Recent Advances in Rare Earth Complexes Containing N-Heterocyclic Carbenes: Synthesis, Reactivity, and Applications in Polymerization
Abstract
:1. Introduction
2. Rare Earth Catalysts Containing a Monodentate NHC Ligand
3. Rare Earth Catalysts Containing a Heteroatom-Tethered NHC Ligand
4. Rare Earth Catalysts Containing a Tridentate NHC Ligand
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hopkinson, M.N.; Richter, C.; Schedler, M.; Glorius, F. An Overview of N-Heterocyclic Carbenes. Nature 2014, 510, 485–496. [Google Scholar] [CrossRef]
- Nesterov, V.; Reiter, D.; Bag, P.; Frisch, P.; Holzner, R.; Porzelt, A.; Inoue, S. NHCs in Main Group Chemistry. Chem. Rev. 2018, 118, 9678–9842. [Google Scholar] [CrossRef]
- Danopoulos, A.A.; Simler, T.; Braunstein, P. N-Heterocyclic Carbene Complexes of Copper, Nickel, and Cobalt. Chem. Rev. 2019, 119, 3730–3961. [Google Scholar] [CrossRef]
- Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands. Org. Lett. 1999, 1, 953–956. [Google Scholar] [CrossRef]
- Garber, S.B.; Kingsbury, J.S.; Gray, B.L.; Hoveyda, A.H. Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts. J. Am. Chem. Soc. 2000, 122, 8168–8179. [Google Scholar] [CrossRef]
- Vougioukalakis, G.C.; Grubbs, R.H. Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts. Chem. Rev. 2010, 110, 1746–1787. [Google Scholar] [CrossRef]
- Montgomery, T.P.; Johns, A.M.; Grubbs, R.H. Recent Advancements in Stereoselective Olefin Metathesis Using Ruthenium Catalysts. Catalysts 2017, 7, 87. [Google Scholar] [CrossRef] [Green Version]
- de Fremont, P.; Marion, N.; Nolan, S.P. Carbenes: Synthesis, properties, and organometallic chemistry. Coord. Chem. Rev. 2009, 253, 862–892. [Google Scholar] [CrossRef]
- Wang, W.; Cui, L.; Sun, P.; Shi, L.; Yue, C.; Li, F. Reusable N-Heterocyclic Carbene Complex Catalysts and Beyond: A Perspective on Recycling Strategies. Chem. Rev. 2018, 118, 9843–9929. [Google Scholar] [CrossRef]
- Doddi, A.; Peters, M.; Tamm, M. N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chem. Rev. 2019, 119, 6994–7112. [Google Scholar] [CrossRef]
- Crudden, C.M.; Allen, D.P. Stability and reactivity of N-heterocyclic carbene complexes. Coord. Chem. Rev. 2004, 248, 2247–2273. [Google Scholar] [CrossRef]
- Liddle, S.T.; Edworthy, I.S.; Arnold, P.L. Anionic tethered N-heterocyclic carbene chemistry. Chem. Soc. Rev. 2007, 36, 1732–1744. [Google Scholar] [CrossRef]
- Arnold, P.L.; Casely, I.J. F-Block N-Heterocyclic Carbene Complexes. Chem. Rev. 2009, 109, 3599–3611. [Google Scholar] [CrossRef]
- Peris, E. Smart N-Heterocyclic Carbene Ligands in Catalysis. Chem. Rev. 2018, 118, 9988–10031. [Google Scholar] [CrossRef]
- Meng, G.; Kakalis, L.; Nolan, S.P.; Szostak, M. A simple 1H NMR method for determining the σ-donor properties of N-heterocyclic carbenes. Tetrahedron Lett. 2019, 60, 378–381. [Google Scholar] [CrossRef]
- Zeimentz, P.M.; Arndt, S.; Elvidge, B.R.; Okuda, J. Cationic Organometallic Complexes of Scandium, Yttrium, and the Lanthanoids. Chem. Rev. 2006, 106, 2404–2433. [Google Scholar] [CrossRef]
- Zimmermann, M.; Anwander, R. Homoleptic Rare-Earth Metal Complexes Containing Ln-C σ-Bonds. Chem. Rev. 2010, 110, 6194–6259. [Google Scholar] [CrossRef]
- Rodrigues, A.-S.; Kirillov, E.; Carpentier, J.-F. Group 3 and 4 single-site catalysts for stereospecific polymerization of styrene. Coord. Chem. Rev. 2008, 252, 2115–2136. [Google Scholar] [CrossRef]
- Rodrigues, A.-S.; Carpentier, J.-F. Groups 3 and 4 single-site catalysts for styrene-ethylene and styrene-α-olefin copolymerization. Coord. Chem. Rev. 2008, 252, 2137–2154. [Google Scholar] [CrossRef]
- Nishiura, M.; Hou, Z. Novel polymerization catalysts and hydride clusters from rare-earth metal dialkyls. Nat. Chem. 2010, 2, 257–268. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, D.; Wang, B.; Liu, B.; Yang, Y. Polymerization of 1,3-Conjugated Dienes with Rare-Earth Metal Precursors. Struct. Bond. 2010, 137, 49–108. [Google Scholar]
- Nishiura, M.; Guo, F.; Hou, Z. Half-Sandwich Rare-Earth-Catalyzed Olefin Polymerization, Carbometalation, and Hydroarylation. Acc. Chem. Res. 2015, 48, 2209–2220. [Google Scholar] [CrossRef]
- Jothieswaran, J.; Fadlallah, S.; Bonnet, F.; Visseaux, M. Recent Advances in Rare Earth Complexes Bearing Allyl Ligands and Their Reactivity towards Conjugated Dienes and Styrene Polymerization. Catalysts 2017, 7, 378. [Google Scholar] [CrossRef] [Green Version]
- Edelmanna, F.T. Lanthanide amidinates and guanidinates in catalysis and materials science: A continuing success story. Chem. Soc. Rev. 2012, 41, 7657–7672. [Google Scholar] [CrossRef]
- Carpentier, J.-F. Rare-Earth Complexes Supported by Tripodal Tetradentate Bis(phenolate) Ligands: A Privileged Class of Catalysts for Ring-Opening Polymerization of Cyclic Esters. Organometallics 2015, 34, 4175–4189. [Google Scholar] [CrossRef]
- Lyubov, D.M.; Tolpygin, A.O.; Trifonov, A.A. Rare-earth metal complexes as catalysts for ring-opening polymerization of cyclic esters. Coord. Chem. Rev. 2019, 392, 83–145. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Z.; Cui, D.; Liu, X. Precisely Controlled Polymerization of Styrene and Conjugated Dienes by Group 3 Single-Site Catalysts. ChemCatChem 2018, 10, 42–61. [Google Scholar] [CrossRef]
- Wang, C.; Luo, G.; Nishiura, M.; Song, G.; Yamamoto, A.; Luo, Y.; Hou, Z. Heteroatom-assisted olefin polymerization by rare-earth metal catalysts. Sci. Adv. 2017, 3, e1701011. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yang, Y.; Nishiura, M.; Higaki, Y.; Takahara, A.; Hou, Z. Synthesis of Self-Healing Polymers by Scandium-Catalyzed Copolymerization of Ethylene and Anisylpropylenes. J. Am. Chem. Soc. 2019, 141, 3249–3257. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Nishiura, M.; Yang, Y.; Luo, G.; Luo, Y.; Hou, Z. Scandium-Catalyzed Regio- and Stereoselective Cyclopolymerization of Functionalized α,ω-Dienes and Copolymerization with Ethylene. J. Am. Chem. Soc. 2019, 141, 12624–12633. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Y.; Wang, B.; Lohr, T.L.; Marks, T.J. Scandium-Catalyzed Self-Assisted Polar Comonomer Enchainment in Ethylene Polymerization. Angew. Chem. Int. Ed. 2017, 56, 15964–15968. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yao, C.; Wang, R.; Wang, M.; Wang, Z.; Wu, C.; Lin, F.; Li, S.; Wan, X.; Cui, D. Highly Isoselective Coordination Polymerization of ortho-Methoxystyrene with β-Diketiminato Rare-Earth-Metal Precursors. Angew. Chem. Int. Ed. 2015, 54, 5205–5209. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, M.; Wang, Z.; Wu, C.; Pan, Y.; Cui, D. Stereoselective Copolymerization of Unprotected Polar and Nonpolar Styrenes by anYttrium Precursor: Control of Polar-Group Distribution and Mechanism. Angew. Chem. Int. Ed. 2017, 56, 2714–2719. [Google Scholar] [CrossRef]
- Liu, B.; Qiao, K.; Fang, J.; Wang, T.; Wang, Z.; Liu, D.; Xie, Z.; Maron, L.; Cui, D. Mechanism and Effect of Polar Styrenes on Scandium-Catalyzed Copolymerization with Ethylene. Angew. Chem. Int. Ed. 2018, 57, 14896–14901. [Google Scholar] [CrossRef]
- Unless otherwise specified, the Ln-NHCs complexes reported in this review are air and moisture sensitive.
- Rieb, J.; Schaper, L.-A.; Tosh, E.; Herrmann, W.A.; Kühn, F.E. Rare Earth Metal Complexes with N-Heterocyclic Carbenes. In N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, 2nd ed.; Díez-González, S., Ed.; RSC: Cambridge, UK, 2017; Chapter 6; pp. 238–267. [Google Scholar]
- Schumann, H.; Glanz, M.; Winterfeld, J.; Hemling, H.; Kuhn, N.; Kratz, T. Organolanthanoid-Carbene-Adducts. Angew. Chem. Int. Ed. Engl. 1994, 33, 1733–1734. [Google Scholar] [CrossRef]
- Schumann, H.; Glanz, M.; Winterfeld, J.; Hemling, H.; Kuhn, N.; Kratz, T. Carben-Addukte des zweiwertigen Samariums und Ytterbiums. Chem. Ber. 1994, 127, 2369–2372. [Google Scholar] [CrossRef]
- Arduengo, A.J., III; Tamm, M.; McLain, S.J.; Calabrese, J.C.; Davidson, F.; Marshall, W.J. Carbene-Lanthanide Complexes. J. Am. Chem. Soc. 1994, 116, 7927–7928. [Google Scholar] [CrossRef]
- Wolfgang, W.A.; Munck, F.C.; Artus, G.R.J.; Runte, O.; Anwander, R. 1,3-Dimethylimidazolin-2-ylidene Carbene Donor Ligation in Lanthanide Silylamide Complexes. Organometallics 1997, 16, 682–688. [Google Scholar]
- Meermann, C.; Gerstberger, G.; Spiegler, M.; Törnroos, K.W.; Anwander, R. Donor and ate-Coordination in Rare-Earth Metal Bis(dimethylsilyl)amide Complexes. Eur. J. Inorg. Chem. 2008, 12, 2014–2023. [Google Scholar] [CrossRef]
- Fegler, W.; Spaniol, T.P.; Okuda, J. Trimethylsilylmethyl complexes of the rare-earth metals with sterically hindered N-heterocyclic carbene ligands: Adduct formation and C–H bond activation. Dalton Trans. 2010, 39, 6774–6779. [Google Scholar] [CrossRef]
- Fegler, W.; Saito, T.; Mashima, K.; Spaniol, T.P.; Okuda, J. C-H bond activation of N-heterocyclic carbene IMes by rare-earth metal alkyl complexes. J. Organomet. Chem. 2010, 695, 2794–2797. [Google Scholar] [CrossRef]
- Pan, Y.; Xu, T.; Ge, Y.-S.; Lu, X.-B. N-heterocyclic Carbene Scandium Complexes: Synthesis, Structure, and Catalytic Performance for α-Olefin Polymerization and Copolymerization with 1,5-Hexadiene. Organometallics 2011, 30, 5687–5694. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, A.; Li, Y.; Li, W.; So, Y.-M.; Yan, X.; He, G. Bis(oxazoline)-derived N-heterocyclic carbine ligated rare-earth metal complexes: Synthesis, structure, and polymerization performance. Dalton Trans. 2018, 47, 13815–13823. [Google Scholar] [CrossRef]
- Xie, W.; Hu, H.; Cui, C. [(NHC)Yb{N(SiMe3)2}2]-Catalyzed Cross-Dehydrogenative Coupling of Silanes with Amines. Angew. Chem. Int. Ed. 2012, 51, 11141–11144. [Google Scholar] [CrossRef]
- Yuan, J.; Hu, H.; Cui, C. N-Heterocyclic Carbene–Ytterbium Amideasa Recyclable Homogeneous Precatalyst for Hydrophosphination of Alkenes and Alkynes. Chem. Eur. J. 2016, 22, 5778–5785. [Google Scholar] [CrossRef]
- Chang, K.; Dong, Y.; Xu, X. Dihydrogen activation by intermolecular rare-earth aryloxide/N-heterocyclic carbene Lewis pairs. Chem. Commun. 2019, 55, 12777–12780. [Google Scholar] [CrossRef]
- Rottschafer, D.; Blomeyer, S.; Neumann, B.; Stammler, H.-G.; Ghadwal, R. Silylene-Functionalized N-Heterocyclic Carbene (Si-NHC). Chem. Eur. J. 2018, 24, 380–387. [Google Scholar] [CrossRef]
- Rottschafer, D.; Ebeler, F.; Strothmann, T.; Neumann, B.; Stammler, H.-G.; Mix, A.; Ghadwal, R. The Viability of C5-Protonated- and C4, C5-Ditopic Carbanionic Abnormal NHCs: A New Dimension in NHC Chemistry. Chem. Eur. J. 2018, 24, 3716–3720. [Google Scholar] [CrossRef]
- Roth, T.; Vasilenko, V.; Benson, C.; Wadepohl, H.; Wright, D.; Gade, L. Extending N-heterocyclic carbene ligands into the third dimension: A new type of hybrid phosphazane/NHC system. Chem. Sci. 2015, 6, 2506–2510. [Google Scholar] [CrossRef] [Green Version]
- Seed, A.; Gregson, M.; Tuna, F.; Chilton, N.; Wooles, A.; McInnes, E.; Liddle, S. Rare-Earth- and Uranium-Mesoionic Carbenes: A New Class of f-Block Carbene Complex Derived from an N-Heterocyclic Olefin. Angew. Chem. Int. Ed. 2017, 56, 11534–11538. [Google Scholar] [CrossRef] [Green Version]
- Arnold, P.L.; Mungur, S.; Blake, A.; Wilson, C. Anionic Amido N-Heterocyclic Carbenes: Synthesis of Covalently Tethered Lanthanide-Carbene Complexes. Angew. Chem. Int. Ed. 2003, 42, 5981–5984. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Liddle, S.; Mungur, S.A.; Rodden, M.; Blake, A.J.; Arnold, P.L. Bifunctional yttrium(III) and titanium(IV) NHC catalysts for lactide polymerization. Chem. Commun. 2006, 10, 1124–1126. [Google Scholar] [CrossRef] [PubMed]
- Arnold, P.L.; Casely, I.; Turner, Z.; Carmichael, C. Functionalised Saturated-Backbone Carbene Ligands: Yttrium and Uranyl Alkoxy-Carbene Complexes and Bicyclic Carbene-Alcohol Adducts. Chem. Eur. J. 2008, 14, 10415–10422. [Google Scholar] [CrossRef] [PubMed]
- Turner, Z.; Bellabarba, R.; Tooze, R.; Arnold, P.L. Addition-Elimination Reactions across the M-C Bond of Metal N-Heterocyclic Carbenes. J. Am. Chem. Soc. 2010, 132, 4050–4051. [Google Scholar] [CrossRef] [Green Version]
- Arnold, P.L.; Turner, Z.; Bellabarba, R.; Tooze, R. Carbon-Silicon and Carbon-Carbon Bond Formation by Elimination Reactions at Metal N-Heterocyclic Carbene Complexes. J. Am. Chem. Soc. 2011, 133, 11744–11756. [Google Scholar] [CrossRef] [Green Version]
- Arnold, P.L.; McMaster, J.; Liddle, S. An unsupported transition metal–lanthanide bond; synthesis and crystal structure of an Nd–Fe amido N-heterocyclic carbene complex. Chem. Commun. 2009, 7, 818–820. [Google Scholar] [CrossRef]
- Liddle, S.; Arnold, P.L. Synthesis of Heteroleptic Cerium(III) Anionic Amido-Tethered N-Heterocyclic Carbene Complexes. Organometallics 2005, 24, 2597–2605. [Google Scholar] [CrossRef]
- Arnold, P.L.; Marr, I.; Zlatogorsky, S.; Bellabarba, R.; Tooze, R. Activation of carbon dioxide and carbon disulfide by a scandium N-heterocyclic carbene complex. Dalton Trans. 2014, 43, 34–37. [Google Scholar] [CrossRef] [Green Version]
- Arnold, P.L.; Kerr, R.; Weetman, C.; Docherty, S.; Rieb, J.; Cruickshank, F.; Wang, K.; Jandl, C.; McMullon, M.; Pöthig, A.; et al. Selective and catalytic carbon dioxide and heteroallene activation mediated by cerium N-heterocyclic carbene complexes. Chem. Sci. 2018, 9, 8035–8045. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Sun, H.; Yao, H.; Yao, Y.-M.; Shen, Q.; Zhang, Y. Bis-aryloxo-functionalized NHC complexes of ytterbium(III): Syntheses and structures of Yb[O-4,6-tBu2-C6H2-2-CH2{C(RNCHCHN)}]2N(iPr)2(R = iPr, Me). J. Organomet. Chem. 2006, 691, 3383–3390. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, H.; Yao, H.; Shen, Q.; Zhang, Y. Mono- and Tris-Phenoxo-Tethered N-Heterocyclic Carbene Yttrium Complexes: Syntheses and Molecular Structures. Organometallics 2006, 25, 4436–4438. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, J.; Zhang, Y.; Sun, H.; Shen, Q. Synthesis of Cationic N-Heterocyclic Carbene Lanthanide Bromide and the Influence of N-Heterocyclic Carbene and Lanthanide Metals. Organometallics 2010, 29, 5841–5846. [Google Scholar] [CrossRef]
- Wang, B.; Wang, D.; Cui, D.; Gao, W.; Tang, T.; Chen, X.; Jing, X. Synthesis of the First Rare Earth Metal Bis(alkyl)s Bearing an Indenyl Functionalized N-Heterocyclic Carbene. Organometallics 2007, 26, 3167–3172. [Google Scholar] [CrossRef]
- Wang, B.; Cui, D.; Lv, K. Highly 3,4-Selective Living Polymerization of Isoprene with Rare Earth Metal Fluorenyl N-Heterocyclic Carbene Precursors. Macromolecules 2008, 41, 1983–1988. [Google Scholar] [CrossRef]
- Wang, B.; Tang, T.; Li, Y.; Cui, D. Copolymerization of ethylene with norbornene catalyzed by cationic rare earth metal fluorenyl functionalized N-heterocyclic carbene complexes. Dalton Trans. 2009, 41, 8963–8969. [Google Scholar] [CrossRef]
- Yao, C.; Wu, C.; Wang, B.; Cui, D. Copolymerization of Ethylene with 1-Hexene and 1-Octene Catalyzed by Fluorenyl N-Heterocyclic Carbene Ligated Rare-Earth Metal Precursors. Organometallics 2013, 32, 2204–2209. [Google Scholar] [CrossRef]
- Li, S.; Wang, M.; Cui, D. Copolymerization of ethylene with styrene catalyzed by a scandium catalyst. Polym. Chem. 2018, 9, 4757–4763. [Google Scholar] [CrossRef]
- Li, S.; Liu, D.; Wang, Z.; Cui, D. Development of Group 3 Catalysts for Alternating Copolymerization of Ethylene and Styrene Derivatives. ACS Catal. 2018, 8, 6086–6093. [Google Scholar] [CrossRef]
- Hu, Y.; Miyake, G.; Wang, B.; Cui, D.; Chen, E.Y.-X. ansa-Rare-Earth-Metal Catalysts for Rapid and Stereoselective Polymerization of Renewable Methylene Methylbutyrolactones. Chem. Eur. J. 2012, 18, 3345–3354. [Google Scholar] [CrossRef]
- Yao, C.; Xie, H.; Cui, D. Highly 3,4-selective living polymerization of 2-phenyl-1,3-butadiene with amidino N-heterocyclic carbene ligated rare-earth metal bis(alkyl) complexes. RSC Adv. 2015, 5, 93507–93512. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, Z.; Hu, X. Nickamine and Analogous Nickel Pincer Catalysts for Cross-Coupling of Alkyl Halides and Hydrosilylation of Alkenes. Acc. Chem. Res. 2019, 52, 1471–1483. [Google Scholar] [CrossRef] [PubMed]
- Junge, K.; Papa, V.; Beller, M. Cobalt–Pincer Complexes in Catalysis. Chem. Eur. J. 2019, 25, 122–143. [Google Scholar] [CrossRef] [PubMed]
- Alig, L.; Fritz, M.; Schneider, S. First-Row Transition Metal (De)Hydrogenation Catalysis Based on Functional Pincer Ligands. Chem. Rev. 2019, 119, 2681–2751. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Milstein, D. Homogeneous Catalysis by Cobalt and Manganese Pincer Complexes. ACS Catal. 2018, 8, 11435–11469. [Google Scholar] [CrossRef]
- Polukeev, A.; Wendt, O. Iridium complexes with aliphatic, non-innocent pincer ligands. J. Organomet. Chem. 2018, 867, 33–50. [Google Scholar] [CrossRef]
- Feichtner, K.-S.; Gessner, V. Cooperative bond activation reactions with carbene complexes. Chem. Commun. 2018, 54, 6540–6553. [Google Scholar] [CrossRef] [PubMed]
- Lv, K.; Cui, D. Tridentate CCC-Pincer Bis(carbene)-Ligated Rare-Earth Metal Dibromides. Synthesis and Characterization. Organometallics 2008, 27, 5438–5440. [Google Scholar] [CrossRef]
- Lv, K.; Cui, D. CCC-Pincer Bis(carbene) Lanthanide Dibromides. Catalysis on Highly cis-1,4-Selective Polymerization of Isoprene and Active Species. Organometallics 2010, 29, 2987–2993. [Google Scholar] [CrossRef]
- Gu, X.; Zhu, X.; Wei, Y.; Wang, S.; Zhou, S.; Zhang, G.; Mu, X. CNC-Pincer Rare-Earth Metal Amido Complexes with a Diarylamido Linked Biscarbene Ligand: Synthesis, Characterization, and Catalytic Activity. Organometallics 2014, 33, 2372–2379. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, L.; Zhu, X.; Wang, S.; Zhou, S.; Wei, Y.; Zhang, G.; Mu, X.; Huang, Z.; Hong, D.; et al. Synthesis of Bis(NHC)-Based CNC-Pincer Rare-Earth-Metal Amido Complexes and Their Application for the Hydrophosphination of Heterocumulenes. Organometallics 2015, 34, 4553–4559. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, Y.; Sun, H.; Shen, Q. Anionic Lanthanide Complexes Bearing a Bis(phenoxy)-Functionalized N-Heterocyclic Carbene Ligand: Syntheses and Molecular Structures. Eur. J. Inorg. Chem. 2009, 13, 1920–1925. [Google Scholar] [CrossRef]
- Zhang, M.; Ni, X.; Shen, Z. Synthesis of Bimetallic Bis(phenolate) N-Heterocyclic Carbene Lanthanide Complexes and Their Applications in the Ring-Opening Polymerization of L-Lactide. Organometallics 2014, 33, 6861–6867. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.; Ni, X.; Shen, Z. Bis(phenolate) N-heterocyclic carbene rare earth metal complexes: Synthesis, characterization and applications in the polymerization of n-hexyl isocyanate. RSC Adv. 2015, 5, 83295–83303. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Bai, T.; Ni, X.; Shen, Z. Synthesis and characterization of heterobimetallic organo rare earth complexes bearing aryloxide-N-heterocyclic carbene ligands. J. Organomet. Chem. 2017, 843, 1–6. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Jiang, X.; So, Y.-M.; To, C.T.; He, G. Recent Advances in Rare Earth Complexes Containing N-Heterocyclic Carbenes: Synthesis, Reactivity, and Applications in Polymerization. Catalysts 2020, 10, 71. https://doi.org/10.3390/catal10010071
Pan Y, Jiang X, So Y-M, To CT, He G. Recent Advances in Rare Earth Complexes Containing N-Heterocyclic Carbenes: Synthesis, Reactivity, and Applications in Polymerization. Catalysts. 2020; 10(1):71. https://doi.org/10.3390/catal10010071
Chicago/Turabian StylePan, Yu, Xinxin Jiang, Yat-Ming So, Ching Tat To, and Gaohong He. 2020. "Recent Advances in Rare Earth Complexes Containing N-Heterocyclic Carbenes: Synthesis, Reactivity, and Applications in Polymerization" Catalysts 10, no. 1: 71. https://doi.org/10.3390/catal10010071
APA StylePan, Y., Jiang, X., So, Y. -M., To, C. T., & He, G. (2020). Recent Advances in Rare Earth Complexes Containing N-Heterocyclic Carbenes: Synthesis, Reactivity, and Applications in Polymerization. Catalysts, 10(1), 71. https://doi.org/10.3390/catal10010071