Electronic Supplementary Material (ESI)

Environmental reactions of air-quality protection on eco-friendly iron-based catalysts

Melissa Greta Galloni‡¹, Sebastiano Campisi‡¹, Sergio Gustavo Marchetti², Antonella Gervasini^{1,*}

Figure S1 N₂ adsorption/desorption isotherms at -196°C of bare HAP calcined at 500°C (a) and of two Fe/HAP, presenting the lowest and the highest Fe-loading among Fe-loaded samples (Fe2/HAP_{IE}, b, and Fe13/HAP_{IE}, c, respectively).

Figure S2 Acidity trend (in μ mol_{NH3}/g) of Fe/HAP samples as a function of Fe-concentration (expressed in mmol_{Fe}/g) with indication of HAP acidity (black marker).

Figure S3 Catalytic activity results on bare HAP: a) NH₃-SCR: profiles of conversion of fed species (NH₃ and NOx) and formed species (N₂ and N₂O) as a function of temperature; b) NH₃-SCO: profiles of conversion of fed species (NH₃) and formed species (N₂ and NO_x) as a function of temperature; c) N₂O decomposition: profile of N₂O conversion as a function of temperature.

Figure S4 NH₃-SCR catalytic activity results on Fe/HAP samples: profiles of concentration of fed species (NH₃ and NO) and formed species (N₂ and N₂O, NO₂) as a function of temperature. Reaction conditions: $[NH_3]=[NO]=500$ ppm, $[O_2]=10,000$ ppm; GHSV= 30,000 h⁻¹.

Figure S5 UV-vis DR spectra (black curves) of Fe/HAP samples (a-e): total calculated curves (red lines) and decomposed curves (dotted black lines) with the related peak centers are also reported.

Figure S6 Mössbauer spectra of Fe/HAP samples (a-d) collected at room temperature.

Figure S7 Mössbauer spectra of Fe/HAP samples (a-d) collected at -260°C.

Table S1. Symbols and calculations for computing catalytic parameters

$\mathbf{F}_{ ext{tot}}$	Gas flow rate (NL·h ⁻¹)		
in	Feeding		
out	Vented		
Χ	Conversion (%)		
S	Selectivity (%)		

Catalytic Parameter	Unit	NH3-SCR	NH3-SCO	N ₂ O decomposition		
θ_1 (contact time ₁)	g·s/NL	$\frac{wcat}{Ftot}$ · 3600				
θ_2 (contact time ₂)	g∙s/mmol	$\frac{\boldsymbol{\theta_1} \cdot 22.414}{1000}$				
[NO _x]	ppm	[NO]+[NO ₂]	-			
[N ₂]	ppm	$([NO_x]_{in} - [NO_x]_{out}) + ([NH_3]_{in} - [NH_3]_{out}) - 2[N_2O]_{out}$	$\frac{([NO_x]_{in} - [NO_x]_{out}) + ([NH_3]_{in} - [NH_3]_{out})}{2}$	-		
X _{NOx}	%	$\frac{([NO_x]_{in} - [NO_x]_{out})}{[NO_x]_{in}} \cdot 100$	-			
S _{NOx}	%	-	S _{NO} + S _{NO2}	-		
X _{NH3}	%	$\frac{([NH_3]_{in} - [NH_3]_{out})}{[NH_3]_{in}} \cdot 100$	$\frac{([NH_3]_{in} - [NH_3]_{out})}{[NH_3]_{in}} \cdot 100$	-		
S _{N2}	%	$\left(1 - \frac{(2 \cdot [N_2]_{out})}{([NO_x]_{in} - [NO_x]_{out}) + ([NH_3]_{in} - [NH_3]_{out})}\right) \cdot 100 \qquad \qquad \frac{2 \cdot ([N_2]_{out})}{([NH_3]_{in} - [NH_3]_{out})} \cdot 100$		-		
X _{N2O}	%	-		$\frac{([N_2 O]_{in} - [N_2 O]_{out})}{[N_2 O]_{in}} \cdot 100$		
S _{N2O}	%	$\left(1 - \frac{([N_2 O]_{out})}{([N O_x]_{in} - [N O_x]_{out}) + ([N H_3]_{in} - [N H_3]_{out})}\right) \cdot 100$	$\frac{2 \cdot ([N_2 O]_{out})}{([NH_3]_{in} - [NH_3]_{out})} \cdot 100$	-		

* where the [species]_{in} are the by-pass concentrations and [species]_{out} are the concentrations evaluated at steady-state conditions at each reaction temperature.

Code	Parameters				
	$\Delta^{a} (mm/s)$	δ^{b} (mm/s)	%°		
Fe2/HAP _{IE}	1.3 ± 0.3	0.37 ± 0.02	48 ± 28		
	0.7 ± 0.1	0.40 ± 0.03	52 ± 28		
Fe3/HAP _{IE}	1.27 ± 0.07	0.39 ± 0.01	36 ± 6		
	0.76 ± 0.06	0.40 ± 0.01	62 ± 6		
	1.2 ± 0.2	0.37 ± 0.01	55 ± 16		
ΓΕΞ/ΠΑΡΙΕ	0.72 ± 0.04	0.41 ± 0.02	45 ± 16		
Fe7/HAP _{IE}	1.3 ± 0.2	0.38 ± 0.03	38 ± 11		
	0.76 ± 0.07	0.40 ± 0.02	66 ± 11		
Fe9/HAP _{IE}	1.3 ± 0.1	0.38 ± 0.02	40 ± 8		
	0.76 ± 0.04	0.39 ± 0.01	60 ± 8		
Fe13/HAP _{IE}	1.27 ± 0.07	0.39 ± 0.01	38 ± 6		
	0.76 ± 0.04	0.40 ± 0.01	62 ± 6		

 Table S2 Mössbauer parameters of all the Fe/HAP samples at room temperature.

^a quadrupole splitting; ^b isomer shift (all the isomer shifts are referred to α -Fe at 25°C); ^c normalized population of Fe³⁺ centres.

Code	Parameters				Fe species	
-	Δ^{a} (mm/s)	δ^{b} (mm/s)	$2\epsilon^{c}$ (mm/s)	H ^d (kOe)	0∕₀ ^e	_
Fe2/HAP _{IE}	1.49 ± 0.08	0.54 ± 0.03	-	-	38 ± 6	Paramagnetic Fe ³⁺ replacing Ca(2) ions
	0.80 ± 0.07	0.52 ± 0.02	-	-	47 ± 7	Paramagnetic Fe ³⁺ replacing Ca(1) ions
	-	0.37 ± 0.08	0^{f}	450 ^f	15 ± 6	Fe _x O _y nanoclusters (2 <size (nm)<4)<="" td=""></size>
– Fe3/HAP _{IE}	1.5 ± 0.1	0.47 ± 0.04	-	-	40 ± 10	Paramagnetic Fe ³⁺ replacing Ca(2) ions
	0.92 ± 0.08	0.48 ± 0.02	-	-	46 ± 9	Paramagnetic Fe ³⁺ replacing Ca(1) ions
	-	0.37^{f}	0^{f}	450 ^f	14 ± 5	Fe _x O _y nanoclusters (2 <size (nm)<4)<="" td=""></size>
– Fe5/HAP _{IE}	1.36 ± 0.04	0.48 ± 0.01	-	-	46 ± 4	Paramagnetic Fe ³⁺ replacing Ca(2) ions
	0.80 ± 0.04	0.51 ± 0.01	-	-	46 ± 5	Paramagnetic Fe ³⁺ replacing Ca(1) ions
	-	0.27 ± 0.09	0^{f}	450 ^f	8 ± 3	Fe _x O _y nanoclusters (2 <size (nm)<4)<="" td=""></size>
– Fe7/HAP _{IE}	1.37 ± 0.03	0.50 ± 0.01	-	-	40 ± 3	Paramagnetic Fe ³⁺ replacing Ca(2) ions
	0.81 ± 0.03	0.51 ± 0.01	-	-	51 ± 3	Paramagnetic Fe ³⁺ replacing Ca(1) ions
	-	0.34 ± 0.05	0^{f}	450 ^f	9 ± 2	Fe _x O _y nanoclusters (2 <size (nm)<4)<="" td=""></size>
– Fe9/HAP _{IE}	1.31 ± 0.03	0.49 ± 0.01	-	-	46 ± 3	Paramagnetic Fe ³⁺ replacing Ca(2) ions
	0.77 ± 0.03	0.50 ± 0.01	-	-	49 ± 3	Paramagnetic Fe ³⁺ replacing Ca(1) ions
	-	0.30 ± 0.09	0^{f}	450 ^f	5 ± 2	Fe _x O _y nanoclusters (2 <size (nm)<4)<="" td=""></size>
Fe13/HAP _{IE}	1.28 ± 0.02	0.48 ± 0.01	-	-	42 ± 2	Paramagnetic Fe ³⁺ replacing Ca(2) ions
	0.76 ± 0.02	0.50 ± 0.01	-	-	50 ± 2	Paramagnetic Fe ³⁺ replacing Ca(1) ions
	-	0.38 ± 0.08	0^{f}	450^{f}	8 ± 2	Fe _x O _y nanoclusters (2 <size (nm)<4)<="" td=""></size>

Table S3Mössbauer parameters of all the Fe/HAP samples collected at -260 °C.

^a quadrupole splitting; ^b isomer shift (all the isomer shifts are referred to α -Fe at 25°C); ^c quadrupole shift; ^d hyperfine magnetic field; ^e normalized population of Fe³⁺ centres; ^f held parameters fixed in fitting.