Supporting Information

Effect of Fe and Mn Substitution in LaNiO₃ on Exsolution, Activity and Stability for Methane Dry Reforming

Eswaravara Prasadarao Komarala¹⁺, Ilia Komissarov1⁺ and Brian A. Rosen^{1*}

- 1) Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, 6997801, Israel. †Authors with equal contribution
- * Correspondence: Corresponding author: <u>barosen@post.tau.ac.il</u>

Figure S1: EDS mapping of as synthesized LaNi_{0.8}Fe_{0.2}O₃ perovskite.

Figure S2: EDS mapping of as synthesized LaNi_{0.8}Mn_{0.2}O₃ perovskite.

Figure S3: In-situ XRD of reduced $LaNi_{0.8}Fe_{0.2}O_3$ perovskite heated at 800°C in different ratios of H₂ and CO₂ atmospheres. The XRD shows that the de-alloying of Ni-Fe to pure Ni is more favorable in strong oxidizing atmosphere.

Figure S4: TEM images of $LaNi_{0.8}Fe_{0.2}O_3$ perovskite (a) reduced, after DRM at $800^{\circ}C$ for (b) 12 h and (c) 34 h; TEM images of $LaNi_{0.8}Mn_{0.2}O_3$ perovskite (d) reduced and (e) after DRM at 800 °C for 34 h. Fe-substituted perovskite shows more resistant towards carbon accumulation than the Mn-substituted perovskite.

Figure S5: SEM images of LaNi_{0.8}Fe_{0.2}O₃ perovskite after DRM at (a) 650 °C, (b) 800 °C, 12h, and (c) 800 °C, 34h; SEM images of LaNi_{0.8}Mn_{0.2}O₃ perovskite after DRM at (d) 650 °C and (e) 800 °C.

Figure S6: Particle size distribution of both the catalysts before and after dry reforming reaction at 800 °C for 34h: (a) $LaNi_{0.8}Fe_{0.2}O_3$ and (b) $LaNi_{0.8}Mn_{0.2}O_3$ catalysts. Average particle size with standard deviation is given in the graph.