Recent Progress in Catalysts for Hydrogen-Chlorine Regenerative Fuel Cells
Abstract
:1. Introduction
2. Hydrogen-Chlorine Fuel Cells Configuration
3. Catalyst
3.1. Catalyst for Hydrogen Reaction
3.2. Catalyst for Chlorine Species Reactions
3.2.1. Platinum-Based Catalysts
3.2.2. Ruthenium-Based Catalysts
Ru-Based Bimetallic Catalysts
Ru-Based Trimetallic Catalysts
3.2.3. Catalysts Based on Other Compounds
4. Performance of the Regenerative H2-Cl2 Fuel Cells
- -
- Over the years, new techniques have been used for the development of new catalysts and it has generally meant a substantial enhancement in the efficiency of hydrogen-chlorine regenerative cells.
- -
- The use of Ru instead of Pt implied an increase in the catalytic activity of the electrode in chlorine evolution reaction.
- -
- The combination of two metal oxides generally improves the results obtained by using a pure metal (up to 84% for (Ru0.09Co0.91)3O4/C as the chlorine electrode).
- -
- Adding a new metal (Pt) to Ru-based bimetallic catalysts does not, generally, improve the performance of H2-Cl2 fuel cells.
- -
- The best electric-to-electric efficiency (EFE) results have been obtained in research carried out by our group, at present, in which only ruthenium oxide was used as a catalyst on the chlorine side. These results were obtained by using carbon as a support and introducing dry chlorine into the cell, which changed the operating conditions when compared to the rest of the cells.
5. Conclusions
- (i)
- Those that are used in the electrode where hydrogen reactions take place. In this case, it can be concluded that Pt-based catalysts are the best, and recent trends are looking for novel-non-carbonaceous supports to avoid the corrosion of carbon-based catalyst supports.
- (ii)
- Those that are used in the electrode where redox chlorine reactions take place. In this case, RuO2-based catalysts are the best option. Nevertheless, this electrode has received more attention than numerous other “catalyst configurations” and bimetallic or trimetallic catalysts, which have been assessed with the aim of improving the properties of the catalysts for these reactions and reducing the costs of the catalyst.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CER | chlorine evolution reaction |
CRR | chlorine reduction reaction |
EE | energy efficiency |
EES | electrochemical energy storage |
EFE | electric-to-electric efficiency |
FTO | fluorine-doped tin oxide |
HER | hydrogen evolution reaction |
LSV | Linear sweet voltammetry |
MCV | maximum cell voltage |
MEA | membrane electrode assembly |
MMO | mixed metal oxide |
NPs | nanoparticles |
NF | nickel foil |
PE | power efficiency |
PEM | proton-exchange membrane |
OER | oxygen evolution reaction |
ORR | oxygen reduction reaction |
URFC | unitized regenerative fuel cell |
References
- Madsen, H.T.; Søgaard, E.G.; Muff, J. Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2,6-dichlorobenzamide (BAM) in chloride medium at boron doped diamond (BDD) and platinum anodes. Chemosphere 2015, 120, 756–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, S.; Bhaukhandi, K.D.; Mishra, P.K. Coronavirus lockdown helped the environment to bounce back. Sci. Total Environ. 2020, 742, 140573. [Google Scholar] [CrossRef] [PubMed]
- Naderipour, A.; Abdul-Malek, Z.; Ahmad, N.A.; Kamyab, H.; AshokKumar, V.; Ngamcharussrivichai, C.; Chelliapan, S. Effect of COVID-19 virus on reducing GHG emission and increasing energy generated by renewable energy sources: A brief study in Malaysian context. Environ. Technol. Innov. 2020, 20, 101151. [Google Scholar] [CrossRef] [PubMed]
- SanJuan-Reyes, S.; Gómez-Oliván, L.M.; Islas-Flores, H. COVID-19 in the environment. Chemosphere 2021, 263, 127973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, X.; Zhang, J. Redox Flow Batteries: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Layke, J.H. 3 Reasons to Invest in Renewable Energy Now. World Resources Institute. 26 June 2020. Available online: https://www.wri.org/blog/2020/05/coronavirus-renewable-energy-stimulus-packages (accessed on 15 July 2020).
- Ahmad, S.; Tahar, R.M. Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renew. Energy 2014, 63, 458–466. [Google Scholar] [CrossRef]
- Ehteshami, S.M.M.; Chan, S.H. The role of hydrogen and fuel cells to store renewable energy in the future energy network—Potentials and challenges. Energy Policy 2014, 73, 103–109. [Google Scholar] [CrossRef]
- Gahleitner, G. Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications. Int. J. Hydrogen Energy 2013, 38, 2039–2061. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.W.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef]
- Jameson, A.; Gyenge, E. Halogens as Positive Electrode Active Species for Flow Batteries and Regenerative Fuel Cells. Electrochem. Energy Rev. 2020, 1–35. [Google Scholar] [CrossRef]
- Díaz-Abad, S.; Millán, M.; Rodrigo, M.; Lobato, J. Review of Anodic Catalysts for SO2 Depolarized Electrolysis for “Green Hydrogen” Production. Catalysts 2019, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Leung, D.Y.; Xuan, J.; Wang, H. A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells. Renew. Sustain. Energy Rev. 2016, 65, 961–977. [Google Scholar] [CrossRef]
- Mitlitsky, F.; Myers, B.; Weisberg, A.H. Regenerative Fuel Cell Systems. Energy Fuels 1998, 12, 56–71. [Google Scholar] [CrossRef]
- Cho, K.T.; Tucker, M.C.; Weber, A.Z. A Review of Hydrogen/Halogen Flow Cells. Energy Technol. 2016, 4, 655–678. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.B.; Taylor, J.E.; Wilemski, G.; Gelb, A. A high performance hydrogen/chlorine fuel cell for space power applications. J. Power Sources 1994, 47, 321–328. [Google Scholar] [CrossRef]
- Huskinson, B.; Rugolo, J.; Mondal, S.K.; Aziz, M.J. A high power density, high efficiency hydrogen-chlorine regenerative fuel cell with a low precious metal content catalyst. Energy Environ. Sci. 2012, 5, 8690. [Google Scholar] [CrossRef] [Green Version]
- Chehade, G.; Alrawahi, N.; Yuzer, B.; Dincer, I. A photoelectrochemical system for hydrogen and chlorine production from industrial waste acids. Sci. Total Environ. 2020, 712, 136358. [Google Scholar] [CrossRef]
- Thomassen, M.; Børresen, B.; Scott, K.; Tunold, R. A computational simulation of a hydrogen/chlorine single fuel cell. J. Power Sources 2006, 157, 271–283. [Google Scholar] [CrossRef]
- Yang, W.; Chen, S. Recent progress in electrode fabrication for electrocatalytic hydrogen evolution reaction: A mini review. Chem. Eng. J. 2020, 393, 124726. [Google Scholar] [CrossRef]
- Pandiyan, G.K.; Prabaharan, T. Implementation of nanotechnology in fuel cells. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Tri, P.N.; Nguyen, T.A.; Rtimi, S.; Plamondon, C.M.O. Chapter 1—Nanomaterials-based coatings: An introduction. In Nanomaterials-Based Coatings; Tri, P.N., Nguyen, T.A., Rtimi, S., Plamondon, C.M.O., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–7. [Google Scholar]
- Maricle, D.L. Hydrogen/Chlorine Regenerative Fuel Cell. U.S. Patent No 4,128,701, 5 December 1978. [Google Scholar]
- Maricle, D.L. Anhydrous H2-Cl2 Regenerative Fuel Cell. U.S. Patent No 4,129,683, 5 December 1978. [Google Scholar]
- Tolmachev, Y.V. Hydrogen-halogen electrochemical cells: A review of applications and technologies. Russ. J. Electrochem. 2013, 50, 301–316. [Google Scholar] [CrossRef]
- Braff, W.A.; Bazant, M.Z.; Buie, C.R. Membrane-less hydrogen bromine flow battery. Nat. Commun. 2013, 4, 2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brushett, F.R.; Zhou, W.-P.; Jayashree, R.S.; Kenis, P.J.A. Alkaline Microfluidic Hydrogen-Oxygen Fuel Cell as a Cathode Characterization Platform. J. Electrochem. Soc. 2009, 156, B565–B571. [Google Scholar] [CrossRef]
- Carvela, M.; Lobato, J.; Rodrigo, M.A. Storage of energy using a gas-liquid H2/Cl2 fuel cell: A first approach to electrochemically-assisted absorbers. Chemosphere 2020, 254, 126795. [Google Scholar] [CrossRef] [PubMed]
- Du, N.; Wang, C.; Wang, X.; Lin, Y.; Jiang, J.; Xiong, Y. Trimetallic TriStar Nanostructures: Tuning Electronic and Surface Structures for Enhanced Electrocatalytic Hydrogen Evolution. Adv. Mater. 2016, 28, 2077–2084. [Google Scholar] [CrossRef]
- Zhu, L.; Lin, H.; Li, Y.; Liao, F.; Lifshitz, Y.; Sheng, M.; Lee, S.-T.; Shao, M. A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials. Nat. Commun. 2016, 7, 12272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, J.; Yang, Y.; Xia, G.; Chen, J.; Jiang, P.; Chen, Q. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8, 14969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appleby, A. From Sir William Grove to today: Fuel cells and the future. J. Power Sources 1990, 29, 3–11. [Google Scholar] [CrossRef]
- Yu, X.; Ye, S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. J. Power Sources 2007, 172, 133–144. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X.; Kitta, M.; Xu, Q. Monodispersed Pt nanoparticles on reduced graphene oxide by a non-noble metal sacrificial approach for hydrolytic dehydrogenation of ammonia borane. Nano Res. 2017, 10, 3811–3816. [Google Scholar] [CrossRef]
- Foerster, F.; Nobis, A.; Stötzer, H. Über die Wasserstoff-Chlor-Kette. Zeitschrift für Elektrochemie und angewandte physikalische. Chemie 1923, 29, 64–79. [Google Scholar] [CrossRef]
- Yoshizawa, F.H.S.; Takehara, Z.; Kanaya, J.Y. Studies of Hydrogen-Chlorine Fuel Cell. I. Basic Studies of the Hydrogen-Chlorine Fuel Cell at Low Temperature. J. Electrochem. Soc. Jpn. 1962, 30, E10–E16. [Google Scholar] [CrossRef]
- Bianchi, G. Improved Porous Electrode for Studying Electrocatalytic Reactions of Gases and Vapors. J. Electrochem. Soc. 1965, 112, 233–238. [Google Scholar] [CrossRef]
- Du Nguyen, H.; Nguyen, T.T.L.; Nguyen, K.M.; Ha, T.H.; Nguyen, Q.H. Preparation of the vulcan XC-72R-supported Pt nanoparticles for the hydrogen evolution reaction in PEM water electrolysers. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 25012. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.; Yoon, H.; Park, I.-S.; Jang, J.; Sung, Y.-E. Highly dispersed Pt nanoparticles on nitrogen-doped magnetic carbon nanoparticles and their enhanced activity for methanol oxidation. Carbon 2007, 45, 2496–2501. [Google Scholar] [CrossRef]
- Kumar, S.S.; Hidyatai, N.; Herrero, J.S.; Irusta, S.; Scott, K. Efficient tuning of the Pt nano-particle mono-dispersion on Vulcan XC-72R by selective pre-treatment and electrochemical evaluation of hydrogen oxidation and oxygen reduction reactions. Int. J. Hydrogen Energy 2011, 36, 5453–5465. [Google Scholar] [CrossRef]
- Ehsan, M.A.; Suliman, M.H.; Rehman, A.; Hakeem, A.S.; Al Ghanim, A.; Qamar, M. Fabrication of platinum thin films for ultra-high electrocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 15076–15085. [Google Scholar] [CrossRef]
- Lin, R.; Cai, X.; Zeng, H.; Yu, Z. Stability of High-Performance Pt-Based Catalysts for Oxygen Reduction Reactions. Adv. Mater. 2018, 30, e1705332. [Google Scholar] [CrossRef]
- Anwar, M.T.; Yan, X.; Shen, S.; Husnain, N.; Zhu, F.; Luo, L.; Zhang, J. Enhanced durability of Pt electrocatalyst with tantalum doped titania as catalyst support. Int. J. Hydrogen Energy 2017, 42, 30750–30759. [Google Scholar] [CrossRef]
- Carvela, M.; Conti, J.; Lobato, J.; Scialdone, O.; Rodrigo, M. Effect of the anode composition on the performance of reversible chlor-alkali electro-absorption cells. Sep. Purif. Technol. 2020, 248, 117017. [Google Scholar] [CrossRef]
- Wu, X.; Zhuang, W.; Lu, L.; Li, L.; Zhu, J.; Mu, L.; Li, W.; Zhu, Y.; Lu, X. Excellent performance of Pt-C/TiO 2 for methanol oxidation: Contribution of mesopores and partially coated carbon. Appl. Surf. Sci. 2017, 426, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Zhang, H.; Ma, H.; Zhong, H.; Zou, Y. Study of carbon-supported IrO2 and RuO2 for use in the hydrogen evolution reaction in a solid polymer electrolyte electrolyzer. Electrochim. Acta 2010, 55, 1855–1861. [Google Scholar] [CrossRef]
- Sadhasivam, T.; Dhanabalan, K.; Roh, S.-H.; Kim, T.-H.; Park, K.-W.; Jung, S.; Kurkuri, M.D.; Jung, H.-Y. A Comprehensive review on unitized regenerative fuel cells: Crucial challenges and developments. Int. J. Hydrogen Energy 2017, 42, 4415–4433. [Google Scholar] [CrossRef]
- Chang, F.T.; Wick, H. Halogen Overvoltage. Z. Phys. Chem. A 1935, 172, 448. [Google Scholar]
- Yeo, R.S.; McBreen, J.; Tseung, A.C.C.; Srinivasan, S.; McElroy, J. An electrochemically regenerative hydrogen-chlorine energy storage system: Electrode kinetics and cell performance. J. Appl. Electrochem. 1980, 10, 393–404. [Google Scholar] [CrossRef]
- Thomassen, M.; Børresen, B.; Hagen, G.; Tunold, R. H2/Cl2 fuel cell for co-generation of electricity and HCl. J. Appl. Electrochem. 2003, 33, 9–13. [Google Scholar] [CrossRef]
- Lim, T.; Jung, G.Y.; Kim, J.H.; Park, S.O.; Park, J.; Kim, Y.-T.; Kang, S.J.; Jeong, H.Y.; Kwak, S.K.; Joo, S.H. Atomically dispersed Pt–N4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Shi, L.; Ren, Z.; Zhang, A.; Ming, R.; Chai, B.; Zhu, Y. Preparation of electrolyzed oxidizing water with a platinum electrode prepared by magnetron sputtering technique. RSC Adv. 2017, 7, 45377–45384. [Google Scholar] [CrossRef] [Green Version]
- Shibli, S.; Noel, M. Platinum-iridium bimetal catalyst-based porous carbon electrodes for H2-Cl2 fuel cells. Int. J. Hydrogen Energy 1993, 18, 141–147. [Google Scholar] [CrossRef]
- Iwakura, C.; Hirao, K.; Tamura, H. Anodic evolution of oxygen on ruthenium in acidic solutions. Electrochim. Acta 1977, 22, 329–334. [Google Scholar] [CrossRef]
- Le Luu, T.; Kim, C.; Yoon, J. Sonoelectrodeposition of RuO2 electrodes for high chlorine evolution efficiencies. J. Korean Soc. Water Wastewater 2017, 31, 397–407. [Google Scholar] [CrossRef]
- Zafar, M.S.; Tausif, M.; Ul-Haq, Z.; Ashraf, M.; Hussain, S. New Development of Anodic Electro-catalyst for Chlor-alkali Industry. Port. Electrochim. Acta 2016, 34, 257–266. [Google Scholar] [CrossRef]
- Goryachev, A.; Pascuzzia, M.E.C.; Carlàb, F.; Weber, T.; Over, H.; Hensena, E.J.M.; Hofmanna, J.P. Electrochemical stability of RuO2(110)/Ru(0001) model electrodes in the oxygen and chlorine evolution reactions. Electrochim. Acta 2020, 336, 135713. [Google Scholar] [CrossRef]
- Han, J.; An, H.J.; Kim, T.-W.; Lee, K.-Y.; Kim, H.J.; Kim, Y.; Chae, H.-J. Effect of Structure-Controlled Ruthenium Oxide by Nanocasting in Electrocatalytic Oxygen and Chlorine Evolution Reactions in Acidic Conditions. Catalysts 2019, 9, 549. [Google Scholar] [CrossRef] [Green Version]
- Panić, V.V.; Dekanski, A.; Mitrić, M.; Milonjić, S.K.; Miskovic-Stankovic, V.; Nikolić, B.Ž. The effect of the addition of colloidal iridium oxide into sol–gel obtained titanium and ruthenium oxide coatings on titanium on their electrochemical properties. Phys. Chem. Chem. Phys. 2010, 12, 7521–7528. [Google Scholar] [CrossRef] [PubMed]
- Thomassen, M.; Sandnes, E.; Børresen, B.; Tunold, R. Evaluation of concepts for hydrogen—Chlorine fuel cells. J. Appl. Electrochem. 2006, 36, 813–819. [Google Scholar] [CrossRef]
- Ren, Y.; Ma, Z.; Bruce, P.G. Ordered mesoporous metal oxides: Synthesis and applications. Chem. Soc. Rev. 2012, 41, 4909–4927. [Google Scholar] [CrossRef]
- Heo, S.E.; Lim, H.W.; Cho, D.K.; Park, I.J.; Kim, H.; Lee, C.W.; Ahn, S.H.; Kim, J.Y. Anomalous potential dependence of conducting property in black titania nanotube arrays for electrocatalytic chlorine evolution. J. Catal. 2020, 381, 462–467. [Google Scholar] [CrossRef]
- Audichon, T.; Mayousse, E.; Morisset, S.; Morais, C.; Comminges, C.; Napporn, T.W.; Kokoh, K.B. Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile. Int. J. Hydrogen Energy 2014, 39, 16785–16796. [Google Scholar] [CrossRef]
- Moradi, F.; Dehghanian, C. Addition of IrO2 to RuO2+TiO2 coated anodes and its effect on electrochemical performance of anodes in acid media. Prog. Nat. Sci. 2014, 24, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Le Luu, T.; Kim, C.; Kim, S.; Kim, J.; Yoon, J. Fabricating macroporous RuO2-TiO2 electrodes using polystyrene templates for high chlorine evolution efficiencies. Desalination Water Treat. 2017, 77, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.-D.; Zhang, S.; Yin, G.-P.; Zhang, N.; Wang, Z.-B.; Du, C.-Y. Pt/porous-IrO2 nanocomposite as promising electrocatalyst for unitized regenerative fuel cell. Electrochem. Commun. 2012, 14, 63–66. [Google Scholar] [CrossRef]
- Finke, C.E.; Omelchenko, S.T.; Jasper, J.T.; Lichterman, M.F.; Read, C.G.; Lewis, N.S.; Hoffmann, M.R. Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO2. Energy Environ. Sci. 2019, 12, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Liab, J.; Zhoud, Q.; Shenc, Z.; Lic, S.; Pue, J.; Zhongc, C.; CaoC, M.; Jinc, X.; Zhangc, H.; Wangb, Y.; et al. Synergistic effect of ultrafine nano-Ru decorated cobalt carbonate hydroxides nanowires for accelerated alkaline hydrogen evolution reaction. Electrochim. Acta 2020, 331, 135367. [Google Scholar] [CrossRef]
- Mondal, S.K.; Aziz, M.J.; Rugolo, J. Alloy Oxide Electrocatalysts for Regenerative Hydrogen-Halogen Fuel Cell. MRS Proc. 2011, 1311. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Rahaman, H. Chapter 16—Noble metal–Manganese oxide hybrid nanocatalysts. In Noble Metal-Metal Oxide Hybrid Nanoparticles; Mohapatra, S., Nguyen, T.A., Nguyen-Tri, P., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 313–340. [Google Scholar]
- Zeradjanin, A.R.; Menzel, N.; Schuhmann, W.; Strasser, P. On the faradaic selectivity and the role of surface inhomogeneity during the chlorine evolution reaction on ternary Ti–Ru–Ir mixed metal oxide electrocatalysts. Phys. Chem. Chem. Phys. 2014, 16, 13741–13747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Z.; Kangning, C.; Wei, W.; Wang, J.; Lee, S. Effect of IrO2 loading on RuO2–IrO2–TiO2 anodes: A study of microstructure and working life for the chlorine evolution reaction. Ceram. Int. 2007, 33, 1087–1091. [Google Scholar] [CrossRef]
- Weibel, A.; Bouchet, R.; Knauth, P. Electrical properties and defect chemistry of anatase (TiO2). Solid State Ion. 2006, 177, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Oakton, E.; Lebedev, D.; Povia, M.; Abbott, D.F.; Fabbri, E.; Fedorov, A.; Nachtegaal, M.; Copéret, C.; Schmidt, T.J. IrO2-TiO2: A High-Surface-Area, Active, and Stable Electrocatalyst for the Oxygen Evolution Reaction. ACS Catal. 2017, 7, 2346–2352. [Google Scholar] [CrossRef]
- Deng, L.; Liu, Y.; Zhao, G.; Chen, J.; He, S.; Zhu, Y.; Chai, B.; Ren, Z. Preparation of electrolyzed oxidizing water by TiO2 doped IrO2-Ta2O5 electrode with high selectivity and stability for chlorine evolution. J. Electroanal. Chem. 2019, 832, 459–466. [Google Scholar] [CrossRef]
Electrode | Manufacturing Procedure | Experimental Setup/Operation Conditions | Performance | Reference | Conclusions | |||
---|---|---|---|---|---|---|---|---|
Hydrogen Side | Chlorine Side | Electrolysis | Fuel Cell | Electrolysis | Fuel Cell | Pros (+) | Cons (−) | |
Graphite Non-electrocatalyst | Graphite Non-electrocatalyst | Three cells Surface area electrode (SAE): 60 cm2 Separators: 2 mm thick earthenware | X | I = 0.2A T = 25 °C Cl2 = 1.5 L h−1 H2 = 12 L h−1 | H2 = 2% Cl2 = 91% | [35] | -Low H2 consumption | -Necessary to platinize the electrode; high flow rate of hydrogen |
Pt/C | Pt/C | - | X | j = 40 mA cm−2 T = 50 °C 5.0–8.0 M HCl | EE = 41% and 51% | [36] | -Carbon gas diffusion electrodes | -High conductivity is required (5.0 M HCl, as minimum) |
Platinized graphite | Percolating porous graphite | - | X | E = 1.0 V | j = 50 mA cm−2 PE = 80% | [37] | -The cell performance remained constant | -Low activity for CRR due to the lack of a catalyst |
Platinized graphite | Ruthenized titanium (RuO2/TiO2) | Cell flow-by and flow-through Membrane: Nafion (0.025 cm) SAE: 46 cm2 | H2 gas; Cl2 dissolved in HCl j = 100 mA cm−2 T = 40 and 80 °C Electrolyte = 10% HCl; 8 cm3 s−1 | H2: non-electrolyte; Cl2: HCl j = 100 mA cm−2 Cl2 P = 5 atm Electrolyte = 10 % HCl | EFE = 85 and 90% (40–80 °C) | [49] | -Fast electrode kinetics of the system -Electrolysis and fuel cell reaction in the same cell | -Mass transfer limitations during discharge -Parasitic reactions |
Pt-Ir/C 2.5 wt. % Pt; 5 wt. % Ir | Pt-Ir/C 2.5 wt. % Pt; 5 wt. % Ir | Non-membrane SAE: 15 cm2 Separators: neoprene rubber Electrode distance: 6 mm | X | j = 100 mA cm−2 T = 60 °C Cl2 P = 60 mm Hg Electrolyte = 5 M HCl; 7 mL min−1 | MCV = 1.0 V Stable for 300 h | [53] | -A long-term stability in performance of the cell -Low Pt content | -Electrode corrosion -Passivation -Mechanical damage |
Pt/C 20 wt. % Pt 1 mgPt cm−2 | RuO2/C 0.8 mgPt cm−2 | Surface area electrode: 6.25 cm2 | X | j = 3 00 mA cm −2 T = 25 °C Electrolyte = 1 M HCl | MCV = 1.05 V Stable for 120 h | [50] | -Non-platinum for chlorine electrode | -Long-term stability decreases in the performance of the cell by 45% |
Pt/C 20 wt. % Pt 0.5 mgPt cm−2 | (Ru0.09Co0.91)3O4/C 0.15 mgRu cm−2 | Circular endplates Separators: PTFE SAE: 2 cm2 Membrane: Nafion Assembly: Membrane electrode assembly (MEA) (10.2 nm) | T = 50 °C | Anolyte: non-humidified H2 or humidified H2 (50–100 mL min−1) Catolyte: HCl + bubbles of Cl2 (0 M, 1 M, and 2 M) T = 50 °C Cl2 P = 12–70 psig | Maximum power density = 0.4 W cm−2 EFE = 84% | [17] | -Maximum power density is twice that of previous literature values -Low Ru content -Oxygen evolution is slow -No significant activation loss | -The hydrogen electrode requires humidification |
Ti0.8 O2Pt0.2/Ti 40 wt. % Pt 0.65 mgPt cm−2 | Ru0.2Ti0.6 O2Pt0.2/Ti 38 wt. % Ru; 40 wt. % Pt 0.65 mgPt cm−2 | Cell flow-by housing (7.5 cm × 7.5 cm) Surface area electrode: 2 cm2 Membrane: Nafion Assembly: non-MEA | j = 100 mA cm−2 T = 25 °C P = 1 atm Anolyte = 2.0 M NaCl Catholyte = 2.0 M NaCl | E = 0.5 V T = 25 °C P= 1 atm Anolyte = macrobubbles H2 Catholyte = HClO (1 M HCl + 1 M ClO−) | H2 production = 88% EFE = 46% | [44] | -Electrodes have higher efficiency for long periods of time -Reversibility -Electrolysis and fuel in the same cell -Low oxygen production -High hydrogen production | Electrodes with a certain amount of Pt -High electrode gap |
Ti0.8 O2Pt0.2/Ti 40 wt. % Pt 0.65 mgPt cm−2 | Ru0.3Ti0.6O2Pt0.1/Ti 38 wt. % Ru; 40 wt. % Pt 0.65 mgPt cm−2 | H2 production = 98% EFE = 74% | [44] | |||||
Ti0.8 O2Pt0.2/Ti 40 wt. % Pt 0.65 mgPt cm−2 | Ru0.4Ti0.5O2Pt0.1/Ti 38 wt. % Ru; 40 wt. % Pt 0.65mg Pt cm−2 | H2 production = 97% EFE = 60% | [44] | |||||
Ti0.8 O2Pt0.2/Ti 40 wt. % Pt 0.65 mgPt cm−2 | Ru0.45Ti0.5O2Pt0.05/Ti 38 wt. % Ru; 40 wt. % Pt 0.65mg Pt cm−2 | H2 production = 84% EFE = 13% | [44] | |||||
Pt/C 40 wt. % Pt 0.65 mgPt cm−2 | Ru0.3Ti0.6O2Pt0.1/Ti 38 wt. % Ru; 40 wt. % Pt 0.65 mgPt cm−2 | Cell flow-by housing (7.5 cm × 7.5 cm) SAE: 2 cm2 Membrane: Nafion Assembly: MEA | j = 100 mA cm−2 T = 25 °C P = 1 atm Anolyte = 2.0 M NaCl Catholyte = 2.0 M NaCl | E = 0.5 V T = 25 °C P = 1 atm Anolyte = H2 microbubbles Catholyte = HClO (1 M HCl + 1 M ClO−) | H2 production = 84% EFE = 48% | [28] | -Minimum distance between electrodes -Low mass transfer losses at the hydrogen electrode -Reversibility of the system | -Electrodes with a certain amount of Pt -Electrodes require thermal treatment |
Pt/C 40 wt. % Pt 0.65 mgPt cm−2 | Ru0.3Ti0.7O2/Ti 38 wt. % Ru 0.65 mgPt cm−2 | H2 production = 72% EFE = 33% | Carried out by our research group, not published yet | -Non-platinum content for the chlorine electrode -Low metal precious content -Higher mechanical stability -Electrodes do not require thermal treatment | -Parasitic reactions -Formation of oxygen -Low stability of the cell performance | |||
Pt/C 40 wt. % Pt 0.65 mgPt cm−2 | Ru0.5Iri0.5O2/Ti 38 wt. % Ru 0.65 mgPt cm−2 | H2 production = 80% EFE = 45% | ||||||
Pt/C 40 wt. % Pt 0.65 mgPt cm−2 | RuO2/C 38 wt. % Ru 0.65 mgPt cm−2 | Cell (graphite): 15 cm × 15 cm SAE: 25 cm2 Membrane: Nafion | E = 0.5 V Anolyte = humidified H2 Catholyte = dry Cl2 | H2 production = 99.7% E = 530 Wh/mol Cl2 EFE = 78% | -Novel reactor of non-porous graphite material -Non-platinum on chlorine electrode | -High ohmic resistance -The hydrogen electrode at least requires humidification |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvela, M.; Raschitor, A.; Rodrigo, M.A.; Lobato, J. Recent Progress in Catalysts for Hydrogen-Chlorine Regenerative Fuel Cells. Catalysts 2020, 10, 1263. https://doi.org/10.3390/catal10111263
Carvela M, Raschitor A, Rodrigo MA, Lobato J. Recent Progress in Catalysts for Hydrogen-Chlorine Regenerative Fuel Cells. Catalysts. 2020; 10(11):1263. https://doi.org/10.3390/catal10111263
Chicago/Turabian StyleCarvela, Mireya, Alexandra Raschitor, Manuel A. Rodrigo, and Justo Lobato. 2020. "Recent Progress in Catalysts for Hydrogen-Chlorine Regenerative Fuel Cells" Catalysts 10, no. 11: 1263. https://doi.org/10.3390/catal10111263
APA StyleCarvela, M., Raschitor, A., Rodrigo, M. A., & Lobato, J. (2020). Recent Progress in Catalysts for Hydrogen-Chlorine Regenerative Fuel Cells. Catalysts, 10(11), 1263. https://doi.org/10.3390/catal10111263