customers close to the center of the
market line do not fail in buying product. In Figure 19d, it is p⋆1 = 1.742, p⋆1 = 1.669, not far
from the p⋆1,2 = 1.653 value reached in the game with simultaneous choices. Not far but
higher, so that the demands and payoffs turn out to be lower in Figure 19d than the values
reported in the just above paragraph.
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a=b=0.40, α=3.0
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d1=2.115, d2=2.128
u1=2.395, u2=2.397

3.0

0.0 1.497 3.0

(b)

a=b=0.40, α=4.0
p1=1.456, p2=1.425

p1 p2

x1 x2

d1=3.109, d2=3.202
u1=4.526, u2=4.562

4.0

0.0 1.484 3.0

(c)

a=b=0.40, α=5.0
p1=1.742, p2=1.669

p1 p2

x1 x2

d1=4.124, d2=4.394
u1=7.182, u2=7.3335.0

0.0 1.463 3.0

(d)

Figure 19. Simulation of the α-SHS game with a = b = 0.4. L = 3.0,t = 1.0. (a) α = 2.0. (b) α = 3.0.
(c) α = 4.0. (d) α = 5.0.

Figure 20 is the analog to Figure 13 with elastic demand. At variance with what
happens in the simulations of Figure 13, the aggregated (elastic) demand d1 + d2 increases
with a (or b) in the simulations of Figure 20. The value of a0 = 1.030 found in Figure 20a
is notably higher than that found in Figure 13, and the payoff of the leader exceeds that
of the follower in a low extent up to a0 in the location-symmetric simulation reported in
Figure 20a, where a1 = 1.300. In Figure 20b, the payoff of the follower exceeds that of the
leader just up to a0 = 0.430. In Figure 20c, the payoff of the leader exceeds that of the
follower just up to a0 = 0.360.
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Figure 18: Simulation of the 5.0-SHS game with variable a and b. T = 50. L=3.0. t=1.0 . (a)
a = b . (b) b = 0.4 . (c) a = 0.4.
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Figure 19: Simulation of the location symmetric α-SHS game. T = 50. L=3.0, t=1.0 . (a) a=b=0.4 .
(b) a=b=0.6 . (c) a=b=1.15 .

7.1 The SHS game with quadratic transportation cost (α-SHS2)

In the α-HS game with quadratic transportation cost (α-HS2), the potential demand to every player
of a consumer located at s becomes qi(s)=max(α− (pi + (s− xi)

2), 0), i=1, 2.
Figure 20-(a) is the analogue to Fig.18-(a) with quadratic transportation cost. No discontinuities

are apparent in the graphs of Fig. 20-(a). The maximum payoffs occur at a ≃ b ≃ 0.623(25).
Figure 20-(b) is the analogue to Fig. 19-(b) with quadratic transportation cost. Quite unexpect-

edly, the graphs of both players are virtually coincident in Fig. 20-(b).
Figure 29 in the Appendix shows the prices, demands and payoffs regions in the 5.0-HS2 game

with L = 3, a = b = 0.4.

(25)Where it is p1 = 2.007, d1 = 4.166, u1 = 8.359, p2 = 1.968, d2 = 4.276, u2 = 8.413.

20

Figure 20. Simulation of the 5.0-SHS game with variable a and b. T = 50. L = 3.0. t = 1.0. (a) a = b.
(b) b = 0.4. (c) a = 0.4.

Figure 21 is the analog to Figure 14 with elastic demand. At variance with what
happens in the simulations of Figure 14 with inelastic demand, in the simulations with
elastic elastic demand in Figure 21, the increase of α induces the increase of the prices,
demands, and payoffs without reaching a plateau. The graphs in the a = b = 0.4 simulation
of Figure 21a and in the a = b = 0.6 simulation of Figure 21b are quite similar. But in the
a = b = 1.15 game in Figure 21c, i.e., when the players are quite close, the payoffs of both
players notably decrease.



Games 2024, 15, 34 17 of 25

p,d,u

α

L=3.0, t=1, a=b=0.4

1.0 2.0 3.0 4.0 5.0 6.0

1

2

3

4

5

6

7

8

9

10

11

12

u2
u1

d2
d1

p1
p2

d1+d2

(a)

p,d,u

α

L=3.0, t=1, a=b=0.6

1.0 2.0 3.0 4.0 5.0 6.0

1

2

3

4

5

6

7

8

9

10

11

12

d1+d2

d2
d1

u2
u1

p1
p2

(b)

p,d,u

α

L=3.0, t=1, a=b=1.15

1.0 2.0 3.0 4.0 5.0 6.0

1

2

3

4

5

6

7

8

9

10

11

12

d2

d1

u1
u2

p2
p1

d1+d2

(c)

Figure 21. Simulation of the location-symmetric α-SHS game. T = 50. L = 3.0, t = 1.0. (a) a = b = 0.4.
(b) a = b = 0.6. (c) a = b = 1.15 .

7.2. The α-SHS Game with Quadratic Transportation Cost (α-SHS2)

In the α-HS game with quadratic transportation cost (α-HS2), the potential demand to
every player of a consumer located at s becomes qi(s) = max(α− (pi +(s− xi)

2), 0), i = 1, 2.
Figure 22a is the analog to Figure 20a with quadratic transportation cost. No dis-

continuities are apparent in the graphs of Figure 22a. The maximum payoffs occur at
a ≃ b ≃ 0.62324.
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Figure 22. Simulation of the SHS2 game. T = 10. L = 3.0, t = 1.0. (a) Variable a = b, α = 5.0.
(b) Variable α, a = b = 0.4.

Figure 22b is the analog to Figure 21b with quadratic transportation cost. Quite
unexpectedly, the graphs of both players are virtually coincident in Figure 22b.

Figure A10 in Appendix A shows the prices, demands, and payoff regions in the
5.0-HS2 game with L = 3, a = b = 0.4.

8. Conclusions

Spatial numerical simulation with local interaction turns out to be a powerful tool
to study the sequential (leader–follower) Hotelling game, i.e., the Stackelberg–Hotelling
(SHOT) game.
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It proves to be particularly useful to evaluate the Subgame Perfect Equilibrium (SPE)
solution of the SHOT game, which turns out to be a challenging task in the conventional
game and cumbersome in games with reservation cost and with elastic demand. Such a
SPE solution does exist regardless of the proximity of the players.

As a general rule, the follower exceeds the leader in the SPE solution of the game. The
follower advantage turns out to be apparent in the unrestricted game, decreases in the
game with reservation cost, and becomes quite negligible in the game with elastic demand.

In the SPE solution of the location-symmetric game, (i) the payoffs of both players tend
to increase with the increase of the distance between players (maximum differentiation),
and (ii) the SPE tends to be Pareto optimal when the distance between players increases.

The analytical study of the SHOT game with reservation cost and elastic demand has
not been addressed so far. We plan to undertake it in a subsequent study with the support
of the knowledge gained here through simulation.

Once the mathematical analysis of the extensions of the Hotelling game has been
carried out, (i) the game will be simulated with reservation cost and with elastic demand
taking advantage of said analysis in a very similar way to how it is performed here with
the unrestricted game (Table 1), and (ii) the game with choice of both price and location
will be simulated.
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Appendix A

Appendix A.1. Initial Simulation Iteration

Figure A1 shows the quantities involved in the initial iteration in a 5 × 5 lattice subset
in the simulation of Figure 5. The snapshot under (p0

1, p0
2) shows the initial prices, the

snapshot under (p1
1, p0

2) shows the updated leader prices, and the snapshot under (p1
1, p1

2)
shows the updated follower prices, the snapshot under (u1

1, u1
2) shows the payoffs in the

Hotelling game after the price choices.

(p01, p
0
2) (p11, p

0
2) (p11, p

1
2) (u1

1, u
1
2)

6.2 6.5 1.0 3.2 8.9
7.2 1.2 2.2 0.2 5.3
2.3 9.7 9.9 5.8 9.6
5.2 7.1 5.1 4.3 3.4
9.3 5.6 6.2 5.8 7.7

2.5 6.5 2.5 3.2 0.2
7.2 2.3 2.2 1.0 5.3
2.3 9.7 4.3 5.8 4.3
5.2 2.3 5.1 4.3 3.4
9.3 5.6 4.3 5.8 4.3

2.5 2.2 2.5 2.2 0.2
1.2 2.3 3.2 1.0 4.8
2.3 2.2 4.3 3.4 4.3
3.4 2.3 5.1 4.3 3.4
9.3 5.2 4.3 5.1 4.3

5.1 3.5 4.0 2.6 0.6
2.6 3.3 3.7 2.7 2.3
3.8 3.9 4.7 4.9 5.3
5.2 5.5 4.2 6.3 6.1
0.0 7.3 8.3 8.0 6.7

Figure A1. Initial iteration in a 5 × 5 lattice subset in the simulation of Figure 5.
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The leader framed in the far-left snapshot of Figure A1 updates his price from 9.905
into 4.281 after the computations shown in Table A1 (the highest potential payoff is 5.005,
associated to p1 = 4.281).

Table A1. The computations in the first iteration of the leader player framed in Figure A1.

pU
2 pM

2 pN
2 uU

2 uM
2 uN

2 β2 u1

p1 = 1.236 −0.965 2.118 3.436 0.000 2.243 1.374 2.118 2.399
p1 = 7.147 4.946 5.074 9.347 14.839 12.871 3.739 4.946 0.000
p1 = 9.905 7.704 6.452 12.105 23.111 19.357 4.842 7.704 0.000
p1 = 0.207 −1.994 1.603 2.407 0.000 1.285 0.963 1.603 0.454
p1 = 4.281 2.080 3.640 6.481 6.239 6.626 2.592 3.640 5.005

The follower framed in the (p1
1, p1

2) snapshot of Figure A1 updates his price from 2.164
into 3.206, after the computing that follows (the highest payoff is 14.820, associated to
p2 = 3.206).
p2 = 6.527 → u2(2.319, p2)+u2(2.452, p2)+u2(4.281, p2)+u2(1.017, p2) = 0.000+0.000+0.000+0.000 = 0.000
p2 = 9.674 → u2(2.319, p2)+u2(2.452, p2)+u2(4.281, p2)+u2(1.017, p2) = 0.000+0.000+0.000+0.000 = 0.000
p2 = 2.164 → u2(2.319, p2)+u2(2.452, p2)+u2(4.281, p2)+u2(1.017, p2) = 2.319+2.452+4.281+1.017 = 14.512
p2 = 3.206 → u2(2.319, p2)+u2(2.452, p2)+u2(4.281, p2)+u2(1.017, p2) = 1.300+3.387+3.601+6.532 = 14.820
p2 = 5.838 → u2(2.319, p2)+u2(2.452, p2)+u2(4.281, p2)+u2(1.017, p2) = 0.000+0.000+0.000+4.211 = 4.211

The central leader player in the far-right snapshot obtains the payoff:
u1 = [u1(4.281, 2.164) +u1(4.281, 3.402) + u1(4.281, 3.206) + u1(4.281, 5.078)]/4 = 1.890 +
4.540 + 4.121 + 8.127]/4 = 4.670.

Appendix A.2. Patterns

Figure A2 shows the patterns of p, d, and u in the simulation of Figure 5 at T = 4.
Where it is p1 = 4.375, d1 = 1.138, u1 = 4.964; p2 = 3.652, d2 = 1.862, u2 = 6.781, and
σp1 = 0.219, σd1 = 0.107, σu1 = 0.365; σp2 = 0.232, σd2 = 0.116, σu2 = 0.234. Shortly after
T = 4, say at T = 10, the standard deviations of the p, d, and u magnitudes become
negligible, so that their patterns lose the patchwork aspect shown in Figure A2 and become
fairly fuzzy.

p4 d4 u4

Figure 21: Patterns in the simulation of Fig. 4 at T = 4. Increasing grey levels indicate increasing
values. pmin=2.199, pmax=4.621; dmin=1.143, dmax=3.000; umin=0.000, umax=7.257.

they cancel out at a = 3.0. In Fig. 22-(b) it is a0 = 0.0, b ≤ L = 3.0, with b0 = 2.142(27). From
b0, the follower notably increases his advantage over the leader so that when b → 3.0, i.e., when
x2 → x1 = 0.0, the follower tends to get the whole market (d2 → 3.0).

a0 a

p,d,u
L=3, t=1, b=0.0
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Figure 22: Simulation of the SHOT game with variable a and b. T = 100. L=3.0, t=1.0 . (a)
a ≤ L = 3.0, b = 0.0, (b) b ≤ L = 3.0, a = 0.0.

9.4 Unsupervised leader updating in the SHOT game

Figure 23 is the analogue to Fig. 6 with unsupervised leader updating, i.e., implementing the code
in Tab. 4 (invoking PLAYHOT instead of PLAYLERNER). In the comparison of the snapshots of

(27)It is p⋆1 = t(3L+ k), if 5L− a ≤ 7b [1]. Therefore in Fig. 22-(b), 15 = 7b0 → b0 = 15/7 = 2.141.

24

Figure A2. Patterns in the simulation of Figure 5 at T = 4. Increasing grey levels indicate increasing
values. pmin = 2.199, pmax = 4.621; dmin = 1.143, dmax = 3.000; umin = 0.000, umax = 7.257.

Appendix A.3. Players beyond the Center

At variance with what is assumed in this study, in the simulations of Figure A3,
the players are not restricted in their site location. Thus, in Figure A3a, it is b0 = 0.0,
a ≤ L = 3.0, with a0 = 46725, the critical value of a from which the prices and payoffs of
both players begin to decrease until they cancel out at a = 3.0. In Figure A3b, it is a0 = 0.0,
b ≤ L = 3.0, with b0 = 2.14226. From b0, the follower notably increases his advantage over
the leader so that when b → 3.0, i.e., when x2 → x1 = 0.0, the follower tends to obtain the
whole market (d2 → 3.0).
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Figure A3. Simulation of the SHOT game with variable a and b. T = 100. L = 3.0, t = 1.0.
(a) a ≤ L = 3.0, b = 0.0, (b) b ≤ L = 3.0, a = 0.0.

Appendix A.4. Unsupervised Leader Updating in the SHOT Game

Figure A4 is the analog to Figure 7 with unsupervised leader updating, i.e., implement-
ing the code in Table 3 (invoking PLAYHOT instead of PLAYLERNER). In the comparison
of the snapshots of both figures, it stands out the trembling aspect of the graphs before
reaching the a0 and b0 landmarks in Figure A4.

p,d,u
L=3, t=1, a=b

a
1 1.50.5

1
2
3
4
5
6
7
8

a0
0.75

a1

u2

u1
p1
p2

d2
d1

(a)

p,d,u
L=3, t=1, b=0.4

a
a0
0.5 0.75 1 1.5

1

2

3

4

5

6

7

8
u2

u1
p1
p2

d2
d1

(b)

p,d,u
L=3, t=1, a=0.4

b
b0

0.5 1 1.5

1

2

3

4

5

6

7

8
u2

u1
p1
p2

d2
d1

(c)

Figure A4. Raw simulation of the SHOT game with variable a and b at T = 100. L = 3.0, t = 1.0.
(a) a = b, (b) b = 0.4, (c) a = 0.4.

Appendix A.5. Prices, Demands, and Payoff Regions

This section shows the prices, demands, and payoff regions in some particular
Hotelling games. Particular attention is paid to the location of the p1 = p2, NE, SPE
and PO solutions.

Appendix A.5.1. α-HOT

Figure A5 shows the prices, demands, and payoff regions in the 5.0-SHOT game
of Figure 13a with a = b = 0.0. Only the solutions with u1 > 0 and u2 > 0 are shown
in the figure; therefore, in Figure A5a, (i) both prices are cut at the α = 5.0 level, and
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(ii) , |p2 − p1| > x2 − x1 = 3.0. The green-marked solutions appear in the border of the
payoffs region in Figure A5c; thus, they are PO solutions. These solutions are generated
by the green-marked prices in Figure A5a calculated from Equation (8a). The •-marked
price-symmetric PO solution is (Equation (8c)): p•1,2 = α − L/2 − x1 = 3.5 → q•1,2 = 1.5,
u•

1,2 = 5.25. The ⋆⃝-marked solution is the SPE solution, which turns out to be a PO solution.
The red-marked solutions verify p2 = p1, 0 ≤ p1 ≤ α = 5.0. The ⋆ -marked solution
corresponds to the NE in the game with simultaneous choices; therefore (Equation (2a)):
p⋆1,2 = L = 3.0 → d⋆1,2 = L/2 = 1.5, u⋆

1,2 = 4.5.
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Figure 24: Regions in the 5.0-HOT game with a=b=0.0, L=3, t=1 when u1 > 0 and u2 > 0. The
p1=p2 solutions are red-marked. The brown-marked solutions verify d1 + 21=L=3.0. The green-
marked solutions are PO. (a) Prices. (b) Demands. (c) Payoffs.
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Figure 25: Regions in the 5.0-HOT game with a=b=0.7, L=3, t=1 when u1 > 0 and u2 > 0. The
p1=p2 solutions are red-marked. The brown-marked solutions verify d1 + d2=L=3.0. The green-
marked solutions are PO. (a) Prices. (b) Demands. (c) Payoffs.

9.5.2 α-HOT2

Figure 27 deals with the 5.0-HOT2 game with L=3.0, a=b=1.15. The ⋆ -NE solution is located at p⋆1,2 =
0.7L = 2.1 (c) → q⋆1,2 = L/2 = 1.5 (b), u⋆

1,2 = 2.1 · 1.5 = 3.15 (a). The symmetric PO solution is located at
p•1,2 = α− x2

1 = 5.0− 1.152 = 3.667 (c)→ q•1,2 = L/2 = 1.5 (b), u•
1,2 = 3.667 · 1.5 = 5− 515 (a).

9.5.3 α-HS

Figure 28 deals with 5.0-SHS game with L=3.0, a = b = 0.4 when u1 > 0.0 and u2 > 0.0. The green-marked
prices induce payoffs that are close to the border of the payoffs region, but not in it. Therefore, they have
been termed almost-PO in the caption of Fig. 28.

9.5.4 α-HS2

Figure 29 is the analogue to Figure 28 with quadratic transportation cost. Figure 29-(a) indicates that any
pair of non-zero prices below α = 5.0 induce positive payoffs, and Fig. 29-(c) indicates that the SPE solution

26

Figure A5. Regions in the 5.0-HOT game with a = b = 0.0, L = 3, t = 1 when u1 > 0 and u2 > 0.
The p1 = p2 solutions are red-marked. The brown-marked solutions verify d1 + 21 = L = 3.0. The
green-marked solutions are PO. (a) Prices. (b) Demands. (c) Payoffs.

Figure A6 is the analog to Figure A5 with a = b = 0.7. At variance with what happens
in Figure A5c, in Figure A6c the payoffs of the ⋆⃝-SPE solution are not located in the border
of the payoffs region, but fairly close to those of the ⋆ -NE (still the same as in Figure A5).
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Figure A6. Regions in the 5.0-HOT game with a = b = 0.7, L = 3, t = 1 when u1 > 0 and u2 > 0.
The p1 = p2 solutions are red-marked. The brown-marked solutions verify d1 + d2 = L = 3.0. The
green-marked solutions are PO. (a) Prices. (b) Demands. (c) Payoffs.

Figure A7 is the analog to Figure A5 with a = b = 1.15. No NE exists in the HOT game
with a = b = 1.15 > 0.75 = L/4. Therefore, the ▼ -marked solution in Figure A7 corresponds
to the secure solution [7,16] : p▼1,2 = 2(L − 2a) = 1.40 → Q▼

1,2 = L/2 = 1.50 → u▼1,2 = 1.40 · 1.50 = 2.10.
The ⋆⃝-SPE solution turns out to be not far the ▼⃝-solution. In Figure A7 the symmetric PO solution
is located at p•1,2 = α − a = 5.0 − 1.15 = 3.85 (c)→ Q•

1,2 = L/2 = 1.5 (b), u•
1,2 = 3.85 · 1.5 = 5.775 (a).

The green-marked PO-solutions verify (Figure A7a): p2 = p•1,2 = 3.85, 3.85 ≤ p1 ≤ α = 5.0 or
p1 = p•1,2 = 3.85, 3.85 ≤ p2 ≤ α = 5.0.
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Figure A7. Regions in the 5.0-HOT game with a = b = 1.15, L = 3, t = 1 when u1 > 0 and u2 > 0.
The p1 = p2 solutions are red-marked. The brown-marked solutions verify d1 + d2 = L = 3.0. The
green-marked solutions are PO. (a) Prices. (b) Demands. (c) Payoffs.

Appendix A.5.2. α-HOT2

Figure A8 deals with the 5.0-HOT2 game with L = 3.0, a = b = 1.15. The ⋆ -NE solution is
located at p⋆1,2 = 0.7L = 2.1 (c) → q⋆1,2 = L/2 = 1.5 (b), u⋆

1,2 = 2.1 · 1.5 = 3.15 (a). The symmetric
PO solution is located at p•1,2 = α − x2

1 = 5.0 − 1.152 = 3.667 (c)→ q•1,2 = L/2 = 1.5 (b), u•
1,2 =

3.667 · 1.5 = 5 − 515 (a).
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Figure A8. Regions in the 5.0-HOT2 game with L = 3.0, a = b = 1.15 when u1 > 0 and u2 > 0.
The p1 = p2 solutions are red-marked. The brown-marked solutions verify d1 + d2 = L = 3.0. The
green-marked solutions are PO. (a) Payoffs. (b) Demands. (c) Prices.

Appendix A.5.3. α-HS

Figure A9 deals with 5.0-SHS game with L = 3.0, a = b = 0.4 when u1 > 0.0 and u2 > 0.0. The
green-marked prices induce payoffs that are close to the border of the payoffs region, but not in
it. Therefore, they have been termed almost-PO in the caption of Figure A9. Note that the ⋆ -NE
solution and the ⋆⃝-SPE solution are quite close in Figure A9.
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Figure A9. Regions in the 5.0-SHS game with L = 3.0,a = b = 0.4 when u1>0.0 and u2>0. The p1 = p2

solutions are red-marked. The green-marked solutions are almost-PO. (a) Prices. (b) Demands.
(c) Payoffs.

Appendix A.5.4. α-HS2

Figure A10 is the analog to Figure A9 with quadratic transportation cost. Figure A10a indicates
that any pair of non-zero prices below α = 5.0 induce positive payoffs, and Figure A10c indicates
that the SPE solution is not PO solution. The symmetric PO solution shown in Figure A10 is obtained
from Equation (A1) (much of the form of Equation (10)) [13].(

p•1,2, Q•
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)
=
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2
− c

L
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L
2

)
, c =

1
2
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2
−a)3)t (A1)
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Figure 28: Regions in the 5.0-SHS game with L=3.0,a=b=0.4 when u1>0.0 and u2>0. The p1=p2
solutions are red-marked. The green-marked solutions are almost-PO. (a) Prices. (b) Demands.
(c) Payoffs.
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Figure 29: Regions in the 5.0-SHS2 game with L=3.0,a=b=0.4 when u1>0.0 and u2>0. The p1=p2
solutions are red-marked. The green-marked solutions are almost-PO. (a) Prices. (b) Demands.
(c) Payoffs.

28

Figure A10. Regions in the 5.0-SHS2 game with L = 3.0,a = b = 0.4 when u1>0.0 and u2>0.
The p1 = p2 solutions are red-marked. The green-marked solutions are almost-PO. (a) Prices. (b)
Demands. (c) Payoffs.

Notes

1 The NE obtained in [1] was achieved at the intersection of the optimized reaction functions of the two players obtained

via derivatives. Namely, at the intersection of (i)
∂u2
∂p2

= L − 1
2
(
sx +

p2 − p1
t

)
− p2

1
2

1
t

= 0 → p2 = 1
2 (p1 + t(2L − sx)),

i.e., β2(p1) =
1
2 (p1 + t(L − k)) , and (ii)

∂u1
∂p1

= 0 → p1 =
1
2
(p2 + tsx). Thus, p1 = t 1

3 (2L + sx), i.e., p⋆1 = t 1
3 (3L + k) ;

p2 = t 1
3 (2L − sx), i.e., p⋆2 = t 1

3 (3L − k) .

2 Note that if p2 = p1 − dx and p1 = 1
3 (3L + k)t, it is p2 = 1

3 (3L + k)t − (L − b − a)t = 2
3 (b + 2a)t, so that player 2 obtains the

payoff u2 = 2
3 L(b + 2a)t. In parallel to this, in a game with p1 = 1

3 (3L + k)t and p2 = 1
3 (3L − k)t, player 2 obtains the payoff
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u2 = 1
18 (3L − k)2t (recall Equation (2a)). Equalizing both payoffs leads to (3L − k)2 = 12L(b + 2a), which supports the second

inequality of Equation (2b).
3 u1(p1, β2(p1)) = p1

(
sx +

p1+t(2L−sx)−2p1
2t = sx

2 + L − p1
2t

)
, u′

1 =
(

sx
2 + L − p1

2t

)
+ −1

2t p1 =
(

sx
2 + L

)
− 1

t p1, u′
1(p2(p1)) = 0 →

p⋆1 = t
(

L + sx
2

)
= 1

2

(
2L + L + k

)
, i.e., p⋆1 = 1

2 t
(

3L + k
)

. Thus, p⋆2 = 1
2 (p⋆1 + t(2L − sx)) =

1
2 t
(

L + sx
2 + 2L − sx

)
= 1

2 t
(
3L −

sx
2
)
= 1

4 t
(
6L− (L+ k)

)
, i.e., p⋆2 = 1

4 t
(
5L − k

)
. As a result, d⋆1 = 1

2
(

L+ k+ 1
4

(
5L− k

)
− 1

2
(
3L+ k

))
= 1

8
(
3L+ k

)
. In the location-

symmetric game, i.e, k = 0, p⋆1 = 3L
2 t > p⋆2 = 5L

4 t but d⋆1 = 3L
8 < L/2. Therefore, u⋆

1 = 3L
2 t 3L

8 = 9L2

16 t, u⋆
2 = 5L

4 t 5L
8 = 25L2

32 t > u⋆
1 .

4 Note that because Fortran stores matrices in memory in column-major order, to access adjacent memory locations, iterations
(DOs) are performed in j,i order.

5 t(3L + a − b) = 8
√

La → 3L = 8
√

La → a0 =
( 3

8
)2L = 0.422.

6 In the conventional location symmetric HOT game, the NE prices (Equation (2)) are p⋆1,2 = L/2, whereas in the location-symmetric
HOT game, p⋆1 = 3L/2 > L, p⋆2 = 5L/4 > L. As a result, both players obtain higher payoffs in the SHOT game. In the scenario of
Figure 7a in the conventional game, it is p⋆1,2 = L = 3.0, so that d⋆1,2 = L/2 = 1.5 → u⋆

1,2 = 4.5. In the [0, a1] interval of Figure 7a,
it is u⋆

1 = 5.062 > 4.5 and u⋆
2 = 7.031 > 4.5.

7 From Equation (3c), L − a =
√

La → a2 − 3aL + L2 = 0 → a1 = 3−
√

5
2 L = 1.146.

8 p⋆1 = p⋆2 → 1
2 (p⋆1 + t(L − k)) = p⋆1 → t(L − k) = p⋆1 = t(3L + k)− 4

√
La → t(L − k) = p=1 t(3L + k) → 4

√
La = t(2L + 2k) →

a = (t(L + k))2/4L.
9 From Equation (3a), it is 3L + a0 − b = 8

√
La0 → a2

0 + (2(3L − b)− 64L)a0 + (3L − b)2 = 0, that particularizes in Figure 7b as
a2

0 + (17.2 − 192)a0 + 8.62 = 0 → a0 = 0.423.
10 From Equation (3a), 3L + a − b0 = 8

√
La → b0 = 3L + a − 8

√
La, that particularizes to b0 = 9 + 0.4 − 8

√
1.2 = 0.636 in Figure 7c.

11 s = 0 → 0 = sx +
p2−p1

tdx
→ p2 = p1 − sxtdx = 9.90 − 3 · 2.2 = 3.3.

12 s = L → 2L = sx +
p2−p1

tdx
→ p2 = p1 + (2L − sx)tdx = 9.90 + 3 · 2.2 = 16.5.

13 u2 = p2

(
L − 1

2 (sx +
p2−p1

tdx
)
)

, u′
2 =

(
L − 1

2 (sx +
p2−p1

tdx
)
)
− p2

1
2

1
tdx

=
(

L − 1
2 (sx − p1

tdx
)
)
− 1

tdx
p2, u′

2 = 0 → β2(p1) = 1
2

(
p1 +

t(2L − sx)dx)
)

u1(p1, β2(p1)) = p1

(
1
2
[
sx +

p2−p1
tdx

])
= p1

(
1
2
[
sx +

1
2

(
p1+t(2L−sx)dx)

)
−p1

tdx

])
=

p1
1
2

(
− 1

2tdx
p1 +

1
2 sx + L

)
. 2u′ =

(
− 1

2tdx
p1 +

1
2 sx + L

)
− 1

2tdx
p1 =

(
− 1

2tdx
p1 +

1
2 sx + L

)
− 1

2tdx
p1 =

(
1
2 sx + L

)
− 1

tdx
p1. 2u′ =

0 → p⋆1 =
(

L + 1
2 sx

)
tdx, i.e., p⋆1 = 1

2

(
3L + k

)
tdx . Generalizing the calculus in the Note 3, it turns out that p⋆2 = 1

4

(
5L − k

)
tdx .

14 da = 1
2

(
xi

2 + a + pi
2−pi

1
t(xi

2−a)

)
→ 2d′a = 1 +

pi
2−pi

1
t(xi

2−a)2 → d′a = 0 → pi
1 − pi

2 = t(xi
2 − a)2,→ a = xi

2 −
√
(pi

1 − pi
2)/t, pi

1 ≥ pi
2 ≡

pi
1 = pi

2 + (xi
2 − a)2 → a = xi

2 −
√

pi
1 − pi

2 = 2.6 −
√

9.900 − 8.25 = 1.316.

15 db = L − da = 1
2

(
L + b − ai − pi

2−pi
1

t(L−b−ai)

)
→ 2d′b = 1 − pi

2−pi
1

t(L−b−ai)2 → d′b = 0 → pi
2 − pi

1 = t(L − b − ai)2 → b = L − ai −√
(pi

2 − pi
1)/t, pi

2 ≥ pi
1.

16 In the [0, a1] interval of Figure 7, p2 − p1 = 5L/4 − 3L/2 = −L/4 → d1 = 1
2
(

L − L/4) = 3L/8 → p1 + d1 − a = 3L/2 + 3L/8 −
a = 15L/8 − a = 45/8 − 0.4 = 5.225.

17 In the [a0, a1] interval of Figure 7 p⋆2 − p⋆1 = 2(L −
√

La)− 3L + 4
√

La = −L + 2
√

La → d⋆1 = 1
2
(

L − L + 2
√

La
)
=

√
La →

p⋆1 + d⋆1 − a = 3L − 4
√

La +
√

La − a = 3L − 3
√

La − a = 9 − 3
√

1.8 − 0.6 = 4.375..
18 In the [a1, L/2] interval of Figure 7, p⋆1 = (L − 2a)(L + a)/(L − a) = (3.00 − 2.30)(3.00 + 1.15)/(3.00 − 1.15) = 1.57, p⋆2 =

p⋆1 + (L − 2a) = 1.57 + (3.00 − 2.30) = 2.27 → p⋆2 + a = 2.27 + 1.15 = 3.42 . Incidentally, if p2 = p1 + (L − 2a) (N-response) in
the location-symmetric HOT game, it is d1

1
2
(

L + L − 2a
)
= L − a = x2. The snapshots in Figure 15 depict the scenario in the

a = b = 1.15 case.
19 Where it is p1 = 3.333, p2 = 3.337, d1 = 1.290, d2 = 1.291, u1 = 4.303, u2 = 4.303.
20 Where it is p1 = 4.417, p2 = 4.426, d1 = 1.503, d2 = 1.497, u1 = 6.638, u2 = 6.626.
21 In the α-HOT2 game with very high α, that is, in the HOT2 game, the NE is achieved with [12]: (p⋆1 , p⋆2) =

1
3

(
3L + k, 3L − k

)
tdx,

so that d⋆1 = 1
2
(

L − 1
3 k

)
, d⋆2 = L − d⋆1 . Therefore, in the location-symmetric context of Figure 17b with high α, it would be

p⋆1 = p⋆2 = Ldx = 3 · 2.2 = 6.6, d⋆1 = d⋆2 = L/2 = 1.5, u⋆
1 = u⋆

2 = 6.6 · 1.5 = 9.900 < min(10.170, 10.481).
22 d1 = 0.6+1.0

2 0.4 + 1.0+0.275
2 0.725 = 0.320 + 0.462 = 0.782 (<1.125) d2 = 0.275+1.750

2 1.475 + 1.750+1.350
2 0.4 = 1.494 + 0.620 = 2.114

(>1.875).
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23 c = (0.42 + 1.12)/2 = 0.685, λ = 5.0 + 0.4 + 9/2 = 9.9 → p⋆1,2 =
9.9−

√
9.92−4(15.0−1.370)

2 = 1.653 →d⋆1,2 = (5.0 − 1.653)1.5 −
0.685 = 4.336.

24 Where it is p1 = 2.007, d1 = 4.166, u1 = 8.359, p2 = 1.968, d2 = 4.276, u2 = 8.413.
25 From Note 7, it is a2

0 − 58La0 + 9L2 = 0 → a0 = 0.467.
26 It is p⋆1 = t(3L + k), if 5L − a ≤ 7b [9]. Therefore, in Figure A3b, 15 = 7b0 → b0 = 15/7 = 2.141.
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