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Abstract: CO2 emissions from the consumption of fossil fuels are continuously increasing,
thus impacting Earth’s climate. In this context, intensive research efforts are being dedicated to develop
materials that can effectively reduce CO2 levels in the atmosphere and convert CO2 into value-added
chemicals and fuels, thus contributing to sustainable energy and meeting the increase in energy
demand. The development of clean energy by conversion technologies is of high priority to circumvent
these challenges. Among the various methods that include photoelectrochemical, high-temperature
conversion, electrocatalytic, biocatalytic, and organocatalytic reactions, photocatalytic CO2 reduction
has received great attention because of its potential to efficiently reduce the level of CO2 in the
atmosphere by converting it into fuels and value-added chemicals. Among the reported CO2

conversion catalysts, perovskite oxides catalyze redox reactions and exhibit high catalytic activity,
stability, long charge diffusion lengths, compositional flexibility, and tunable band gap and band
edge. This review focuses on recent advances and future prospects in the design and performance
of perovskites for CO2 conversion, particularly emphasizing on the structure of the catalysts,
defect engineering and interface tuning at the nanoscale, and conversion technologies and rational
approaches for enhancing CO2 transformation to value-added chemicals and chemical feedstocks.

Keywords: carbon dioxide; reduction; conversion; perovskites; review; catalyst; redox reactions;
chemical looping; artificial photosynthesis

1. Introduction

In the past decades, the increasing concentration of CO2 in the atmosphere is attributed mainly to
the utilization of fossil fuels and it has negatively impacted the climate [1–8]. The level of CO2 in the
atmosphere has increased from 322 ppm in 1967 to 407 ppm in 2017 and is predicted to reach to 600 ppm
by 2100. Consequently, according to the International Panel for Climate Change (IPCC), the mean
global temperature will increase by 1.9 ◦C by the year 2100. In 1992, many countries ratified the U.N.
Framework Convention on Climate Change, which set out guidelines to reduce greenhouse gas levels
in the atmosphere. In a comparative context, the average global emission of CO2 due to the use of fossil
fuels is in the order of 35 Gt, while the annual capture limit is 35 Mt. To help mitigate global warming,
efficient technologies to reduce the levels of CO2 and simultaneously produce value-added products,
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such as chemicals and fuels, by its conversion are a sustainable solution [9–18]. To this extent, a number
of approaches have been investigated for the conversion of CO2 into fuels [19–28]. One example of such
technologies is high-temperature conversion (HT), which dissociates CO2 molecules into hydrocarbons
at temperatures higher than approximately 2000 ◦C in vacuum [29]. The process is associated with high
energy consumption, and has issues of instability of the converted molecules under the applied harsh
conditions. Another technology is the solar thermochemical conversion (STC), which can produce
hydrocarbons at temperatures higher than 1000 ◦C, and where the CO2 conversion rate and selectivity,
e.g., to CO, are often found to be better than that of the photocatalytic technologies. The operating
temperature of this process is also high and thus the chemicals produced often face stability issues as
well. Among the high-temperature methods, the reverse water–gas shift chemical looping is a lower
temperature CO2 conversion process with operating temperatures in the range of 500–700 ◦C [29].
In this process, the conversion of CO2 into CO takes place followed by hydrogenation of CO into fuels
via Fisher–Tropsch synthesis (FTS).

Recently, among various nanostructured materials, semiconductor-based photocatalysts have
shown great potential for CO2 conversion into chemicals such as H2, CH4, CH3OH, and NH3,
via complex photoreactions that harness solar photons as energy sources [21–29]. This process in
general needs a high energy input to activate CO2. In order to yield chemicals and fuels, the chemistry
and thermodynamics of CO2 should be well-known, as conversion of CO2 is thermodynamically
unfavorable due to the fact that the bond energy of C=O is 750 kJ/mol, making it difficult to break
down. To facilitate the cleavage of the C=O bonds, catalytic approaches, namely, photo [1,30],
photochemical [2,31], electrochemical [32,33], and thermochemical [34,35] reactions, are mainly being
investigated. For instance, the high energy required to break C=O bonds for the formation of C–H
bonds toward photocatalytic reduction of CO2 with H2O into hydrocarbon products is provided by
incident light. On the other hand, the thermochemical process involves high temperature and pressure,
and it is often challenging to control reaction selectivity [1–3]. Pretreatment at different temperatures
has been found to affect reactivity and selectivity, while the overall process is often complicated and
challenging to control, making it difficult to convert CO2 to the desirable products with high efficiency.
To this extent, the development of CO2 conversion technologies at low temperatures involving novel
catalysts, such as perovskite-based ones, becomes more attractive than classical methods, due to the
inherent advantages that these materials can offer, which include sustainable catalytic efficiency, tunable
selectivity, potential for scaling up to industrial applications, and the ability to improve conversion
efficiency and selectivity via optimizing the catalyst morphology and structure [19–29].

2. Perovskite Structures and Properties

Recently, there has been an increasing interest toward the exploration of perovskites in the field
of energy and environment for applications such as fuel cells, CO2 conversion, vehicle exhaust gas
purification, and water gas reactions, because of their low price, tunable oxidation state, structural
properties, and thermal stability [24,26,28,36–38], while fundamental investigation of these compounds
has the potential to shed light on the relationship between catalytic activities and solid-state properties.
Perovskites are often found with the general formula ABO3, where A stands for the alkali metal
(Li, Na, K, and so on) and/or alkaline-earth metal (Mg, Ca, Sr, Ba, and so on) or rare earth metal cation,
occupying the 12-fold coordinated cube-octahedral cages of oxygen sublattice, and B indicates the
transition metal cation (such as Mn, Co, Fe, Ni, Cu, or Ti), which is surrounded by six oxygen atoms in an
octahedral coordination and is also responsible for catalytic activity and electron transfer [23,24,26,27,29].
According to the given formula, many important cations can fit into the A and B positions for making
the final crystalline structure, to effectively tune the material properties and help improve conversion
efficiency and selectivity. The metals in the perovskites’ lattice are generally stable, as needed for the
catalytic reactions at various conditions, while their cations in the A and B positions could be replaced
as required via partial substitution [23,26,29].
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Perovskite oxides mainly consist of a cubical crystalline structure where the cations have large
ionic radii, which allow extensive coordination of oxygen molecules in the A-sites. Therefore, the larger
A-site cations in the lattice (both in cubic and double-layered perovskites) are energetically favorable
to be terminated at the AO surface. In fact, A-sites effectively block B-sites from coming into contact
with reactants, such as CO2, because less B-sites are exposed to the free surface to be available
to participate in reactions, thus impacting the electrochemical transformations [26,27,29]. On the
other hand, these cations have smaller ionic radii, thus less energy is utilized when they occupy the
B-sites. When O and A join, cubic packs appear, while B occupies the octahedral voids of the packing.
Thus, in an ideal compound structure, among the atom bonds, the B–O distance matches a/2 (where a is
the unit cell length), while the A–O distance equals to a/

√
2 [10]. The following equation summarizes

the ionic radii relation: (rA + rO) = (
√

2(rB + rO). Related studies have shown that the metal oxides
are stable in their oxidative state and are thus used as catalysts in a variety of conditions with high
efficiency and stability, while the ABO3 structure and composition provide excellent tunability to
control the final properties [10]. It has also been reported that the cubic form of perovskites is retained
in the ABO3 formula, although this structure is not always strictly obeyed, thus, for evaluation of the
deviation from this structure, the tolerance factor (t) was introduced by Calio et al. [14]. Accordingly,
a measure of the ionic distance of A and B can be provided as indicated in the following equation:
t = (rA + rO)/(

√
2(rB + rO). For an ideal perovskite, t suggests unity, while lower values can also be

obtained ranging from 0.75 to 1.0, and in such instances, the cubical structure of the compound is
distorted, forming tetragonal shapes, lower symmetries, and rhombohedral forms [14,26,27]. Notably,
in perovskites whose t values exceed 1, hexagonal structures are observed. This observation results
from the large ionic radii of A ions and the smaller B ions. An example of such a compound is BaNiO3

perovskite, which possesses a hexagonal shape (Figure 1).
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Figure 1. Perovskite crystal structure of (a) BaNiO3 and (b) the double form of Na2Ta2O6 (red, oxygen;
green and purple, A-site cation; grey and blue, BO6 octahedra) [38].

Research on perovskite-based systems for environmental and energy applications has intensified
in the past two decades as energy demands increase and environmental constrains become more
stringent [39]. To this extent, the use of nanostructured perovskites for producing hydrogen using
water and solar energy, as well as conversion of CO2 to generate hydrocarbons and value-added
chemicals, is being intensively investigated [19,21–26]. Materials, such as those based on Ti, are being
investigated for their photocatalytic performance. In the crystalline structure of these materials,
the different tilting rates of octahedra usually produce various crystal forms, as well as optical and
electronic properties. In particular, the tilting degree affects the band structure, photoluminescence,
dielectric tendencies, hole transport, and electron properties [16,28,40,41]. The tuning ability of the
perovskites provides significant benefits compared to binary oxides, since the A-sites and B-sites offer
considerable opportunity for the alteration and design of the band structure and final properties.
For the double perovskites (Figure 1), the stoichiometric presence of double cations on the B-sites is
beneficial during photocatalysis by visible light. Combination effects, for example, with ferroelectricity,
could benefit the photocatalytic activities, while these materials have the potential of offering a wide
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range of overpotentials to introduce photoinduced reactions. When compared to metal oxides, these
compounds have higher cathode conduction band (CB) energies, which are essential for the hydrogen
evolution reaction (HER) [23,24,26–29,38].

High energy intake by incident light is needed to overcome reaction barriers and break the
C=O bonds for the formation of C–H bonds in photocatalytic reduction of CO2 into hydrocarbon
products [2]. Progress towards commercialization is hindered by the availability of efficient, selective,
and cost-effective catalysts. To this end, research efforts on the development of novel catalytic materials
with tailored structural and morphological features for optimized performance, reactivity, selectivity,
and stability are necessary [19,38,42,43]. The judicious choice of catalyst materials can tune CO2

conversion reactions to achieve high selectivity and accelerated reaction rates. Among the available
catalytic materials, perovskites are particularly attractive as mild operating conditions are used
and wide control over the catalytic properties is achievable. Perovskites provide broad-spectrum
activity, where applications can be anticipated utilizing visible and UV light, in particular, focusing
on conversion into value-added chemicals for increasing chemical feedstocks and reducing CO2

emissions in the atmosphere [1,2,5,38]. In this context, perovskite oxides have shown high stability,
compositional flexibility, efficient catalytic capability, and long charge diffusion periods [23]. As a
result, these materials can lead to accurate band gap and edge tuning, which are important in selective
CO2 reduction as well as in solar cell applications, due to their simple fabrication, high efficiency,
and low costs [23,25,26,28,29,44,45]. Emerging CO2 conversion technologies need to achieve reduction
at a sustainable manner using mild operating temperatures, high conversion rates, and selectivity [46].
For example, earth-abundant and -derived perovskite materials are used in the gas–water shift reverse
chemical looping to produce chemicals. The selection of technology is often based on manufacturing
complexity, availability, productivity, and ability to tune the production of particular chemicals [47],
as well as environmental assessment factors [48–56].

The structure of perovskite catalysts can play an important role in the conversion of CO2 into
value-added chemicals [19–21,23–26]. In particular, emphasis is given to achieve (i) high efficiency by
enhancing mass transfer, (ii) the ability for separation of products, (iii) low-pressure drops, (iv) absence
of clogging, (v) safety, and (vi) cost-and energy-effective production [36,57,58]. To this extent,
the preparation method is important for controlling the properties and final structure of perovskites.
Valuable information about tuning the material properties of perovskites can be extracted from their
utilization in various applications including NOx, oxidation of CO, combustion of hydrocarbons,
and hydrogen production [58–60]. To affirm the application of these materials, their performance
metrics have to be evaluated to determine the presence of active components [61–63]. For instance,
much attention has been devoted to the development of structured perovskites that can be used in
three-way converters. A challenge is testing the performance of the catalysts used [64–66]. In particular,
the optimum operating conditions are difficult to determine, and therefore, the obtained results often
deviate. Nevertheless, recent studies have shown significant improvement in the development of
structured perovskite catalysts as demonstrated in Figure 2 [64]. Upon incorporation of metals to
perovskites, the active phase constitutes a critical part of the structured form [67] contributing toward
overcoming challenges related to catalytic performance, degradation, and diffusion limitations [19,42].
In particular, perovskite monoliths using various perovskite compositions, i.e., A = La, Ce, Y, Dy, or Sr;
B = Mn, Cu, Fe, or Co, can be generated and tuned using steps such as extrusion of plastic pastes with
catalytic powders, calcination, and drying procedures [64,65].
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3. Chemical Looping

CO2 treatment systems combining conversion with capture in a cost-efficient manner are
particularly attractive toward commercialization. On the capture side, reduction of the cost of CO2

separation processes could be implemented by focusing on (i) improving the efficiency of the capture
materials [6,7,68–70] and (ii) optimizing process design and reducing the cost of equipment [71–75].
In addition, considerable time and financial investments are needed in order to develop the relevant
cost-effective technologies to enhance the production of chemicals, while reducing the associated costs
of the used systems. In this regard, chemical looping is one of the promising technologies with the
ability to separate CO2 from fuel feeds, while it involves a high-energy combustion process that utilizes
redox reactions. Figure 3 demonstrates the relation between cost reduction benefits vs. anticipated
time to commercialization for various related technologies [74,76]. Evidently, reduction of the cost
of separation can offer high potential for commercial CO2 set-ups from capture to production of the
value-added chemicals and energy.
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Studies have shown that chemical looping has evolved to accommodate various applications based
on the recycle-based reaction design [51]. The process involves conversion, followed by regeneration
of the involved solid materials [77]. According to Figure 4, significant developments on group A-1
process have been made. The process is split into two half-cycles. The reduction half-cycle reduces
metal oxides, and the hydrocarbon fuels are oxidized to H2O and CO2 [78,79]. Fuels, such as biomass
and coal, can be directly combusted in chemical looping via the oxygen uncoupling process [78–80].
A schematic representation of a mechanism for enhanced metal utilization in chemical looping reactions
using reducible supports is also shown in Figure 5 [81].
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Despite the high cost and increased toxicity concerns, Ni-based structured perovskites have
received great attention because of their enhanced catalytic activity [52,82]. For instance, an almost
complete CH4 conversion has been reported using chemical looping and Ni-based oxygen carriers.
Though, results have shown that catalytic performance is often compromised due to partial oxidation
and cycle repetitions [82]. Similarly, Ni-based structures are responsive to deactivation by coke
deposition and sulfur poisoning. In this regard, material optimization is required to solve these issues.
On the other hand, Fe-based components serve as reliable oxygen carriers because of their affordability,
mechanical strength, and the fact that they are environmentally safe. They also tend to suffer less
from sulfur and carbon depositions [83,84]. Significantly, these materials have high oxygen retention
at various operating temperatures (600–1800 ◦C). As a result, most of the current chemical looping
technologies perform dry reforming using Fe-based oxygen carriers.
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4. Engineering of Oxygen Carriers

The shortcomings in industrial chemical looping require improvement of oxygen carriers.
In particular, there are three critical pathways to consider: (i) standardization and activation of
the oxygen carriers, (ii) introducing promoters, and (iii) mixing metal oxides to leverage multiple
benefits [53,85]. Currently, significant attention is being devoted toward the improvement of Fe-
and Ni-based oxygen carriers and notable improvements have been achieved on material structures,
promoters, and the types of chemical looping processes in which these materials are used [86–88].
Both the support and promoters can be chemically and physically active, the latter creating physical
barriers to enhance thermal stability and the former providing redox attributes to improve reactivity.

In the case of Ni-based oxygen carriers, various heat-resistant compounds (such as TiO2, ZrO2,
and Al2O3) and spinels (such as CaAl2O4, NiAl2O4, and MgAl2O4) are considered as effective promoters.
Among these oxides, NiO/Al2O3 demonstrates significant reactivity, strong resistance, and thermal
stability, while preventing carbon formation upon chemical looping [89–91]. Ipsakis et al. [92] revealed
metal–support interactions for the NiO/Al2O3 oxygen carrier, and a reduction reaction for the NiO/TiO2

oxygen carrier. Tijani et al. [93] observed significant oxygen capacity for Ni-Co/ZrO2, Ni-Cu/ZrO2, and
Ni-Fe/ZrO2, along with minimal interaction with the Al2O3 support. A conversion rate of 37% was
observed for Ni-Cu/ZrO2 in the air reactor, with negligible effect in the fuel reactor. Park et al. [94]
observed a strong influence of NiO type on the oxidation and reduction rates of Mg-incorporated
NiO/Al2O3 oxygen carriers in conjunction to Mg content, and both the rates were observed to increase
with reaction temperature as well as with gas concentration [94].

Inactive spinels, such as NiAl2O4, are formed due to the strong interaction between Al2O3 and NiO,
thus resulting in partial loss of chemical activity. In this regard, studies have suggested that the chemical
reaction should be supplied with excess Ni to retain sufficient content of the NiO oxygen carrier [95,96].
According to Chen et al. [97], superior performance in terms of plant efficiency was noted for the NiO
oxygen carrier compared to CuO- and Fe2O3-based systems. On the other hand, chemical passivism
can be deployed to enhance the inert form of the Al2O3 promoter [98,99]. Yu et al. [100] studied the
effectiveness of the NiAl2O4 spinel for conversion applications. It was noticed that an enhanced catalytic
performance, together with an anticoking benefit, was achieved by the contribution of improved
textural properties of the catalyst. Beierlein et al. [101] investigated the structural influence of NiAl2O3

on the CO2 methanation reaction. The yield was observed to be higher for the catalyst comprising
high surface area Ni. A strong influence of spatial distribution of Ni as well as support stability was
also reflected on catalyst stability. In another study, Baek et al. [102] reported an accelerated rate of
oxygen transport for Mg-Al layered double hydroxide-supported NiO oxygen carriers compared to
Al2O3- or MgO-supported versions, on account of enhanced physicochemical features.

The addition of MgO/CaO when preparing Al2O3/NiO oxygen carriers has led to the creation
of stable spinels. The use of reducible oxides, such as CeO2, also increased the potential of Ni-based
compounds as oxygen carriers, while additional important properties are realized due to the synergetic
effects of CeO2 and Ni [103–106]. After the reduction cycle, Ni particles are composed of two main
phases, i.e., the metallic form and NiO. CH4 is decomposed on the metallic surface of Ni forming a
carbonaceous species, which is then gasified using oxygen from CeO2 [106]. During this process, the lost
oxygen is replenished at the core of Ni particles. Therefore, a continuous reduction is assured for the Ni
particles. Even though Ni/CeO2 oxygen carriers provide a high reactivity to CH4, the high utilization
and exposure to carbon formation reduce the surface area during chemical looping. CeO2 sintering
becomes more dominant after repeated cycles, an issue that needs to be fixed before realization in
industrial applications [107–109]. Hossain et al. [110] reported a considerable reduction in nickel
aluminate generation for NiO/Ce-doped Al2O3 oxygen carrier through the reduced interaction between
metal and support. Notably, the availability of approximately 70% of incorporated NiO to proceed
with reduction reactions was evidenced. The cyclic stability was also evidenced from the repeated
redox reactions. Zhao et al. [111] investigated the effectiveness of Ni/Mg/Ce0.6Zr0.4O2/Al2O3 for CO2
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conversion applications. CO2 conversion rates of 4% and 61% were observed at 1 and 6 bar, respectively,
and at 860 ◦C.

Fe-based oxygen carriers have also attracted considerable attention in chemical looping
applications [112,113]. Bhui et al. [114] investigated the chemical looping process supported by
Fe2O3 oxygen carriers. Interestingly, a significantly improved CO2 yield of 88.7% was discerned,
though only 17.5% was observed in the absence of Fe2O3. Hu et al. [115] developed an oxygen carrier
based on Fe2O3/Al2O3 exhibiting superior crystal cell shrink resistance and significantly enhanced
specific surface area. As a result, an increase of 13% and 37% in reduction and oxidation rates,
respectively, was noticed, along with an appreciable regenerability after five redox cycles. In another
study, Diego et al. [116] reported the effects of Fe content and elevated temperature in achieving effective
chemical looping for Fe-Al oxygen carriers. Further studies have shown that promoters, such as MgO,
Al2O3 and TiO2, easily induce solid-to-solid transformations with the Fe oxides during continuous
cycling. Thus, based on the promoter being used, compounds such as MgFeO4, FeTiO3, Ca2Fe2O4,
Fe2SiO4, and AlFeO4 can be formed. These compounds are mainly formed during redox reactions,
where the metal ferrites become physical barriers. Therefore, they prevent iron oxide sintering,
while the oxygen-carrying capacity reduces since the ferrites are strong reducing agents [117,118].
In that regard, their oxygen storage capacity reduces considerably and it becomes difficult for the
unreactive compounds to decompose. Significantly, considering that the spinel compounds are formed
easily, the addition of the right amounts of Mg to the chemical looping reaction can stop the formation
of FeAl2O4 [119]. On the other hand, MgAl2O4 contributes also through its high chemical and thermal
stability, and specific heat capacity. Hafizi et al. [120] compared the performance of Fe2O3/Al2O3 and
Fe2O3/MgAl2O4 oxygen carriers. It was observed that Mg modification of alumina could improve
the performance of the oxygen carrier in chemical looping and sorption-enhanced chemical looping
reforming processes. This was attributed to the prevention of FeAl2O4 spinel generation and resultant
improvement in the activity of oxygen carrier under the influence of Mg by the generation of MgAl2O4.
Liu et al. [121] observed an appreciable performance for an oxygen carrier based on Fe2O3/TiO2 during
30 redox cycles. The combined incorporation of La and Ce was favorable to improve sintering as
well as carbon deposit resistance of Fe2O3/Al2O3, as demonstrated by the work of Tang et al. [122].
An Fe2O3/ZrO2-ZrO2 core-shell structured oxygen carrier with enhanced performance in redox activity,
sintering resistance, and structural as well as thermal stability was developed by Hu et al. [123] for
CO2 conversion applications.

Perez-Vega et al. [124] developed an oxygen carrier using MnFe2O3, which was efficient in terms
of reactivity and mechanical properties. Furthermore, the addition of kaolin during the calcination step
was beneficial to enhance the reactivity and strength, yet at the expanse of oxygen transport capacity.
The applicability of TiO2-doped MnFeO3 was studied as well. Enhanced oxygen uncoupling as well as
magnetic features for this oxygen carrier under the conditions of both oxidation and reduction were
evidenced [125].

CeO2 promotes iron oxides in chemical looping because of its high reactivity to methane using
lattice oxygen [126]. Redox reactions facilitate the transfer of oxygen and its release from the lattice.
When Ce4+ ions are replaced by cations of lower valence, space for oxygen is created at the active sites.
After the consumption of surface oxygen, the additional gas is transferred to the surface [127]. In that
regard, the presence of CeO2 increases the reduction of Fe2O3. The effectiveness of Fe2O3-CeO2/Al2O3

oxygen carrier was studied by Kang et al. [128], and a significant redox activity was evidenced.
Also, the generation of syngas with high purity was achieved, together with a molar ratio of 2 for
H2/CO. Hafizi et al. [129] reported sustainable activity for Fe/Ca/Al2O3 oxygen carrier upon 15 cycles
of oxidation and reduction.

The applicability of the NiFeAlO4 spinel as a self-sustained oxygen carrier has been investigated
by Kuo et al. [130] for the conversion of CO2 to H2. A significantly enhanced agglomeration resistance
was observed for this oxygen carrier in comparison to other studied systems, such as NiO, Fe2O3,
and NiFe2O4. Notably, the reduction reaction in a fixed bed reactor confirmed enhanced H2 generation
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and CO2 conversion. Zaabout et al. [131] made a performance comparison for (FeNiAl)3O4 with Fe2O3,
and observed that the (FeNiAl)3O4 spinel was more efficient with respect to conversion rate and cyclic
stability. In another work, Hu et al. [132] reported the use of the NiO/Fe2O3/MgAl2O4 oxygen carrier
for CO2 conversion via the chemical looping process. Under the conditions of reduction capacity
>2 and temperature >873 K, a high extent of Fe2O3 reduction was discerned. Regarding the cyclic
operations, superior stability was attained for five cycles.

Some attempts using Cu-based oxygen carrier systems have also been made. Huang et al. [133]
introduced CuO/Al2O3 oxygen carrier exhibiting superior carbon deposition and deactivation resistance
for multicycle redox operations, on account of better distribution of CuO on Al2O3. Furthermore,
an oxygen carrier consisting of CuO, Fe2O3, and MgAl2O4 has been explored for chemical looping
combustion applications [134]. Adanez-Rubio et al. [135] discussed the applicability of CuO/Mn3O4 as
an oxygen carrier for chemical looping. The lifetime of this oxygen carrier was found to be significant
for a large oxygen carrier/fuel ratio.

An oxygen carrier based on hierarchical Co/MgO rich in oxygen sites, activity, thermal reliability,
and Co dispersion was reported by Li et al. [136]. Moldenhauer et al. [137] developed the CaMnO3

oxygen carrier with high potential of cost-effectiveness. In addition, this oxygen carrier had the
capability to enable reactivity through effective release of oxygen to the gaseous state, together with
superior attrition resistance. Sulfur poisoning was a drawback of this material. Zhu et al. [138] found
that Ce doping was more effective to enhance the reactivity, multicycle stability, syngas yield, and CO2

activation of hexaaluminate oxygen carriers in comparison to doping with other metals, such as Fe, Si,
and Zr. In another study, Huang et al. [139] reported appreciable stability for Fe-doped hexaaluminate
oxygen carriers after 50 redox cycles.

5. CO2-Derived Fuels

The conditions of the available CO2 sources upon capture play an important role in the subsequent
separation and conversion technology. In the post-combustion process, gases are obtained when fossil
fuels burn where the composition of CO2 is 3%–20%. In pre-combustion, higher CO2 levels are typically
obtained, reaching 15%–40% at higher temperatures. A shift reaction occurs during the production of
synthesis gas using a water–gas combination, where fuel oxy-combustion is established [140].

5.1. Electrolysis

CO2 can be reduced electrolytically into fuels in analogy to water electrolysis, where oxygen forms
at the anode, while the reduction of the gas occurs at the cathode [141]. In this case, the electrolytic
process is dependent on the catalyst used in the reaction and can yield products that include
methanol, formic acid, ethylene, formaldehyde, and methane. Challenges such as catalyst deactivation,
high overpotentials in cells, and limited current densities need to be overcome. Given that the
thermodynamic potential of CO2 is analogous to that of splitting water, the reduction of the gas
results in a low faradaic efficiency [142]. Copper, for instance, reduces CO2 having substantial current
densities, workable faradaic efficiency, and cell overpotentials. As a result, hydrocarbons such as
ethylene and methane are formed.

Sathre et al. [143] examined CO2 reduction at high temperatures using solid oxide electrolytic
cells (SOEC). The feasibility of reduction at high temperatures is to lower the electrical charge required,
while increasing the rate of the electrode reaction [144]. In this case, efficient reduction of CO2 can
occur at approximately 800 ◦C using perovskites, such as La0.8Sr0.2Cr0.5Mn0.5O3 (LSCM), to accelerate
electrode kinetics. Pb-ceria composites are also used in the reduction reaction as co-catalysts [144,145].
Interestingly, at high temperatures, the co-electrolysis of water and CO2 leads to the production of
synthetic gas and oxygen at the cathode and anode, respectively. This process can operate with an
efficiency of up to 70% [146].
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5.2. Thermochemical and Photoelectrochemical Conversions

Thermochemical and photoelectrochemical conversions have received rather less attention
compared to SOEC because they are still at an earlier research stage, thus there is still a long way to go to
reach large-scale applications [147]. Similar to water splitting, the main challenge of the photochemical
approach is the development of suitable photocathodes to facilitate the reduction process [148].
The issue of CO2 availability in aqueous form also exists because of poor solubility. Nevertheless,
investigations focus on non-aqueous solvents and three-phase interfaces (solid/liquid/gas) [149]. In this
arrangement, the metallic electrodes should be partially dipped in CO2 solutions, while the gas is
supplied in the vapor stage.

On the other hand, thermochemical reduction is also under investigation using metal
oxides [150,151]. For instance, at 1600 ◦C, ZnO is reduced to Zn using solar energy.
Subsequently, at 360 ◦C, Zn is oxidized by CO2 forming ZnO and CO. Although the thermochemical
approach is viable for the conversion of CO2 into value-added chemicals, it can be enhanced through
the co-reaction between H2O and CO2, e.g., using CeO2, to produce O2, CO, and H2 [152]. This reaction
starts with the reduction of CeO2 at temperatures of approximately 1420–1640 ◦C. Then oxidation using
CO2 and H2O follows at approximately 900 ◦C. While the predicted solar-to-fuel conversion ranges
between 16%–19%, only about 8% is realized experimentally [153]. Heat loss is also a significant issue
in the reaction. Solar-assisted conversion using hydrogen is also under investigation [154]. For instance,
synthetic gas is made by the reaction of hydrogen and CO, while the hydrogenation of CO2 creates
other fuels that are easy to distribute, store, and use.

6. Photon Capture

The formation of solar fuels starts with the identification and development of the proper materials
for photon capture [154,155]. Suitable materials as solar absorbers used in electrochemical reactions
include oxynitrides, carbon, nitrides, oxides, and carbon nitrides [156,157]. For photoelectrochemical
fuel production, the absorbers should have the proper band gap and structure to use most of the
available solar radiation, while they should also exhibit sufficient charge transport efficiency and
stability. Furthermore, the optimum materials should be non-toxic, inexpensive, and abundant. In one
case, metal deposition was conducted on thin print spots to target n-type porous Fe-based binary
oxides and p-type Bi-based semiconductors. It was determined that FeVO4 and CuBi2O4 were suitable
visible-light semiconductors, while Bi-Cu and Bi-Ag-Cu composite systems also showed significant
photocurrent capabilities.

Further assessments of suitable materials for water splitting have evaluated sulfides, fluorides,
metal oxides, and their combinations. MnV2O6, in particular, has been experimentally proven to
bear desirable water splitting properties [158–160]. Recent evidence also suggests that organometal
halide perovskites have the potential of being efficient photo-absorbers, while they are formed from
naturally occurring materials. As research continues with the development of suitable photo-absorbers
and investigation of their structure–property relationships, an additional challenge that needs to be
addressed is the stability under photoelectrochemical conditions.

7. Artificial Photosynthesis

In recent years, the production of solar fuels using artificial photosynthesis is under intense
investigation, where CO2 is reduced and the energy produced is stored in a chemical form [161].
The objective has been the scalable production of systems that can reduce CO2 using water and
solar energy to generate electrons [162]. To this end, ZnO/ZnTe/CdTe triple-layered gold-plated
core photocathode and a perovskite solar cell containing CH3NH3PbI3 have been employed. It was
determined that light harvesting achieves high energy photons (>2.14 eV) at the photocathode.
The utilization of perovskite halides in photovoltaic processes has attracted attention because these
materials are abundant, have high climbing efficiencies, and have a relatively low cost of synthesis.
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Photochemical CO2 conversion to value-added chemicals is realized using homogeneous and
heterogeneous systems, where CO2 is reduced at photovoltaic junctions [163]. In that regard,
thermodynamics forms the fundamentals of reduction using photovoltaic cells. The challenge in
such utilization of photovoltaics is the development of abundant earth materials, which will also be
non-toxic and affordable, and they will constitute sunlight-stable photovoltaic compounds [163–165].
In a prototype based on an imidazolium salt derivative developed by Toshiba, the conversion of CO2

to ethylene glycol was realized at high efficiency and without harmful byproducts [164]. In this regard,
molecular interactions between the catalysts coated on a metal surface, where CO2 molecules are
reduced, played a dominant role in the efficiency. Most of the currently available photomolecular
technologies use two-electron reduction-conversion processes. Toshiba’s new molecular catalysts,
however, employ multiple conversion where ethylene glycol is produced during reduction. It was
determined that the efficiency of the catalysts can reach up to 80% [23]. Toshiba is further investigating
the development of molecular catalysts to improve their application in artificial photosynthesis.

Extensive studies are being conducted on polar materials to understand their potential as
semiconductors to be used in photovoltaic applications [165,166]. In particular, the movement of
dipoles in these materials is activated by sunlight, and as a result, charge carriers are generated.
These materials comprise ferroelectrics, which are determined to exhibit pyro- and piezo-electricity.
Research on these materials was enhanced with the discovery of photocurrent generation using
para-electric BaTiO3. The detection of the band gap in cadmium telluride including zinc sulfide was
also a contributing factor. Nevertheless, most of the research has concentrated on the photovoltaic effect
in non-centrosymmetric crystals, also called the galvanic effect [167]. The ferroelectric phenomena
refer to the production of steady streams of current in short circuits.

The initial model for the bulk photoelectric effect utilized asymmetric materials; however, recent
developments have seen the adaptation of theories on shift currents [168]. To this end, the photoelectric
concept could be explained from a microscopic perspective using the shift and ballistic mechanism
models. Firstly, the ballistic model for anisotropic and isotropic materials is centrosymmetric utilizing
the p–n junctions in solar cells [169]. The model projects itself when the photoelectric materials are
exposed to sufficient thermal illumination after which the valence bands get excited. As a result,
a photocurrent is generated through the conduction band. During this process, the carriers lose energy
and therefore move to the conduction band’s bottom via band-to-band transitions. This movement
is meant to create equilibrium and thus continue the production of the bulk photocurrent [170].
Notably, the current shift model is characterized by a quantum mechanical nature, which implies that
coherent excitations cause the thermal carriers.

Considering hydrogen production, artificial photosynthesis provides the means for efficiently
converting solar energy to hydrogen [171,172]. To this end, powered water electrolysis using
photovoltaics is a promising approach, yet the technique often suffers from low solar-to-fuel conversion
efficiencies. Solar thermochemical conversion, on the other hand, offers a relatively high theoretical
efficiency and can support large-scale production due to utilization of the vast solar spectrum.

To this extent, versatility in the preparation of various perovskite configurations is important.
For example, useful information can be extracted from the development of perovskites based on metal
halides, which have gained attention for the production of solar cells [173]. These materials have high
potential, for instance, emitting bright light in diodes with considerable efficiency, having therefore
the capability to impact the electronics industry, where both inorganic and organic materials can be
combined to a composite [174,175]. The high conduction ability of perovskites can also be leveraged and
used in making polycrystalline films. The ability to efficiently fabricate such structures can allow the
implementation of solution-processing techniques to create high-performance systems [174]. Yet, most
of the methods used cannot be easily consolidated for large-scale production [24]. Recent studies have
explored vapor-based methods deeming them as technologies that can be adopted in the semiconductor
and coatings industry for large-scale implementation.
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8. Solar Fuels

Developments in green electricity production and electric transportation can play a vital role
in reducing the emission levels of greenhouse gases [176]. It is projected that by 2050, the levels of
greenhouse emissions will be reduced by approximately 80% following the adoption of alternative
fuels. Indicatively, the White House aims to promote clean energy to drastically cut greenhouse gas
pollution by 2035 [177]. Therefore, given the fact that the global consumption of electricity is being
increased, and taking into account the lack of efficient means of storage, the development of alternative
energy is imperative and important in order to ensure sustainability. In addition, more energy is
required to propel industries, such as manufacturing and transportation, within the continuous
digitalization transformation [178]. Solar energy is classified as a carbon-free source and it has the
highest potential in replacing the consumption of fossil fuels. Various challenges have to be resolved
to utilize it competitively. Firstly, ample energy storage solutions should be developed considering
the intermittent nature of the resource. Secondly, plans on how to achieve the production of solar
energy at a large scale to be used in transportation and other sectors should be identified. Solar energy
currently accounts for a small fraction of the energy supply to grid systems [179–181]. Unfortunately,
a setback is its intermittent supply. Production, however, can be supplemented by wind in places
with less sunlight. According to the USA Energy Information Administration, it is expected that the
production of solar energy will increase by 5%–7% yearly [182–184]. Yet, a challenge is to develop,
in parallel, efficient energy storage systems. Most importantly, such systems should be carbon-neutral
and robust to allow grid stability under the future demands [185]. Indicatively, if a 75% efficiency of
electrolytic cells is merged with that of a cycle steam and a gas turbine generator using hydrogen at
60%, the result would be 45% efficiency [186,187]. Yet, the storage capacity for hydrogen and batteries
cells should be considerably optimized.

Hydrocarbons, on the other hand, have high energy densities and can be synthesized from CO2

(Figure 6) [188]. Natural gas synthesis can be feasible on a large scale using CO2 and hydrogen
with an efficiency in the order of 80%. The product can have an energy density that is three
times higher that of the naturally occurring product. Therefore, considering the pivotal role of
chemical fuels in electricity generation, solar energy conversion can be leveraged to create a desirable
distribution [189,190]. Synthetic gas can be stored and supplied to the consumers to power heating
and vehicle systems. Indicatively, in Germany, the storage capacity of natural gas exceeds 200 TWh.
The country can supply this amount for several months. In addition, with the production of synthetic
gas, the applications of the resource could extend, for instance, in fertilizer production, transportation,
and pharmaceuticals [188,191,192].



Catalysts 2020, 10, 95 13 of 30

Catalysts 2020, 10, x FOR PEER REVIEW 13 of 29 

 

 
Figure 6. Solar refinery scheme. Adapted with permission from [188]. Copyright © 2015 The Royal 
Society of Chemistry. 

Over the years, experts have tested the potential of solar fuels in the production of clean 
energy. Hydrogen, as an elemental fuel, has desirable attributes necessary for the production of 
clean energy; yet, it lacks a high volumetric density, and as a result, it cannot be easily stored or 
distributed [140,193–196]. On the other side, conversion of CO2 to CH4 attracts significant attention, 
while the reaction between CO2 and H2 also produces fuel that is easy to distribute, store, and use in 
existing supply infrastructures (Figure 6) [188]. On that note, the concept of converting CO2 using 
solar energy is viable, thus generating solar fuels from green sources exhibiting sufficient energy 
densities [107]. Photocatalytic and photothermal applications have the potential of achieving 
considerable energy conversion efficiencies and commercial viability [140]. At present, the 
contribution of artificially generated solar fuels remains small, while efforts on reducing production 
costs need to be intensified, while challenges in the CO2 capture and sourcing front as well as in 
enhancing the efficiency of solar-assisted conversion of CO2 should be considered. The objective is 
to reduce production costs, extend the lifetime of the systems, and invest in infrastructural 
developments. These efforts will help bridge the gap between deployable technologies and current 
laboratory work. 

Table 1 summarizes literature that reported perovskite catalysts for solar thermochemical CO2 
conversion applications. Sr doping is a suitable method to enrich the CO yield of the LaMnO3-δ 
perovskite catalyst as highlighted by the work of Yamazaki et al. [197]. Demont et al. [198] indicated 
a two-step cycling for the redox activity of non-stoichiometric La1−xSrxMnO3−δ upon solar-to-fuel 
conversion of CO2. Nair et al. [199] supported the superior CO production efficiency of LaxSr1−xMnO3 
perovskite catalysts, along with interesting reliability, by pointing out the benefit of Mn influence. An 
appreciable CO yield of 133.9 μmol/g was observed for the La0.5Sr0.5MnO3 perovskite at 1673 K, as 
suggested by the study of Dey et al. [200]. At the same time, 1.8-fold higher CO yield was achieved 
by the Y0.5Sr0.5MnO3 perovskite compared to La0.5Sr0.5MnO3.  

Upon CO2 splitting, Nair et al. [201] observed superior reactivity for the LaxSr1−xMnO3 
perovskite prepared using the Pechini approach in comparison to solid-state, glucose-assisted, and 
glycine combustion approaches. Riaz et al. [202] developed a lanthanum strontium manganite 
perovskite-based catalyst using electrospinning. Improved redox kinetics for this catalyst, together 
with an appreciable CO yield of 854.20 μmol/g per redox cycle consisting of reduction at 1400 °C 
and oxidation at 1000 °C, was reported. Furthermore, the electrospun catalyst was rich in structural 
stability. 

Figure 6. Solar refinery scheme. Adapted with permission from [188]. Copyright© 2015 The Royal
Society of Chemistry.

Over the years, experts have tested the potential of solar fuels in the production of clean
energy. Hydrogen, as an elemental fuel, has desirable attributes necessary for the production of
clean energy; yet, it lacks a high volumetric density, and as a result, it cannot be easily stored or
distributed [140,193–196]. On the other side, conversion of CO2 to CH4 attracts significant attention,
while the reaction between CO2 and H2 also produces fuel that is easy to distribute, store, and use
in existing supply infrastructures (Figure 6) [188]. On that note, the concept of converting CO2

using solar energy is viable, thus generating solar fuels from green sources exhibiting sufficient
energy densities [107]. Photocatalytic and photothermal applications have the potential of achieving
considerable energy conversion efficiencies and commercial viability [140]. At present, the contribution
of artificially generated solar fuels remains small, while efforts on reducing production costs need to be
intensified, while challenges in the CO2 capture and sourcing front as well as in enhancing the efficiency
of solar-assisted conversion of CO2 should be considered. The objective is to reduce production costs,
extend the lifetime of the systems, and invest in infrastructural developments. These efforts will help
bridge the gap between deployable technologies and current laboratory work.

Table 1 summarizes literature that reported perovskite catalysts for solar thermochemical CO2

conversion applications. Sr doping is a suitable method to enrich the CO yield of the LaMnO3-δ

perovskite catalyst as highlighted by the work of Yamazaki et al. [197]. Demont et al. [198] indicated
a two-step cycling for the redox activity of non-stoichiometric La1−xSrxMnO3−δ upon solar-to-fuel
conversion of CO2. Nair et al. [199] supported the superior CO production efficiency of LaxSr1−xMnO3

perovskite catalysts, along with interesting reliability, by pointing out the benefit of Mn influence.
An appreciable CO yield of 133.9 µmol/g was observed for the La0.5Sr0.5MnO3 perovskite at 1673 K,
as suggested by the study of Dey et al. [200]. At the same time, 1.8-fold higher CO yield was achieved
by the Y0.5Sr0.5MnO3 perovskite compared to La0.5Sr0.5MnO3.

Upon CO2 splitting, Nair et al. [201] observed superior reactivity for the LaxSr1−xMnO3 perovskite
prepared using the Pechini approach in comparison to solid-state, glucose-assisted, and glycine
combustion approaches. Riaz et al. [202] developed a lanthanum strontium manganite perovskite-based
catalyst using electrospinning. Improved redox kinetics for this catalyst, together with an appreciable
CO yield of 854.20 µmol/g per redox cycle consisting of reduction at 1400 ◦C and oxidation at 1000 ◦C,
was reported. Furthermore, the electrospun catalyst was rich in structural stability.
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Carrillo et al. [203] reported the effectiveness of Cr infusion to significantly enhance CO production
kinetics using the La0.6Sr0.4MnO3 perovskite. Likewise, good cyclic stability was offered through the
prevention of structural decay. Bork et al. [204] also pointed out enhanced efficiency and fuel yield
of the La0.6Sr0.4Mn0.2Cr0.8O3−δ perovskite catalyst for solar-to-fuel applications. Luciani et al. [205]
highlighted the possibility of Fe infusion to boost the redox characteristics of the La0.6Sr0.4MnO3

perovskite. Although, the CO yield was observed to reduce with Fe content. Ezbiri et al. [206] reported
significant redox activity for an Al-doped form of the La1−xSrxMn1−yAlyO3−δ perovskite catalyst.

Cooper et al. [207] revealed the feasibility of Ca or Sr (A-site) as well as Al (B-site) doping to
significantly improve the reduction rate of lanthanum manganite perovskite catalysts. Compared to
reference CeO2, values up to 13 times higher were achieved for these doped lanthanum manganite
perovskite forms, i.e., La0.6Sr0.4Mn0.6Al0.4O3 and La0.6Ca0.4Mn0.6Al0.4O3. Sastre et al. [208] reported
great redox properties with acceptable cyclic performance for La0.6Sr0.4Mn1−xAlxO3 perovskite.
The extent of reduction was increased with Al content, while the oxidation extent was found optimal
at a content of Alx = Al0.5.

Bork et al. [209] observed an almost 25-fold higher CO2 splitting ability for the
La0.6Sr0.4Cr1−xCoxO3−δ perovskite compared to ceria. By the use of this catalyst, the added benefit
of reduced solar-to-fuel reactor temperature of approximately 300 ◦C was reported. This catalyst
also demonstrated good cyclic performance. Hare et al. [210] revealed the effectiveness of silica
support to enhance CO production of the La0.75Sr0.25FeO3 perovskite catalyst. Accordingly, an
improvement of approximately 200% was observed at a relatively low temperature. This was attributed
to silica-promoted surface area increase of the perovskite [211].

Hare et al. [212] prepared a LaxCa1−xFeyMn1−yO3 perovskite catalyst and disclosed that the
combinational influence of Ca and Fe could enrich structural stability. Ramos et al. [213] examined the
role of B-site transition metals, such as Co, Fe, and Mn, in LaCoxFeyMn1−x−yO3 for low temperature
solar-to-CO conversion. The surface segregation of Co and Fe contributed to the activity of this catalyst.

Dey et al. [214] reported enhanced CO production for a catalyst based on Y0.5Sr0.5MnO3 at
comparatively low redox temperature conditions on account of highly disordered/distorted structural
influence. Rao and Dey [215] acquired a CO yield of 757µmol/g at 1173 K by the use of the Y0.5Sr0.5MnO3

perovskite. At 1673 K, an O2 release of 483 µmol/g was observed for this catalyst. Takalkar et al. [216]
reported the beneficial effect of reduced Pr, as well as increased Sr content, to enhance the O2

release extent and CO yield of the PrxSr(1−x)MnO3−δ perovskite catalyst for solar-to-fuel conversion
of CO2. Compared to CeO2, a considerably higher CO generation efficiency was reported for the
Pr0.5Sr0.5MnO3−δ perovskite material [217].
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Table 1. Perovskite catalysts in solar thermochemical CO2 conversion.

Catalyst Reactor Reduction
Temperature (◦C) Reducing Atmosphere Oxidizing

Atmosphere
CO Yield
(µmol/g)

O2 Yield
(µmol/g) Reference

LaMn0.5Co0.5O3 TGA 1400 <2 ppm O2 premixed Ar 50% CO2/Ar 145 83 Nair et al. [199]

Ba0.5Sr0.5FeO3 TGA 1000 <2 ppm O2 premixed Ar 50% CO2/Ar 136 582 Nair et al. [199]

La0.5Sr0.5MnO3 TGA 1400 <2 ppm O2 premixed Ar 50% CO2/Ar 269 248 Nair et al. [199]

La0.5Sr0.5MnO3 TGA 1500 10 ppm O2 premixed N2 1 atm CO2 230 111.6 Dey et al. [200]

Y0.5Sr0.5MnO3 TGA 1400 10 ppm O2 premixed N2 1 atm CO2 196.4 108 Dey et al. [200]

La0.6Sr0.4Mn0.6Al0.4O3 TGA 1400 <2 ppm O2 premixed Ar 50% CO2/Ar 205 210 Nair et al. [201]

La0.25Sr0.75MnO3 TGA 1400 N2 CO2/air 786.32 ± 41.6 516.24 ± 19.55 Riaz et al. [202]

La0.6Sr0.4Cr0.75Mn0.25O3 TGA 1400 Ar 0.5 atm CO2 ~7 * ~1.2 * Carrillo et al. [203]

La0.6Sr0.4MnO3 TGA 1350 N2 CO2 469.1 348.8 Luciani et al. [205]

La0.6Sr0.4Mn0.8Fe0.2O3 TGA 1350 N2 CO2 329.9 286.0 Luciani et al. [205]

La0.6Ca0.4Mn0.6Al0.4O3 TGA 1375 3 × 10−5 bar O2 mixed Ar 50% CO2/Ar ca. 420 - Cooper et al. [207]

La0.6r0.4Mn0.6Al0.4O3 Fixed bed reactor 1250 Ar 5% CO2/He 114 266 Sastre et al. [208]

La0.6Sr0.4Cr0.8Co0.2O3−δ TGA 1200 Ar 50% CO2/Ar 157 - Bork et al. [209]

SiO2-supported La0.75Sr0.25FeO3
Quartz microreactor connected with

Cirrus MKS MS 950 10% H2/He 10% CO2/He 1700 - Hare et al. [211]

La0.75Ca0.25MnO3
Quartz microreactor connected with

Cirrus MKS MS 950 10% H2/He 10% CO2/He 1680 - Hare et al. [212]

La0.5Ca0.5Fe0.25Mn0.75O3
Quartz microreactor connected with

Cirrus MKS MS 600 10% H2/He 10% CO2/He 1450 - Hare et al. [212]

LaCo0.5Fe0.25Mn0.25O3
Quartz U-tube reactor connected with

Cirrus MKS MS 550 10% H2/He 10% CO2/He 1780 - Ramos et al. [213]

Y0.5Sr0.5MnO3 TGA 1400 Ar 40% CO2/Ar 757 483 Dey et al. [214]

Y0.5Ca0.5MnO3 TGA 1400 Ar 40% CO2/Ar 671 575 Dey et al. [214]

Pr0.18Sr0.80Mn0.99O2.951 TGA 1400 Ar CO2/Ar 637.6 255.0 Takalkar et al. [216]

La0.5Sr0.5MnO3−δ TGA 1400 Ar 50% CO2/Ar 338.7 684.3 Takalkar et al. [217]

Note: * means that the unit is in mL/g. TGA means thermogravimetric analyzer.
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Mulmi et al. [218] used a non-stoichiometric Ba2Ca0.66Nb1.34−xFexO6−δperovskite for thermochemical
CO generation. An increase of CO generation with Fe content was observed. A perovskite photocatalyst
comprising mixed Fe oxides was developed by Zhang et al. [219]. Notably, almost complete CO2 to CO
conversion was reported in the temperature range of 900–980 ◦C.

A literature summary of various CO2 conversion perovskite photocatalysts is presented in
Table 2. Xu et al. [220] reported the applicability of the CsPbBr3 perovskite quantum dot photocatalyst
for solar fuel generation from CO2. A CO2 reduction rate of 23.7 µmol/g/h was achieved using
this photocatalyst. Moreover, a selectivity of more than 99.3% was discerned. Interestingly, the
incorporation of graphene oxide (GO) was beneficial to exceed the electron consumption rate by 25%.
Hou et al. [221] also reported analogous observations for CsPbBr3 perovskite quantum dots with a
dimension of 3–12 nm. A photocatalyst developed using a mixed halide perovskite, CsPb(Br0.5/Cl0.5)3,
exhibited high performance in terms of efficiency and CO selectivity [222]. Zhou et al. [223] explored
the possibility of the Cs2AgBiBr6 perovskite for photochemical conversion of CO2 to solar fuels. For this
catalyst, an electron consumption of approximately 105 µmol/g was noted down.

A composite photocatalyst comprising CsPbBr3 perovskite nanocrystals and Pd nanosheets
was developed by Xu et al. [224] for CO2 conversion. With pure CsPbBr3 perovskite nanocrystals,
approximately 2.4 times higher electron utilization efficiency was achieved by the incorporation
of Pd nanosheets. In another study, Wan et al. [225] developed a CsPbBr3 perovskite quantum
dots/UiO-66 (NH2) nanocomposite photocatalyst exhibiting improved CO2 reduction activity as well
as CO selectivity. Wang et al. [226] prepared a solar-to-CO2 reduction catalyst by decorating the
PbBiO2Br perovskite with carbonized polymer dots in the presence of a self-sacrificing ionic liquid
reaction source. The resultant composite photocatalyst exhibited advantages in CO yield, reliability,
and selectivity.

Shan et al. [227] used a boron-doped version of SrTiO3 for photocatalytic conversion of CO2.
It was reported that the photocatalytic activity of boron-doped SrTiO3 enhanced by almost 3-fold
by the improvement of charge separation potential. Ag infusion was found beneficial to enhance
CO generation of the H2SrTa2O7 perovskite photocatalyst, according to the research conducted
by Wang et al. [228], owing to reduced reaction overpotential. Accordingly, a CO selectivity of
approximately 70% was noted after the infusion of 0.5 wt% Ag. A computational analysis conducted
by Hafez et al. [229] supported the suitability of a series of oxynitride perovskites, such as LaTiO2N,
TaO2N with Ba, Sr, or Ca, and NbO2N with Ba or Sr.

A photocatalyst based on sodium tantalate (VO-NaTaON) nanocubes exhibiting concurrently
enhanced light absorption and charge separation ability was reported by Hou et al. [230]. Consequently,
a broad spectrum of photoreduction of CO2 to fuels was observed for this photocatalyst.

Jang et al. [162] developed a tandem solar cell consisting of the CH3NH3PbI3 perovskite and ZnTe
photocathode for the selective conversion of CO2. Notably, a conversion efficiency of more than 0.35%
and 0.43% was observed for solar-to-CO and solar-to-fuel conversions, respectively. Wang et al. [231]
developed a photocatalyst possessing improved solar-to-fuel conversion performance by graphene
oxide decoration of the CH3NH3PbBr3 perovskite. As a result, a significant CO yield was obtained on
account of enhanced electron extraction and transfer efficiency.



Catalysts 2020, 10, 95 17 of 30

Table 2. Perovskite photocatalysts for CO2 conversion.

Catalyst Light Source Solvent Products CO Yield
(µmol/g)

CH4 Yield
(µmol/g)

H2 Yield
(µmol/g) Reference

CsPbBr3 quantum dots (3.05–8.65 nm) 100 W Xe lamp with an AM 1.5 G filter Ethyl acetate CO, CH4, H2 49.5 22.9 1.07 Xu et al. [220]

CsPbBr3 quantum dots/GO composite 100 W Xe lamp with an AM 1.5 G filter Ethyl acetate CO, CH4, H2 58.7 29.6 1.58 Xu et al. [220]

CsPbBr3 quantum dots (3–12 nm) 300 W Xe lamp with an AM 1.5 G filter Ethyl acetate/H2O CO, CH4, H2 34.1 ± 0.1 12.2 ± 0.1 0.80 ± 0.03 Hou et al. [221]

CsPb(Br0.5/Cl0.5)3 nanocrystals 300 W Xe lamp with an AM 1.5 G filter Ethyl acetate CO, CH4 ca. 750 ca. 125 - Guo et al. [222]

Cs2AgBiBr6 nanocrystals 100 W Xe lamp with an AM 1.5 G filter Ethyl acetate CO, CH4 14.1 9.6 - Zhou et al. [223]

CsPbBr3 nanocrystals/Pd nanosheet composite 150 W Xe lamp with with a 420 nm optical filter H2O CO, CH4, H2 12.633 3.935 1.167 Xu et al. [224]

CsPbBr3 quantum dots/UiO-66 (NH2) composite 300 W Xe lamp with a 420 nm UV-cut filter Ethyl acetate/H2O CO, CH4 98.57 3.08 - Wan et al. [225]

PbBiO2Br/carbonized polymer dots composite 300 W Xe lamp H2O CO ca. 48 - - Wang et al. [226]

Boron-doped SrTiO3 300 W Xe arc lamp H2O CO, CH4, O2 21 * 14 * - Shan et al. [227]

Ag-loaded H2SrTa2O7 300 W Xe lamp with λ > 200 nm H2O CO, H2 0.39 * - 0.25 * Wang et al. [228]

Sodium tantalate nanocubes 300 W Xe lamp with λ > 400 nm H2O CO, CH4 75 26 - Hou et al. [230]

N-doped graphene quantum dots-grafted
sodium tantalate nanocubes 300 W Xe lamp with λ > 400 nm H2O CO, CH4 180 45 - Hou et al. [230]

Note: * means that the unit is in µmol/h/g.
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9. Challenges and Future Directions

Perovskite materials show great promise for CO2 conversion applications, yet several challenges
need to be resolved for large-scale implementation. For example, perovskite cells currently make use
of only a small portion of the materials’ active sites, thus more efforts on developing large surface
area systems using various nanotechnology-based engineering approaches are needed. The design
of perovskites providing sustainable performance has also been a challenge. Under thermal stress,
in particular, it is imperative for these materials to maintain optimum performance for the desired
duration. For instance, solar cells should operate efficiently at temperatures ranging from −40 to
+85 ◦C for long periods of time. On that note, standardized testing protocols for perovskites are
necessary. Currently, stability tests may offer valuable clues on the tolerance levels of materials
under consideration [148], yet more accurate and reproducible results are required to venture into
large-scale production.

New and optimized systems of perovskites with more compositions are also needed to overcome
chemical stability and sustained performance issues at high temperatures in CO2 and H2O environments.
Studies have shown that the ideal perovskite-based solar conversion systems should have fast kinetics,
and the “right” thermodynamics to yield in high efficiency during water and CO2 conversion,
while maintaining their mechanical stability. Entropy considerations should be given particular
attention, while further comprehension of the tenability degree of perovskites is required using
approaches such as computational thermodynamics [154]. The objective is to gain insight about
the effects of doping on entropy. Future studies on this matter need to also use approaches such
as density functional theory, where the outcome is anticipated to be helpful in the prediction of
thermodynamic attributes.

This review also discussed the potential of oxygen carriers in chemical looping, during which
a two-step process is carried out, where the selected metal oxides undergo reduction and oxidation;
thus, in this case, it is evident that oxides with a high affinity for oxygen are desirable. The objective is
to optimize the perovskite materials so that they exhibit stable regeneration capability and achieve
sustainable efficiency, while further investigations are required to determine reaction mechanisms and
to show mechanical stability for use in industrial chemical looping combustion reactors.

Finally, the use of toxic components in perovskites has been a major concern. Investors require that
the issue of material toxicity should be addressed, now that perovskite-based photovoltaic technologies
are steadily penetrating various markets. With the growing demand for clean energy, a comprehensive
assessment of perovskites is required to determine the most highly performing and least toxic ones.
Similarly, the solvents used in the redox reactions should have low toxicity as well. In addition,
metals such as silver and gold should be avoided if possible, in order to develop cost-effective systems.
Instead, carbon electrodes should be explored as they have proven to be a reliable alternative [232–234].

10. Conclusions

The anthropogenic CO2 emissions in the atmosphere due to the consumption of fossil fuels has
been a critical concern associated with global warming. To this end, the introduction of novel conversion
technologies for green production of fuels is expected to suppress the effects of CO2 accumulation in
the atmosphere and simultaneously help meet the globally increasing energy demand. This review
presents progress on the use of perovskites for CO2 conversion and how properties and structural
variations can impact the related processes and final products. Current developments reveal promise
for these materials, yet also motivate for further studies, particularly with focus on enhancing efficiency,
reactivity, selectivity, and stability at high temperatures, reducing cost, increasing throughput, lowering
toxicity, reducing energy consumption, establishing reproducibility, and ensuring longer lifetime.

The exploration of CO2 conversion has led to the discovery or adaptation of useful technologies,
such as chemical looping. This process has the potential of producing clean energy through the ability
to capture and reduce CO2; thus, upon large-scale implementation of the technology, economies can
have the chance to realize sustainable energy. This realization is heavily based on material development
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and nano-engineering with particular efforts dedicated toward optimization of oxygen carriers to
significantly enhance efficiency and sustainable performance. The optimization of photovoltaic
materials is also underway for application in solar cells, where they catalytically produce photoelectric
currents. Yet, the quantity of electricity produced needs to be considerably increased, so that the novel
solar cells become competitive and head toward commercialization. To further expand the applicability
of perovskite materials for energy and environmental applications, issues such as toxicity need to
be addressed as well. Toxicity can be caused inherently by one or more of the components of the
perovskite material, such as Pb, as well as the used solvents during operation.

Overall, aside from the challenges experienced in the utilization of perovskites, there are many
opportunities to exploit. For instance, the production of hydrogen through water photolysis produces
a clean and reliable form of energy, which can be scaled up using photoelectric generators in the solar
cells, while the extra heat produced in solar cell operations can be tapped for electricity production.
Although R&D continues to discover new applications of perovskites that make these materials more
valuable, the biggest challenge is breaking the scalability limitations to fully realize their potential for
the production of fuel and valuable chemicals that will significantly contribute toward meeting the
future energy, environmental, and sustainability demands.
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