Relationship Between the Pore Structure of Mesoporous Silica Supports and the Activity of Nickel Nanocatalysts in the CO2 Reforming of Methane
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Tests
2.2. Nitrogen Adsorption-Desorption
2.3. SAXS Characterisation
2.4. XRD Characterisation
2.5. XPS Characterisation
2.6. FTIR Characterisation of the Siliceous Materials
2.7. TEM of the Siliceous Materials
3. Experimental
3.1. Synthesis of the Silica Supports
3.2. Synthesis of the Ni Catalysts on the Supports
3.3. Characterisation Techniques
3.4. Catalytic Activity Test
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710. [Google Scholar] [CrossRef]
- Zhao, X.S.; Lu, G.Q.; Millar, G.J. Advances in Mesoporous Molecular Sieve MCM-41. Ind. Eng. Chem. Res. 1996, 35, 2075–2090. [Google Scholar] [CrossRef]
- Akolekar, D.B.; Bhargava, S.K. Investigations on gold nanoparticles in mesoporous and microporous materials. J. Mol. Catal. A Chem. 2005, 236, 77–86. [Google Scholar] [CrossRef]
- Vallet-Regi, M.; Rámila, A.; del Real, R.P.; Pérez-Pariente, J. A New Property of MCM-41: Drug Delivery System. Chem. Mater. 2001, 13, 308–311. [Google Scholar] [CrossRef]
- Wei, J.; Qian, Y.; Wang, L.; Ge, Y.; Su, L.; Zhai, D.; Wang, J.; Wang, J.; Yu, J. Enhancement of Degradation and Dechlorination of Trichloroethylene via Supporting Palladium/Iron Bimetallic Nanoparticles onto Mesoporous Silica. Catalysts 2016, 6, 105. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Shen, A.; Cao, Y.; Lu, G. Preparation of Pd-Diimine@SBA-15 and Its Catalytic Performance for the Suzuki Coupling Reaction. Catalysts 2016, 6, 181. [Google Scholar] [CrossRef] [Green Version]
- Carrero, A.; Calles, J.A.; García-Moreno, L.; Vizcaíno, A.J. Production of Renewable Hydrogen from Glycerol Steam Reforming over Bimetallic Ni-(Cu,Co,Cr) Catalysts Supported on SBA-15 Silica. Catalysts 2017, 7, 55. [Google Scholar] [CrossRef] [Green Version]
- Moreno, J.; Iglesias, J.; Melero, J.A. Mo(VI) Complexes Immobilized on SBA-15 as an Efficient Catalyst for 1-Octene Epoxidation. Catalysts 2017, 7, 215. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Ibrahim, A.A.; Abu-Dahrieh, J.K.; Al-Awadi, A.S.; El-Toni, A.M.; Fakeeha, A.H.; Abasaeed, A.E. Gallium-Promoted Ni Catalyst Supported on MCM-41 for Dry Reforming of Methane. Catalysts 2018, 8, 229. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Song, H.; Chen, J. Propylsulfonic Acid Functionalized SBA-15 Mesoporous Silica as Efficient Catalysts for the Acetalization of Glycerol. Catalysts 2018, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Edo, G.; Balmori, A.; Pontón, I.; Martí del Rio, A.; Sánchez-García, D. Functionalized Ordered Mesoporous Silicas (MCM-41): Synthesis and Applications in Catalysis. Catalysts 2018, 8, 617. [Google Scholar] [CrossRef] [Green Version]
- Meshksar, M.; Rahimpour, M.R.; Daneshmand-Jahromi, S.; Hafizi, A. Synthesis and Application of Cerium-Incorporated SBA-16 Supported Ni-Based Oxygen Carrier in Cyclic Chemical Looping Steam Methane Reforming. Catalysts 2018, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Jiraroj, D.; Tongtooltush, T.; Panpranot, J.; Praserthdam, P.; Tungasmita, D.N. Catalytic Cracking of Biodiesel Waste Using Metal Supported SBA-15 Mesoporous Catalysts. Catalysts 2019, 9, 291. [Google Scholar] [CrossRef] [Green Version]
- Wróblewska, A.; Miądlicki, P.; Tołpa, J.; Sreńscek-Nazzal, J.; Koren, Z.C.; Michalkiewicz, B. Influence of the Titanium Content in the Ti-MCM-41 Catalyst on the Course of the α-Pinene Isomerization Process. Catalysts 2019, 9, 396. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef] [Green Version]
- Kleitz, F.; Hei Choi, S.; Ryoo, R. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 2003, 17, 2136–2137. [Google Scholar] [CrossRef]
- Amin, M.H. A Mini-Review on CO2 Reforming of Methane. Prog. Petrochem. Sci 2018, 2, PPS.000532.2018. [Google Scholar]
- Amin, M.H.; Mantri, K.; Newnham, J.; Tardio, J.; Bhargava, S.K. Highly stable ytterbium promoted Ni/γ-Al2O3 catalysts for carbon dioxide reforming of methane. Appl. Catal. B Environ. 2012, 119, 217–226. [Google Scholar] [CrossRef]
- Newnham, J.; Mantri, K.; Amin, M.H.; Tardio, J.; Bhargava, S.K. Highly stable and active Ni-mesoporous alumina catalysts for dry reforming of methane. Int. J. Hydrog. Energy 2012, 37, 1454–1464. [Google Scholar] [CrossRef]
- Amin, M.H.; Tardio, J.; Bhargava, S.K. An investigation on the role of ytterbium in ytterbium promoted γ-alumina-supported nickel catalysts for dry reforming of methane. Int. J. Hydrog. Energy 2013, 38, 14223–14231. [Google Scholar] [CrossRef]
- Amin, M.H.T.; Bhargava, J.; Suresh, K. An investigation on the role of promoters in promoted γ-alumina-supported nickel catalysts for dry reforming of methane. In Chemeca 2013: Challenging Tomorrow; Barton ACT; Engineers Australia Brisbane: Brisbane, Australia, 2013; pp. 549–557. [Google Scholar]
- Amin, M.H.; Bhargava, J.T.S.K. A Comparison Study on Methane Dry Reforming with Carbon Dioxide over Ni Catalysts Supported on Mesoporous SBA-15, MCM-41, KIT-6 and γ-Al2O3 Carrier; Chemeca 2013, Brisbane Convention & Exhibition Centre, Australia, Chemeca 2013: Challenging Tomorrow; Barton, ACT; Brisbane Convention & Exhibition Centre; Engineers Australia: Brisbane, Australia, 2013; pp. 543–548. [Google Scholar]
- Amin, M.H.; Putla, S.; Hamid, S.B.A.; Bhargava, S.K. Understanding the role of lanthanide promoters on the structure–activity of nanosized Ni/γ-Al2O3 catalysts in carbon dioxide reforming of methane. Appl. Catal. A Gen. 2015, 492, 160–168. [Google Scholar] [CrossRef]
- Amin, M.H.; Sudarsanam, P.; Field, M.R.; Patel, J.; Bhargava, S.K. Effect of a Swelling Agent on the Performance of Ni/Porous Silica Catalyst for CH4–CO2 Reforming. Langmuir 2017, 33, 10632–10644. [Google Scholar] [CrossRef] [PubMed]
- De Vasconcelos, B.R.; Minh, D.P.; Sharrock, P.; Nzihou, A. Regeneration study of Ni/hydroxyapatite spent catalyst from dry reforming. Catal. Today 2018, 310, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Şener, A.N.; Günay, M.E.; Leba, A.; Yıldırım, R. Statistical review of dry reforming of methane literature using decision tree and artificial neural network analysis. Catal. Today 2018, 299, 289–302. [Google Scholar] [CrossRef]
- Shah, M.; Das, S.; Nayak, A.K.; Mondal, P.; Bordoloi, A. Smart designing of metal-support interface for imperishable dry reforming catalyst. Appl. Catal. A Gen. 2018, 556, 137–154. [Google Scholar] [CrossRef]
- Li, B.; Su, W.; Wang, X.; Wang, X. Alumina supported Ni and Co catalysts modified by Y2O3 via different impregnation strategies: Comparative analysis on structural properties and catalytic performance in methane reforming with CO2. Int. J. Hydrog. Energy 2016, 41, 14732–14746. [Google Scholar] [CrossRef]
- Yang, W.; He, D. Role of poly(N-vinyl-2-pyrrolidone) in Ni dispersion for highly-dispersed Ni/SBA-15 catalyst and its catalytic performance in carbon dioxide reforming of methane. Appl. Catal. A Gen. 2016, 524, 94–104. [Google Scholar] [CrossRef]
- Kalai, D.Y.; Stangeland, K.; Jin, Y.; Yu, Z. Active and stable hydrotalcite derived Ni catalysts for CO2 reforming of methane: Comparison with catalysts by incipient wetness. J. Co2 Util. 2018, 25, 346–355. [Google Scholar] [CrossRef]
- Sokolov, S.; Kondratenko, E.V.; Pohl, M.-M.; Barkschat, A.; Rodemerck, U. Stable low-temperature dry reforming of methane over mesoporous La2O3-ZrO2 supported Ni catalyst. Appl. Catal. B Environ. 2012, 113, 19–30. [Google Scholar] [CrossRef]
- Deactivation and Poisoning of Catalysts; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 1985; Volume 20, p. 270.
- Xin, J.; Cui, H.; Cheng, Z.; Zhou, Z. Bimetallic Ni-Co/SBA-15 catalysts prepared by urea co-precipitation for dry reforming of methane. Appl. Catal. A Gen. 2018, 554, 95–104. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, T.; Shi, Y.; Zhao, B.; Wang, M.; Liu, Q.; Wang, J.; Long, K.; Duan, Y.; Ning, P. A sintering and carbon-resistant Ni-SBA-15 catalyst prepared by solid-state grinding method for dry reforming of methane. J. Co2 Util. 2017, 17, 10–19. [Google Scholar] [CrossRef]
- Huang, X.; Xue, G.; Wang, C.; Zhao, N.; Sun, N.; Wei, W.; Sun, Y. Highly stable mesoporous NiO-Y2O3-Al2O3 catalysts for CO2 reforming of methane: Effect of Ni embedding and Y2O3 promotion. Catal. Sci. Technol. 2016, 6, 449–459. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Setiabudi, H.D.; Nanda, S.; Vo, D.-V.N. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: A state-of-the-art review. Appl. Catal. A Gen. 2018, 559, 57–74. [Google Scholar] [CrossRef]
- Zheng, Y.; Geng, H.; Zhang, Y.; Chen, L.; Li, C.C. Precursor-Based Synthesis of Porous Colloidal Particles towards Highly Efficient Catalysts. Chem. A Eur. J. 2018, 24, 10280–10290. [Google Scholar] [CrossRef]
- Yuan, E.; Wu, C.; Liu, G.; Li, G.; Wang, L. Effects of SBA-15 physicochemical properties on performance of Pd/SBA-15 catalysts in 2-ethyl-anthraquinone hydrogenation. J. Ind. Eng. Chem. 2018, 66, 158–167. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, J.; Meng, Y.; Yan, F.; Aihemaiti, A. A review of recent developments in hydrogen production via biogas dry reforming. Energy Convers. Manag. 2018, 171, 133–155. [Google Scholar] [CrossRef]
- Pham, X.N.; Nguyen, B.M.; Thi, H.T.; Van Doan, H. Synthesis of Ag-AgBr/Al-MCM-41 nanocomposite and its application in photocatalytic oxidative desulfurization of dibenzothiophene. Adv. Powder Technol. 2018, 29, 1827–1837. [Google Scholar] [CrossRef]
- Shi, L.; Kai, W.; Yang, C.-F.; Qian, H.; Liu, D.-B.; Pan, R.-M. Synthesis, characterization of Nafion-functionalized MCM-41 and its catalytic application in preparation of CL-20 via HNO3 electrolyte involved nitration of TAIW. J. Saudi Chem. Soc. 2018, 22, 588–593. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.; Jafarzadeh, A.; Pourahmad, A. Synthesis and characterization of MCM-41 ropes. Mater. Lett. 2018, 212, 16–19. [Google Scholar] [CrossRef]
- Uhlig, H.; Muenster, T.; Kloess, G.; Ebbinghaus, S.G.; Einicke, W.-D.; Gläser, R.; Enke, D. Synthesis of MCM-48 granules with bimodal pore systems via pseudomorphic transformation of porous glass. Microporous Mesoporous Mater. 2018, 257, 185–192. [Google Scholar] [CrossRef]
- Al-Fatesh, H.A.S.; Ibrahim, A.A.; Fakeeha, A.H.; Singh, S.K.; Labhsetwar, N.K.; Shaikh, H.; Qasim, S.O. CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst. Renew. Energy 2019, 140, 658–667. [Google Scholar] [CrossRef]
- Al-Awadi, A.S.; El-Toni, A.M.; Alhoshan, M.; Khan, A.; Labis, J.P.; Al-Fatesh, A.; Abasaeed, A.E.; Al-Zahrani, S.M. Impact of precursor sequence of addition for one-pot synthesis of Cr-MCM-41 catalyst nanoparticles to enhance ethane oxidative dehydrogenation with carbon dioxide. Ceram. Int. 2019, 45, 1125–1134. [Google Scholar] [CrossRef]
- Bernal, Y.P.; Alvarado, J.; Juárez, R.L.; Méndez Rojas, M.Á.; de Vasconcelos, E.A.; de Azevedo, W.M.; Iniesta, S.A.; Cab, J.V. Synthesis and characterization of MCM-41 powder and its deposition by spin-coating. Optik 2019, 185, 429–440. [Google Scholar] [CrossRef]
- Li, X.; Lu, T.; Wang, Y.; Yang, Y. Study on the controllable synthesis of SH-MCM-41 mesoporous materials and their adsorption properties of the La3+, Gd3+ and Yb3+. Chin. Chem. Lett. 2019, 30, 2318–2322. [Google Scholar] [CrossRef]
- Pei, Y.; Jiang, Z.; Yuan, L. Facile synthesis of MCM-41/MgO for highly efficient adsorption of organic dye. Colloids Surf. A Physicochem. Eng. Asp. 2019, 581, 123816. [Google Scholar] [CrossRef]
- Rizzi, V.; Prasetyanto, E.A.; Chen, P.; Gubitosa, J.; Fini, P.; Agostiano, A.; De Cola, L.; Cosma, P. Amino grafted MCM-41 as highly efficient and reversible ecofriendly adsorbent material for the Direct Blue removal from wastewater. J. Mol. Liq. 2019, 273, 435–446. [Google Scholar] [CrossRef]
- Santos, L.F.S.; de Jesus, R.A.; Costa, J.A.S.; Gouveia, L.G.T.; de Mesquita, M.E.; Navickiene, S. Evaluation of MCM-41 and MCM-48 mesoporous materials as sorbents in matrix solid phase dispersion method for the determination of pesticides in soursop fruit (Annona muricata). Inorg. Chem. Commun. 2019, 101, 45–51. [Google Scholar] [CrossRef]
- Singh, S.; Nguyen, T.D.; Siang, T.J.; Phuong, P.T.T.; Phuc, N.H.; Truong, Q.D.; Lam, S.S.; Vo, D.-V.N. Boron-doped Ni/SBA-15 catalysts with enhanced coke resistance and catalytic performance for dry reforming of methane. J. Energy Inst. 2019, 93, 31–42. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.; Mooshangaie, S.D. In situ fabrication of n-type Ag/AgBr nanoparticles in MCM-41 with rice husk (RH/MCM-41) composite for the removal of Eriochrome Black-T. Mater. Sci. Eng. B 2019, 240, 16–22. [Google Scholar] [CrossRef]
- Wu, H.; Liu, J.; Liu, H.; He, D. CO2 reforming of methane to syngas at high pressure over bi-component Ni-Co catalyst: The anti-carbon deposition and stability of catalyst. Fuel 2019, 235, 868–877. [Google Scholar] [CrossRef]
- Sarkar, B.; Goyal, R.; Pendem, C.; Sasaki, T.; Bal, R. Highly nanodispersed Gd-doped Ni/ZSM-5 catalyst for enhanced carbon-resistant dry reforming of methane. J. Mol. Catal. A Chem. 2016, 424, 17–26. [Google Scholar] [CrossRef]
- Schneider, D.; Mehlhorn, D.; Zeigermann, P.; Karger, J.; Valiullin, R. Transport properties of hierarchical micro-mesoporous materials. Chem. Soc. Rev. 2016, 45, 3439–3467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Wang, R.; Yu, H.; Zhu, Y.; Nakanishi, K.; Kanamori, K.; Yang, H. Spontaneous preparation of hierarchically porous silica monoliths with uniform spherical mesopores confined in a well-defined macroporous framework. Dalton Trans. 2015, 44, 13592–13601. [Google Scholar] [CrossRef] [PubMed]
- Taherian, Z.; Yousefpour, M.; Tajally, M.; Khoshandam, B. Catalytic performance of Samaria-promoted Ni and Co/SBA-15 catalysts for dry reforming of methane. Int. J. Hydrog. Energy 2017, 42, 24811–24822. [Google Scholar] [CrossRef]
- Omoregbe, O.; Danh, H.T.; Nguyen-Huy, C.; Setiabudi, H.D.; Abidin, S.Z.; Truong, Q.D.; Vo, D.-V.N. Syngas production from methane dry reforming over Ni/SBA-15 catalyst: Effect of operating parameters. Int. J. Hydrog. Energy 2017, 42, 11283–11294. [Google Scholar] [CrossRef]
- Taherian, Z.; Yousefpour, M.; Tajally, M.; Khoshandam, B. A comparative study of ZrO2, Y2O3 and Sm2O3 promoted Ni/SBA-15 catalysts for evaluation of CO2/methane reforming performance. Int. J. Hydrog. Energy 2017, 42, 16408–16420. [Google Scholar] [CrossRef]
- Zhang, Q.; Long, K.; Wang, J.; Zhang, T.; Song, Z.; Lin, Q. A novel promoting effect of chelating ligand on the dispersion of Ni species over Ni/SBA-15 catalyst for dry reforming of methane. Int. J. Hydrog. Energy 2017, 42, 14103–14114. [Google Scholar] [CrossRef]
- Erdogan, B.; Arbag, H.; Yasyerli, N. SBA-15 supported mesoporous Ni and Co catalysts with high coke resistance for dry reforming of methane. Int. J. Hydrog. Energy 2018, 43, 1396–1405. [Google Scholar] [CrossRef]
- Świrk, K.; Gálvez, M.E.; Motak, M.; Grzybek, T.; Rønning, M.; Da Costa, P. Syngas production from dry methane reforming over yttrium-promoted nickel-KIT-6 catalysts. Int. J. Hydrog. Energy 2018, 44, 274–286. [Google Scholar] [CrossRef]
- Frontera, P.; Macario, A.; Aloise, A.; Antonucci, P.L.; Giordano, G.; Nagy, J.B. Effect of support surface on methane dry-reforming catalyst preparation. Catal. Today 2013, 218, 18–29. [Google Scholar] [CrossRef]
- Usman, M.; Wan Daud, W.M.A.; Abbas, H.F. Dry reforming of methane: Influence of process parameters—A review. Renew. Sustain. Energy Rev. 2015, 45, 710–744. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Prasad, R. An overview on dry reforming of methane: Strategies to reduce carbonaceous deactivation of catalysts. RSC Adv. 2016, 6, 108668–108688. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, J.; Xu, Y.; Sun, Y. A review of CH4-CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010–2017). Int. J. Hydrog. Energy 2018, 43, 15030–15054. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Haul, D.H.E.R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquérol, J. Siemieniewska Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603. [Google Scholar] [CrossRef]
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Huang, T.; Huang, W.; Huang, J.; Ji, P. Methane reforming reaction with carbon dioxide over SBA-15 supported Ni–Mo bimetallic catalysts. Fuel Process. Technol. 2011, 92, 1868–1875. [Google Scholar] [CrossRef]
- Damyanova, S.; Pawelec, B.; Arishtirova, K.; Fierro, J.L.G.; Sener, C.; Dogu, T. MCM-41 supported PdNi catalysts for dry reforming of methane. Appl. Catal. B Environ. 2009, 92, 250–261. [Google Scholar] [CrossRef]
- Méndez, F.J.; Llanos, A.; Echeverría, M.; Jáuregui, R.; Villasana, Y.; Díaz, Y.; Liendo-Polanco, G.; Ramos-García, M.A.; Zoltan, T.; Brito, J.L. Mesoporous catalysts based on Keggin-type heteropolyacids supported on MCM-41 and their application in thiophene hydrodesulfurization. Fuel 2013, 110, 249–258. [Google Scholar] [CrossRef]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Qin, F.; Anderegg, J.W.; Jenks, C.J.; Gleeson, B.; Sordelet, D.J.; Thiel, P.A. X-ray photoelectron spectroscopy studies of the early-stage oxidation behavior of (Pt, Ni)3Al(111) surfaces in air. Surf. Sci. 2008, 602, 205–215. [Google Scholar] [CrossRef]
- Rumble, J.R., Jr.; Bickham, D.M.; Powell, C.J. NIST X-ray Photoelectron Spectroscopy Database. Surf. Interface Anal. 1992, 19, 241–246. [Google Scholar] [CrossRef]
- Sudhakar, M.; Kumar, V.V.; Naresh, G.; Kantam, M.L.; Bhargava, S.K.; Venugopal, A. Vapor phase hydrogenation of aqueous levulinic acid over hydroxyapatite supported metal (M=Pd, Pt, Ru, Cu, Ni) catalysts. Appl. Catal. B Environ. 2016, 180, 113–120. [Google Scholar] [CrossRef]
- Chukin, G.D.; Malevich, V.I. Infrared spectra of silica. J. Appl. Spectrosc. 1977, 26, 223–229. [Google Scholar] [CrossRef]
- Li, J.F.; Xia, C.; Au, C.T.; Liu, B.S. Y2O3-promoted NiO/SBA-15 catalysts highly active for CO2/CH4 reforming. Int. J. Hydrog. Energy 2014, 39, 10927–10940. [Google Scholar] [CrossRef]
- Schmidt-Winkel, P.; Lukens, W.W.; Zhao, D.; Yang, P.; Chmelka, B.F.; Stucky, G.D. Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows. J. Am. Chem. Soc. 1999, 121, 254–255. [Google Scholar] [CrossRef]
- Xu, L.; Song, H.; Chou, L. Mesoporous nanocrystalline ceria–zirconia solid solutions supported nickel based catalysts for CO2 reforming of CH4. Int. J. Hydrog. Energy 2012, 37, 18001–18020. [Google Scholar] [CrossRef]
- Xie, T.; Shi, L.; Zhang, J.; Zhang, D. Immobilizing Ni nanoparticles to mesoporous silica with size and location control via a polyol-assisted route for coking- and sintering-resistant dry reforming of methane. Chem. Commun. 2014, 50, 7250–7253. [Google Scholar] [CrossRef]
- Wang, N.; Yu, X.; Shen, K.; Chu, W.; Qian, W. Synthesis, characterization and catalytic performance of MgO-coated Ni/SBA-15 catalysts for methane dry reforming to syngas and hydrogen. Int. J. Hydrog. Energy 2013, 38, 9718–9731. [Google Scholar] [CrossRef]
- Gálvez, M.E.; Albarazi, A.; Da Costa, P. Enhanced catalytic stability through non-conventional synthesis of Ni/SBA-15 for methane dry reforming at low temperatures. Appl. Catal. A Gen. 2015, 504, 143–150. [Google Scholar] [CrossRef]
- Jafarbegloo, M.; Tarlani, A.; Mesbah, A.W.; Sahebdelfar, S. One-pot synthesis of NiO–MgO nanocatalysts for CO2 reforming of methane: The influence of active metal content on catalytic performance. J. Nat. Gas Sci. Eng. 2015, 27, 1165–1173. [Google Scholar] [CrossRef]
- El Hassan, N.; Kaydouh, M.N.; Geagea, H.; El Zein, H.; Jabbour, K.; Casale, S.; El Zakhem, H.; Massiani, P. Low temperature dry reforming of methane on rhodium and cobalt based catalysts: Active phase stabilization by confinement in mesoporous SBA-15. Appl. Catal. A Gen. 2016, 520, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Gomez, A.; Pereñiguez, R.; Caballero, A. Nickel Particles Selectively Confined in the Mesoporous Channels of SBA-15 Yielding a Very Stable Catalyst for DRM Reaction. J. Phys. Chem. B 2018, 122, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, A.; Dragoi, B.; Chirieac, A.; Ciotonea, C.; Royer, S.; Duprez, D.; Mamede, A.S.; Dumitriu, E. Composition-Dependent Morphostructural Properties of Ni–Cu Oxide Nanoparticles Confined within the Channels of Ordered Mesoporous SBA-15 Silica. ACS Appl. Mater. Interfaces 2013, 5, 3010–3025. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Gomez, A.; Caballero, A. Identification of Outer and Inner Nickel Particles in a Mesoporous Support: How the Channels Modify the Reducibility of Ni/SBA-15 Catalysts. ChemNanoMat 2017, 3, 94–97. [Google Scholar] [CrossRef]
- Qiu, S.; Zhang, Q.; Lv, W.; Wang, T.; Zhang, Q.; Ma, L. Simply packaging Ni nanoparticles inside SBA-15 channels by co-impregnation for dry reforming of methane. RSC Adv. 2017, 7, 24551–24560. [Google Scholar] [CrossRef] [Green Version]
- Guidelines for Mastering the Properties of Molecular Sieves: Relationship between the Physicochemical Properties of Zeolitic Systems and Their Low Dimensionality; Springer Science & Business Media: New York, NY, USA; London, UK, 1989; Volume 221, p. 438.
- Liu, D.; Quek, X.-Y.; Wah, H.H.A.; Zeng, G.; Li, Y.; Yang, Y. Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts. Catal. Today 2009, 148, 243–250. [Google Scholar] [CrossRef]
- Wang, N.; Yu, X.; Wang, Y.; Chu, W.; Liu, M. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catal. Today 2013, 212, 98–107. [Google Scholar] [CrossRef]
- Albarazi, A.; Beaunier, P.; Da Costa, P. Hydrogen and syngas production by methane dry reforming on SBA-15 supported nickel catalysts: On the effect of promotion by Ce0.75Zr0.25O2 mixed oxide. Int. J. Hydrog. Energy 2013, 38, 127–139. [Google Scholar] [CrossRef]
- Kawi, S.; Kathiraser, Y.; Ni, J.; Oemar, U.; Li, Z.; Saw, E.T. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane. ChemSusChem 2015, 8, 3556–3575. [Google Scholar] [CrossRef]
- Xu, L.; Song, H.; Chou, L. Carbon dioxide reforming of methane over ordered mesoporous NiO–MgO–Al2O3 composite oxides. Appl. Catal. B Environ. 2011, 108, 177–190. [Google Scholar] [CrossRef]
- Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97, 2373–2420. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.C.J.; Vannice, M.A. Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity. Appl. Catal. A Gen. 1996, 142, 73–96. [Google Scholar] [CrossRef]
- Amin, M.H.T.; Bhargava, J.; Suresh, K. A comparison study on carbon dioxide reforming of methane over Ni catalysts supported on mesoporous SBA-15, MCM-41, KIT-6 and gamma-Al2O3. In Chemeca 2013: Challenging Tomorrow; Barton, ACT; Engineers Australia: Brisbane, Australia, 2013; pp. 543–548. [Google Scholar]
Support | Ni% | GHSV (h−1) | Initial CH4 Conversion (%) | Final CH4 Conversion (%) (Time on Stream) | Ref. |
---|---|---|---|---|---|
TMS | 11.8 | 5.2 × 104 | 91.4 | 88.2 (44 h) | This work |
SBA-15 | 11.8 | 5.2 × 104 | 85.1 | 66.2 (44 h) | This work |
MCF | 11.8 | 5.2 × 104 | 82.3 | 78.7 (44 h) | This work |
KIT-6 | 11.8 | 5.2 × 104 | 79.2 | 76.5 (44 h) | This work |
MCM-41 | 11.8 | 5.2 × 104 | 49.3 | 48.0 (44 h) | This work |
SBA-15 | 10 | 1.2×104 | ~52 | ~45 (11 h) | [57] |
SBA-15 | 5 | 2.25 × 104 | ~75 | ~60 (100 h) | [34] |
SBA-15 | 10 | 2.4 × 104 | ~82 | ~78 (4 h) | [58] |
SBA-15 | 10 | 1.2 × 104 | ~53 | ~51 (5 h) | [59] |
SBA-15 | 7.5 | 2.25 × 104 | ~74 | ~30 (50 h) | [60] |
SBA-15 | 5 | N/A | ~79 | ~78(4 h) | [61] |
KIT-6 | 12 | 2.0 × 104 | ~47 | N/A | [62] |
MCM-41 | 5 | 2.25 × 104 | ~79 | ~69 (100 h) | [34] |
MCM-41 | 5 | N/A | ~76 | 75 (10 h) | [63] |
BET Surface Area (m2/g) a | Average Pore Size (nm) b | Pore Volume (cm3/g) c | |
---|---|---|---|
MCM-41 | 1029 | 3.75 | 0.96 |
KIT-6 | 902 | 5.75 | 1.18 |
SBA-15 | 659 | 9.69 | 1.60 |
TMS | 599 | 22.66 | 1.56 |
MCF | 225 | 19.30 | 1.30 |
Ni/MCM-41 | 948 | 2.92 | 0.64 |
Ni/KIT-6 | 463 | 4.04 | 0.43 |
Ni/SBA-15 | 460 | 7.66 | 0.88 |
Ni/TMS | 503 | 20.11 | 1.32 |
Ni/MCF | 228 | 19.13 | 1.08 |
Support | SBA-15 | KIT-6 | MCM-41 | TMS | MCF |
---|---|---|---|---|---|
N in surface (atom %) | 1.1 | 2. 6 | 4.0 | 2.4 | 2.7 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.H. Relationship Between the Pore Structure of Mesoporous Silica Supports and the Activity of Nickel Nanocatalysts in the CO2 Reforming of Methane. Catalysts 2020, 10, 51. https://doi.org/10.3390/catal10010051
Amin MH. Relationship Between the Pore Structure of Mesoporous Silica Supports and the Activity of Nickel Nanocatalysts in the CO2 Reforming of Methane. Catalysts. 2020; 10(1):51. https://doi.org/10.3390/catal10010051
Chicago/Turabian StyleAmin, Mohamad Hassan. 2020. "Relationship Between the Pore Structure of Mesoporous Silica Supports and the Activity of Nickel Nanocatalysts in the CO2 Reforming of Methane" Catalysts 10, no. 1: 51. https://doi.org/10.3390/catal10010051
APA StyleAmin, M. H. (2020). Relationship Between the Pore Structure of Mesoporous Silica Supports and the Activity of Nickel Nanocatalysts in the CO2 Reforming of Methane. Catalysts, 10(1), 51. https://doi.org/10.3390/catal10010051